AO工艺、A2O工艺教学教材

合集下载

AO工艺、A2O工艺、氧化沟 、SBR工艺、CAST工艺简介

AO工艺、A2O工艺、氧化沟 、SBR工艺、CAST工艺简介

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺简介一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N 或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺、A2O工艺、氧化沟、SBR工艺、CAST工艺简介

AO工艺、A2O工艺、氧化沟、SBR工艺、CAST工艺简介

AO工艺、A2O工艺、氧化沟、SBR工艺、CAST工艺简介一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺标准,A2O工艺标准

AO工艺标准,A2O工艺标准

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L 以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AAO及SBR工艺流程课件

AAO及SBR工艺流程课件
A2/O
工艺流程
A2/O简介
A2/O生物 脱氮除磷工艺是传统活性污泥、生物消
化及反消化工艺跟除磷工艺的综合,生物池通过
曝气装置、推进器(厌氧段跟缺氧段)及回流渠
道的布置分成厌氧段、缺氧段、好氧段。在该工
艺流程中BOD5,SS和各种形式57存%在的氮磷一一
被去除。A2/O的活性污泥中,菌群主要由硝化菌
修正后反应器容积 V′=V+⊿V
式中 V’——各反应器修正后的容积,m3; ⊿V——反应器必要的安全容积,m3;
CASS 设计参数与计算公式

一致是强有力的,而纷争易于被征服 。。20. 8.320.8. 3Monday, August 03, 2020

勤奋是登上知识高峰的一条捷径,不 怕吃苦 才能在 知识的 海洋里 自由遨 游。。0 9:10:20 09:10:2 009:10 8/3/202 0 9:10:20 AM
(2)在厌氧(缺氧)、好氧交替运行条件下,丝状 菌不能大量增殖,无污泥膨胀之虞,SVI值一般均 小于100
(3)污泥中含磷浓度高,具有很高的肥效 (4)运行中勿需投药,两个A段只用轻缓搅拌,以
不增加溶解氧为度,运行费用低
A2/O缺点
• 反应池容积比A/O脱氮还要大 • 污泥内回流量大,能耗高 • 用于中小型水厂费用偏高 • 沼气回收利用效益差 • 污泥渗出液需化学除磷
通过以上措施,CASS反应器强化了以下的功能:
1) 加速对溶解性底物的去除和对难降解有机物的水解作用;
2) 强化污泥中磷在厌氧条件下得到有效的释放; 3) 此外, 缺氧区中还可发生比较显著的反硝化作用; 4) 采用多池串联运行,使废水在反应器的流动呈现出整体推流而在 不同区域内为完全混合的复杂流态,保证了处理效果; 5) 改善污泥的沉降性能, 6)生物选择器防止污泥膨胀问题的发生。

ao处理工艺ppt课件

ao处理工艺ppt课件

整理ppt
23
【3】通过取消初沉池或缩短初沉池停留时间,不仅增加了 系统脱氮除磷所需的碳源,而且提高了处理系统内的污泥 浓度,强化了好氧区内的同步反硝化作用,进一步缓解了处 理系统内的碳源矛盾,提高了处理系统的脱氮除磷率;
【4】将常规AA/O工艺的混合液回流系统与污泥回流系统 合二为一组成了唯一的污泥回流系统,工艺流程简捷,运行 管理方便,占地面积减少;
【4】脱氮效果受混合液回流比大小的影响,除磷效果则受 回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率 不可能很高。
【5】在同时脱氧除磷去除有机物的工艺中,该工艺流程
最为简单,总的水力停留时整间理p也pt 少于同类其他工艺
13
A2/O工艺缺点:
【1】反应池容积比A/O脱氮工艺还要大 【2】污泥内回流量大,能耗较高 【3】用于中小型污水厂费用偏高 【4】沼气回收利用经济效益差 【5】污泥渗出液需化学除磷
对功能完整的城市污水处理厂而言,这种碳源是易于获 取又不额外增加费用的。
整理ppt
20
弥补碳源不足的工艺对策3
·倒置AA/O工艺 同济大学高廷耀、张波等认为,传统A2/O工艺厌氧、缺氧、好 氧布置。其在碳源分配上总是优先照顾释磷的需要,把厌氧区 放在工艺的前部,缺氧区置后。这种作法是以牺牲系统的反硝 化速率为前提的。但释磷本身并不是除磷脱氮工艺的最终目 的。
• 在好氧池中,有机物被微生物生化降解,而继续下降;
有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随
着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄
取,也以较快的速度下降。所以,A2/O工艺它可以同时
完成有机物的去除、硝化脱氮、磷的过量摄取而被去除
等功能,脱氮的前提是NH3-N应完全硝化,好氧池能完成

