浅谈数学怪物——分形

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数学怪物——分形

1 分形理论的产生

分形(Fractal)理论是当今世界的新理论、新学科,其概念是美籍数学家曼德布罗特首先提出的.大自然中物体和现象的几何形状普遍具有复杂的不规则性, 传统的欧氏几何学在描述这样的自然现象时显得苍白无力,分形学的产生就是被用来描述这些不规则的欧氏几何无法描述的几何现象和物体的,它的产生使自然景物的描绘成为可能,这也是分形几何得到高度重视的原因之一.在分形理论真正发展起来的这十几年来,其研究倍受重视,分形的理论意义及实用价值深深吸引着人们寻求新规律、新特征存在的可能性.

2 分形理论的发展

分形理论的发展可以分为三个阶段[1](P114-115):

第一个阶段是从1827年到1925年,在此期间,数学家们构造并且研究了很多奇遇或病态的集合及其图象,还试图对这类集合与经典集合的差别进行了详细分析.1827年,维尔斯特拉斯证明的一种在任意一点都不具有有限或无限的导数的连续函数曾引起了极大的震动,虽然人们认为此函数是极为“病态”的,但人们还是从不同方面推广了它,并且还对这类函数的奇异性质作了深入的研究.1904年,瑞典的数学家科赫通过初等方法构造出了如今称之为科赫曲线的处处不可微的连续曲线,并且还对该曲线的性质加于研究,该曲线改变了连续不可微曲线的构造一定非常复杂的看法,这是第一个认为构造的具有局部与整体相似结构的曲线.1883年,德国数学家康托尔构造了一类不连通的紧集s,s被称为康托尔三分集.在当时,它被认为在传统的研究中是可以忽略的,但现在它在非线性研究中却占有重要的意义.1890年,意大利数学家皮亚诺构造了能够通过某个正方形内所有点的曲线,这种奇怪的曲线曾使人们对以往的长度与面积等概念重新进行认识,并使数学界大吃一惊.在此基础上,1901年,闵可夫斯基引入了闵可夫斯基容度,1919年,豪斯道夫引入了豪斯道夫测度和豪斯道夫维数.总之,在此阶段,人们已经提出了典型的“分形”对象和相关问题,并为研究此类问题提供了最基本的数学工具.

第二阶段大致是从1926年到1975年,在此阶段,人们对分形的性质作了深入研究,特别是对维数理论的研究已获得了丰富的成果.这一阶段对第一阶段的思想进行了系统、深入的研究,不仅逐渐使其形成了理论,而且将研究范围扩大到了数学的许多分支之中.庞特里亚金、贝塞克维奇等研究的曲线的维数,分形集的局部性质,分形集的结构以及其在数论、调和分析、几何测度论中的应用,这些都极大地丰富了分形几何理论.列维在这一阶段的工作极为重要,首先,他第一个系统地研究了自相似

集,现在研究的许多自相似性都可以追溯到他的工作中;其次,他建立了分数布朗运动的理论,成为随机分形理论系统研究的重要先驱者之一.在这一阶段,绝大部分从事这一领域工作的人还局限于纯的数学理论的研究,而未与其他学科发生联系.在物理、地质、天文学和工程学等学科已产生了大量与分形有关的问题的形势下,这就迫切需要新的思想与有力的工具来处理.曼德布罗特以独特的思想, 研究了海岸线的结构、具有强噪音干扰的电子通讯、月球的表面、地貌几何性质等典型的自然界的分形现象,并取得了一系列令人瞩目的结果.

第三阶段是从1976 年至今,这是使分形在各个领域的应用取得全面发展,并使之形成独立学科的阶段.

3 分形的特征及有关概念

3.1分形的特征

通常人们认为分形具有以下几个特征[1](P116):具有精细的结构,也就是说在任意小的尺度下,它总是有复杂的结构;具有不规则性,它的整体与局部不能用传统的几何语言来描述;具有自相似形式,这种自相似可以是近似的或统计意义的;一般地,分形图形在某种意义下的维数大于它的拓扑维数;在大多数情况下,分形图形可以用非常简单的方法产生.

3.2有关概念

概念一 分形

曼德勃罗最先提出的分形[2](Fractal )具有不规则、支离破碎等意义.他曾经为分形下过两个定义[1](P116):(1)满足下式条件()()A A Dim dim > 的集合A ,称为分形集.其中,()A Dim 为集合A 的Hausdoff 维数(或分维数),()A dim 为其拓扑维数.一般说来,()A Dim 不是整数,而是分数.(2)部分与整体以某种形式相似的形,称为分形.然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容.实际上,对于什么是分形,到目前为止还不能给出一个确切的定义.但是自然界中有很多分形的例子,例如:羊齿植物、菜花以及许多其他植物,它们的每一分支和嫩枝都与其整体非常相似.大自然中的山、树、云、海岸线也都可以看成是分形.下面给出大家两个分形图形:

左图是一棵厥类植物,仔细观察,我们就会发现,它的每一个枝杈都在外形上和整体相同,仅仅是在尺寸上小了一些,而枝杈的枝杈也和整体相同,只是变得更加小了一些.右图是数学家们构造的Kohn (克赫)曲线.

概念二 维数

为什么说分形是数学中的怪物呢?这是由于它的维数不是人们通常用的整数而是分数.长期以来在欧氏空间中,人们习惯于将点定义为零维,直线定义为一维,平面定义为二维,空间定义为三维,爱因斯坦在相对论中引入时间维,就形成四维时空.但通常人们习惯于整数的维数.分形理论把维数视为分数为了定量地描述客观事物的“非规则”程度.

1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限.分形维数,作为分形的定量表征和基本参数,是描述分形的重要参数,能够反映分形的基本特征,但由于侧重面不同,有多种定义和计算方法.常见的有以下几种[3](P44-46):

相似维数s D 我们画一个边长都是1的线段、正方形和立方体.将它们的边长二等分,此时,原图的线段长均缩小为原来的

12,而将原图等分为若干个相似的图形.其线段、正方形、立方体分别被等分为12、22和32个相似的子图形,其中的指数321、、,正好等于与图形相应的经验维数.一般说来,如果某图形是由把原图缩小为1a

的相似的b 个图形所组成,有:b a s D =,a b D s ln ln =的关系成立,则指数s D 称为相似性维数,s D 可以是整数,也可以是分数.

容量维数c D 容量维数是利用相同大小形状的小球或立方体包覆几何对象而定义的维数,由著名苏联数学家科尔莫哥诺夫提出的.设一几何对象s ,若用直径为ε的小球为标准去覆盖s ,所需的小球的最小数量为()εN ,则s 的容量维数为:

)1ln()(ln lim 0ε

εεN D c →=. 豪斯道夫 (Hausdorff)维数H D 设一个整体s 划分为N 个大小和形态完全相同的小图形,每一个小图形的线度是原图形的r 倍,则豪斯道夫维数为:

()⎪⎭

⎫ ⎝⎛=→r r N D r H 1ln ln lim 0. 计盒维数b D 将用边长为

2

1 的封闭正方盒子覆盖s ,若s 中包含的小方盒数量()n M ,则计盒维数为: ()2

ln ln lim n n M D n b ∞→= . 除上述定义的几种分形维数外,还有信息维数、谱维数、模糊维数、拓扑维数、广义维数、微分

相关文档
最新文档