AO工艺、A2O工艺

AO工艺、A2O工艺

A/0工艺、A2/0工艺、氧化沟、SBR 工艺、CAST 工艺一、 A/O 工艺1. 基本原理A/O 是 Anoxic/Oxic 的缩写,它的优越性是除了使有机污染物得 到降解之外, 还具有一定的脱氮除磷功能, 是将厌氧水解技术用为活性污泥的前处理, 所以 A/0法是改进的活性污泥法。

A/0工艺将前段缺氧段和后段好氧段串联在一起,A 段DO 不 大于0.2mg/L , 0段D0=2~ 4mg/L 。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等 悬浮污染物和可溶性有机物水解为有机酸, 使大分子有机物分解为小分子有机物,不溶性的 有机物转化成可溶性有机物, 当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高 污水的可生化性及氧的效率;在缺氧段, 异养菌将蛋白质、脂肪等污染物进行氨化 (有机链 上的N 或氨基酸中的氨基)游离出氨( NH3 NH4+,在充足供氧条件下,自养菌的硝化作 用将NH3-N(NH4+氧化为N03-,通过回流控制返回至 A 池,在缺氧条件下,异氧菌的反硝 化作用将N03还原为分子态氮(N2)完成C N 、0在生态中的循环,实现污水无害化处理。

2. A/0 内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮 的经验,我们总结出 (A/0) 生物脱氮流程具有以下优点:(1) 效率高。

该工艺对废水中的有机物, 氨氮等均有较高的去除效果。

当总停留时间大于 54h,经生物脱氮后的出水再经过混凝沉淀,可将C0D 直降至100mg/L 以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源, 故不需要再另加甲醇等昂贵的碳源。

尤其, 在蒸氨塔设置有脱固定氨的装 置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

AO工艺、A2O、氧化沟工艺、SBR

AO工艺、A2O、氧化沟工艺、SBR

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L 以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

活性污泥法之AO与A2O工艺

活性污泥法之AO与A2O工艺

活性污泥法之AO与A2O工艺AO(Anoxic Oxic)工艺法:也叫厌氧好氧工艺法,A(Anaerobic)是厌氧段,用于脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。

它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以AO法是改进的活性污泥法。

A段DO:不大于0.2mg/LO段DO:2~4mg/L分解为:小分子有机物A/O法脱氮工艺的特点(a)流程简单,无需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。

(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。

A/O法脱氮工艺的优点①系统简单,运行费低,占地小;②以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用;③好氧池在后,可进一步去除有机物;④缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷;⑤反硝化产生的碱度可补偿硝化过程对碱度的消耗。

A/O法存在的问题1、由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。

此外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%影响因素水力停留时间(硝化>6h,反硝化<2h)污泥浓度MLSS(>3000mg/L)污泥龄(>30d)N/MLSS负荷率(<0.03)进水总氮浓度(<30mg/L)。

背景知识常见污水处理工艺介绍:(1)按城市污水处理及污染防治技术政策推荐,日处理能力在20万立方米以上(不包括20万立方米/日)的污水处理设施,一般采用常规活性污泥法。

AO工艺、A2O工艺

AO工艺、A2O工艺

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O 段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N (NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺、A2O工艺、氧化沟 、SBR工艺

AO工艺、A2O工艺、氧化沟 、SBR工艺

一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

课程设计ao工艺设计

课程设计ao工艺设计

课程设计a o工艺设计一、教学目标本课程旨在通过教学使学生掌握工艺设计的基本理论、方法和步骤,培养学生的创新能力和实践能力。

具体目标如下:知识目标:使学生了解和掌握工艺设计的基本概念、原理和方法,包括设计思维、设计流程、设计原则等内容。

技能目标:培养学生运用工艺设计理论分析和解决实际问题的能力,能独立完成一般的工艺设计项目。

情感态度价值观目标:培养学生对工艺设计的兴趣和热情,提高学生对美的感受力和创造力,培养学生的团队协作意识和沟通能力。

二、教学内容本课程的教学内容主要包括工艺设计的基本理论、方法和实践。

具体安排如下:1.第一章:工艺设计导论,介绍工艺设计的概念、历史和发展趋势。

2.第二章:设计思维与方法,讲解设计思维的培养、设计方法的应用。

3.第三章:设计流程与实践,介绍设计流程的各个阶段,以及实践中的注意事项。

4.第四章:设计原则与创新,讲解设计原则在实践中的应用,以及如何进行创新设计。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:讲解基本概念、理论和方法。

2.案例分析法:分析典型设计案例,引导学生运用所学理论知识。

3.实践教学法:学生进行实际操作,培养学生的实践能力。

4.小组讨论法:分组讨论,培养学生的团队协作意识和沟通能力。

四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:《工艺设计导论》、《设计思维与方法》等。

2.参考书:提供相关的设计理论和实践书籍,供学生自主学习。

3.多媒体资料:收集相关的设计案例、视频等,丰富教学手段。

4.实验设备:提供一定的实验室设备,供学生进行实践操作。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,每个部分占总分的三分之一。

平时表现主要考察学生的出勤、课堂参与和团队协作等情况,作业主要考察学生对知识的理解和应用能力,考试主要考察学生的综合运用能力。

评估方式客观、公正,能够全面反映学生的学习成果。

六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。

A2O工艺设计计算教学教材

A2O工艺设计计算教学教材

1、缺氧池、好氧池(曝气池)的设计计算: (1)、设计水量的计算由于硝化和反硝化的污泥龄和水力停留时间都较长,设计水量应按照最高日流量计算。

Q K Q •=式中:Q ——设计水量,m 3/d ; Q ——日平均水量,m 3/d ;K ——变化系数;(2)、确定设计污泥龄C θ需反硝化的硝态氮浓度为e e 0-)S -.05(S 0-N N N O =式中:N ——进水总氮浓度,mg/L ;0S ——进水BOD 值【1】,mg/L ; e S ——出水BOD 值,mg/L ; e N ——出水总氮浓度,mg/L ;反硝化速率计算S N K Ode =计算出de K 值后查下表选取相应的V V D /值,再查下表取得C θ值。

反硝化设计参数表(T=10~12℃)(3)、计算污泥产率系数Y【2】]072.1θ17.01072.1θ102.0-6.075.0[)15-()15-(00T C T C S X K Y •+•+=式中:Y ——污泥产率系数,kgSS/kgBOD ; K ——修正系数,取9.0=K ;0X ——进水SS 值mg/L;T ——设计水温,与污泥龄计算取相同数值。

然后按下式进行污泥负荷核算:)-(θ00e C S S S Y S L •=式中:S L ——污泥负荷,我国规范推荐取值范围为0.2~0.4kgBOD/(kgMLSS •d)。

活性污泥工艺的最小污泥龄和建议污泥龄表(T=10℃)【3】单位:d(4)、确定MLSS(X)MLSS(X)取值通过查下表可得。

反应池MLSS 取值范围取定MLSS(X)值后,应用污泥回流比R 反复核算XX XR R -=310007.0ER t SVI X ו=式中:R ——污泥回流比,不大于150%;E t ——浓缩时间,其取值参见下表。

浓缩时间取值范围(5)、计算反应池容积XS S Y Q V e C 1000)-(θ240=计算出反应池容积V 后,即可根据V V D /的比值分别计算出缺氧反应池和好氧反应池的容积。

A2O及变形工艺ppt课件

A2O及变形工艺ppt课件

精选课件ppt
11
四、 A2O工艺设计参数
水力停留时间:厌氧、缺氧、好氧三段总停留时间一般为 6~8h,而三段停留 时间比例:厌氧:缺氧:好氧等于 1:1:(3~4)。
污泥回流比:25%~100%。
混合液回流比:200%。
有机物负荷:好氧段:<0.18 kgBOD5/(kgMLSS·d)。
kgBOD5/(kgMLSS·d);厌氧段:>0.10
精选课件ppt
17
3、厌氧缺氧挂膜处理
✓滤床填料比表面积大, 有较大的生物膜量。 ✓既可适用于高浓度废水, 也可适用于低浓度的废水处理,
也就是说有相当大的抗冲击负荷,稳定性强。
✓进水均匀。 ✓无需回流污水和回流污泥, 节能便于操作。 ✓生物挂膜上的剪切使老化的生物膜不断脱落, 可使膜上
的生物保持较高的活性。
A2/O 及变形工艺
精选课件ppt
1
一、A2/O 工艺简介 anaerobic-anoxic-oxic
A2/O工艺是Anaerobic-Anoxic-Oxic的英 文缩写,它是厌氧-缺氧-好氧生物脱氮除磷 工艺的简称。该工艺处理效率一般能达到: BOD5和SS为90%~95%,总氮为70%以上, 总磷为90%左右,一般适用于要求脱氮除 磷的大中型城市污水厂。但A2/O工艺的基 建费和运行费均高于普通活性污泥法,运 行管理要求高
✓便于管理和运行。
精选课件ppt
18
4、厌氧缺氧的开启
配制好一部分废水注入厌氧池和
缺氧池, COD 控制在 400mg/L 左右, 挥发酚控制在 100mg/L 左右,以把水注满滤床为止。
从好氧池抽泥水进缺氧 和厌氧池, 进行挂膜
(投入一定量的铁粉或 黄泥水, 以便污泥更好更

AO工艺标准,A2O工艺标准,氧化沟,SBR工艺标准,CAST工艺标准说明材料

AO工艺标准,A2O工艺标准,氧化沟,SBR工艺标准,CAST工艺标准说明材料

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺简介一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

AO工艺操作手册范本

AO工艺操作手册范本

污水AO工艺操作手册一、A/O工艺简介A/O工艺将前段缺氧段(水解酸化段)和后段好氧段(接触氧化段)串联在一起的污水处理工艺。

基本原理:缺氧段(A段):主要依靠异养菌将废水中的大分子有机物、悬浮物、可溶性有机物通过水解作用,分解成小分子有机物,提高废水的可生化性。

同时,在缺氧段,异养菌可以将污染物分子链上的氨基断链,产生游离态氨。

好氧段(O段):主要依靠硝化菌通过硝化作用将氨氧化成硝态氮、亚硝态氮。

最后,将好氧段泥水混合液回流至缺氧段,在反硝化菌的作用下,将硝态氮反硝化成氮气,完成对N元素的降解作用。

综述:在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

主要特点:(1)前段缺氧池中的反硝化菌可以充分利用反硝化菌,减轻好氧池的有机负荷;(2)后段好氧池可以进一步降解缺氧段为降解的有机污染物,提高对有机污染物的去除效率;(3)工艺流程简单,运行费用低;(4)耐负荷冲击能力强。

影响因素:(1)MLSS污泥浓度。

污泥浓度一般大于3000mg/L,否则将影响脱氮效果;(2)DO溶解氧值。

缺氧段DO值一般不大于0.2mg/L,好氧段DO值一般在2-4mg/L;(3)TKN/MLSS负荷率。

硝化反应中,TKN/MLSS负荷率不大于0.05gTKN/(gMLSS·d);(4)BOD/MLSS负荷率。

BOD/MLSS负荷率不大于0.18kgBOD/(gMLSS·d);(5)泥水混合液回流比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A O工艺、A2O工艺A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

(4)容积负荷高。

由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。

(5)缺氧/好氧工艺的耐负荷冲击能力强。

当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。

通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。

结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

3. A/O工艺的缺点1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。

另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。

3、影响因素水力停留时间(硝化>6h ,反硝化<2h )污泥浓度MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度(<30mg/L)二、A2/O工艺1.基本原理A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O 工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

2. A2/O工艺特点:(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。

(2)污泥沉降性能好。

(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。

(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。

(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。

(7)污泥中磷含量高,一般为2.5%以上。

3.A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,能耗较高;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·污泥渗出液需化学除磷。

三、氧化沟1氧化沟技术氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。

氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。

自从1954年在荷兰首次投入使用以来。

由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。

至今,氧化沟技术己经历了半个多世纪的发展,在构造形式、曝气方式、运行方式等方面不断创新,出现了种类繁多、各具特色的氧化沟[2]。

从运行方式角度考虑,氧化沟技术发展主要有两方面:一方面是按时间顺序安排为主对污水进行处理;另一方面是按空间顺序安排为主对污水进行处理。

属于前者的有交替和半交替工作式氧化沟;属于后者的有连续工作分建式和合建式氧化沟[3],见图1氧化沟工艺分类。

目前应用较为广泛的氧化沟类型包括:帕斯韦尔(Pasveer)氧化沟、卡鲁塞尔(Carrousel)氧化沟、奥尔伯(Orbal)氧化沟、T型氧化沟(三沟式氧化沟)、DE型氧化沟和一体化氧化沟。

2,氧化沟工艺在污水处理中的应用从理论上讲,氧化沟既具有推流反应的特征,又具有完全混合反应的优势;前者使其具有出水优良的条件,后者使其具有抗冲击负荷的能力。

正是因为有这个环流,且有能量分区的缘故,使它具有其它许多污水生物处理技术所拥有的众多优势,其中最为显著的优势是工作稳定可靠。

由于具有出水水质好,运行稳定,管理方便以及区别于传统活性污泥法的一系列技术特征,氧化沟技术在污水处理中得到广泛应用。

据不完全统计[4],目前,欧洲己有的氧化沟污水处理厂超过2 000多座,北美超过800座。

氧化沟的处理能力由最初的服务人口仅360人,到如今的500万~1 000万人口当量。

不仅氧化沟的数量在增长,而且其处理规模也在不断扩大,处理对象也发展到既能处理城市污水又能处理石油废水、化工废水、造纸废水、印染废水及食品加工废水等工业废水。

我国自20世纪80年代亦开始应用这项技术,随着污水处理事业的极大发展,全国各地先后建起了不同规模、不同型式的氧化沟污水处理厂。

目前在我国,采用氧化沟处理城市污水和工业废水的污水处理厂已有近百家,见表1(我国典型氧化沟型式及应用及表)2(部分国内氧化沟污水处理厂型式及规模)。

3氧化沟工艺的研究新进展通过对多种连续流生物除磷脱氮工艺时空关系的分析,并结合新的除磷脱氮理论,继续贯彻简易污水处理的思想,重庆大学的王涛[5]、钟仁超[6]、刘兆荣[7]、麦松冰[8]等人对氧化沟工艺进行了改良。

3.1改良氧化沟池型的构建原则改良氧化沟池型的构建是在一体化简易污水处理技术的思想基础上,依托于卡鲁塞尔氧化沟、一体化氧化沟和奥贝尔氧化沟而建立的。

它是以连续流的方式,不作专门的时空调配,通过空间分区和空间顺序及对溶解氧的优化控制,将污水净化(C、N、P的去除)和固液分离功能集于一体,以水力内回流的方式替代机械内回流的反应器。

构建的总原则是以连续流的方式,在更少的和合理的空间中完成C、N、P和SS的同时去除。

3.2改良氧化沟池型按上述构建原则,提出了如图2所示改良型氧化沟模型。

污水流入外沟经回流调节闸板后流经中沟和内沟,在各沟道内循环数十次到数百次,最终由固液分离器进行泥水分离出水。

外—中—内沟道分别为好氧/缺氧交替区、厌氧区和好氧区,完成有机物的降解和同时脱氮除磷。

该模型着重在保留奥贝尔氧化沟硝化反硝化优势,同时克服该工艺占地面积大的缺点。

借鉴卡罗塞尔氧化沟跑道型沟道的构型和水力内回流方式,减少了大回流比的机械设备;考虑将奥贝尔氧化沟的同心圆型沟道展开,去掉中心岛的无效占地,同时又保留其三沟道串连、层层推进的流态特点。

另外,将一体化氧化沟中的侧沟固液分离器技术也揉合了进来,不设置单独的二沉池并实现污泥的无泵自动回流。

3.3改良氧化沟的优化分析(1)改良型氧化沟采用奥贝尔氧化沟三沟道串联的特性,将各分区考虑成串联,从而有利于难降解有机物的去除,并可减少污泥膨胀现象的发生[9]。

(2)改良型氧化沟借鉴奥贝尔氧化沟的溶解氧梯度分布,具有较好的脱氮功能。

在外沟道形成交替的好氧和大区域的缺氧环境,较高程度地发生“同时硝化/反硝化”,即使在不设内回流的条件下,也能获得较好的脱氮效果。

由于外沟道溶解氧平均值很低,氧传递作用是在亏氧条件下进行的,所以氧的传递效率有所提高,有一定的节能效果,一般约节省能耗15%~20%。

加之外沟道内所特有的同时硝化/反硝化功能,节能效果更为明显。

内沟道作为最终出水的把关,一般应保持较高的溶解氧,但内沟道容积最小,能耗相对较低。

(3)改良型氧化沟将奥贝尔氧化沟布置相对困难的圆形或椭圆形沟型设计为环状跑道型,降低了占地面积和工程造价。

同时取消了无效占地的中心岛,进一步节省占地面积和造价。

(4)改良型氧化沟借鉴卡罗塞尔氧化沟水力条件,使内沟的好氧区向外沟的缺氧区回流实现了水力内回流,简化了处理环节、节省了设备和能耗。

(5)改良型氧化沟借鉴一体化氧化沟将集曝气净化和固液分离于一体的优势,不单独建二沉池和污泥回流泵站,污泥自动回流,简单、节能且节省占地和基建投资。

4结论(1)氧化沟由于其出水水质好、运行稳定、管理方便等技术特点,在我国污水处理厂中有着较为广泛的应用。

(2)改良型氧化沟模型借鉴了卡罗塞尔氧化沟的构型和内回流方式,引用了侧沟式一体化氧化沟的侧沟固液分离技术,同时保留了奥贝尔氧化沟三沟串连、层层推进的流态特点,是多种先进工艺的集成,是氧化沟技术研究的新进展。

(3)改良型氧化沟工艺具有系统简单、管理方便、节约能耗、节省占地和减少基建投资等优点。

以下为几种常见氧化沟的类型结构示意图:多沟交替式氧化沟卡鲁塞尔氧化沟一体化氧化沟奥贝尔氧化沟1. 基本原理氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。

它是活性污泥法的一种变型。

因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。

相关文档
最新文档