八年级数学几何证明题技巧(含答案)
(典型题)沪教版八年级上册数学第十九章 几何证明含答案
![(典型题)沪教版八年级上册数学第十九章 几何证明含答案](https://img.taocdn.com/s3/m/4d6d4c5830b765ce0508763231126edb6f1a76cc.png)
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、如图,在正方形OABC中,点B的坐标是(6,6),点E,F分别在边BC,BA 上,OE=3 .若∠EOF=45°,则F点的纵坐标是 ( )A.2B.C.D. -12、下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④3、在平面直角坐标系xOy中有一点P(8,15),那么OP与x轴正半轴所夹的角的正弦值等于( )A. B. C. D.4、如图,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m 2B.m 2+1C.2m 2D.(m+1)25、如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为( )A.2B.2.6C.3D.46、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②当点E与点B重合时,MH= ;③AF2+BE2=EF2;④MG•MH= ,其中正确结论的个数是()A.1B.2C.3D.47、如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( )A.70°B.48°C.45°D.60°8、如图所示,在中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为()A.4B.6C.2D.19、如图,在中,,,于,是的平分线,且交于,如果,则的长为()A.2B.4C.6D.810、直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cmB.8.5cmC. cmD. cm11、如图是一个圆锥的主视图,则该圆锥的侧面积是()A.6πB.3πC.D.12、已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A. B. C. D.13、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.14、若⊙P的半径为13,圆心P的坐标为(5, 12 ),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定15、如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cmB.8cmC.7cmD.6cm二、填空题(共10题,共计30分)16、如图,三角形ABC三边的长分别为AB=m2﹣n2, AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S 1、S2、S3,那么S1、S2、S3之间的数量关系为________.17、若一个直角三角形的两直角边的长分别为6和8,则斜边的长为________.18、如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=________.19、三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是________.20、如图,已知∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=________.21、直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是________.22、如图,在中,点为弧的中点,弦,互相垂直,垂足为,分别与,相于点,,连结,.若的半径为2,的度数为,则线段的长是________.23、我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的距离为________.24、如图所示,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为________.25、如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=130°,则∠ABC=________.三、解答题(共5题,共计25分)26、如图,AC⊥BD,垂足点E是BD的中点,且AB=CD,求证:AB//CD.27、如图,已知, ,与交于, .连接.求证:是等腰三角形.28、如图,BC=3cm,AB=4cm,AF=12cm,且∠B=∠FAC=90°,求正方形CDEF的面积.29、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.30、在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、A5、D6、C7、B8、C9、C10、D12、A13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
初二数学压轴几何证明题(含答案)
![初二数学压轴几何证明题(含答案)](https://img.taocdn.com/s3/m/1583b65367ec102de3bd8943.png)
1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。
初中数学几何证明题思路方法和技巧
![初中数学几何证明题思路方法和技巧](https://img.taocdn.com/s3/m/bd01571eb80d6c85ec3a87c24028915f804d846e.png)
初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。
2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。
3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。
4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。
5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。
6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。
7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。
在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。
2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。
3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。
4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。
综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。
初中数学几何模型大全+经典题型(含答案)
![初中数学几何模型大全+经典题型(含答案)](https://img.taocdn.com/s3/m/803101a983c4bb4cf6ecd13f.png)
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
初中数学几何证明经典试题(含答案)
![初中数学几何证明经典试题(含答案)](https://img.taocdn.com/s3/m/4f3602c5d4bbfd0a79563c1ec5da50e2524dd1a6.png)
初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、 E 是圆上的两点,CD⊥ AB,EF⊥ AB, EG⊥ CO.求证: CD= GF.(初二)CEGA BD O F2、已知:如图,P 是正方形ABCD内点,∠ PAD=∠ PDA= 150.求证:△ PBC是正三角形.(初二)A DPB C3、如图,已知四边形ABCD、 A1B1C1D1都是正方形, A2、 B2、 C2、 D2分别是AA1、BB1、 CC1、 DD1的中点.A DA2D2求证:四边形 A B C D 是正方形.(初二)A12222D1B1C1B22CB C4、已知:如图,在四边形ABCD中, AD= BC,M、N 分别是 AB、CD的中点, AD、BC的延伸线FEN C交 MN于 E、 F.求证:∠ DEN=∠ F.经典题(二)1、已知:△ ABC中, H 为垂心(各边高线的交点), O为外心,且 OM⊥ BC于M.( 1)求证: AH=2OM;A( 2)若∠ BAC= 600,求证: AH= AO.(初二)O·H EB M D C2、设 MN是圆 O外向来线,过 O作 OA⊥ MN于 A,自 A引圆的两条直线,交圆于B、C及D、E,直线 EB及 CD分别交 MN于 P、 Q.GE求证: AP= AQ.(初二)O·CB DMP A Q N3、假如上题把直线MN由圆外平移至圆内,则由此可得以下命题:设 MN是圆 O的弦,过 MN的中点 A 任作两弦 BC、DE,设 CD、 EB分别交 MN于 P、 Q.求证: AP=AQ.(初二)CEA M Q·P N·O B D4、如图,分别以△ABC的 AC和 BC为一边,在△ ABC的外侧作正方形ACDE和正方形 CBFG,点 P是 EF的中点.求证:点P 到边 AB的距离等于AB的一半.(初二)DGCEPFA Q B经典题(三)1、如图,四边形ABCD为正方形, DE∥AC, AE=AC, AE与 CD订交于 F.求证: CE=CF.(初二)AB2、如图,四边形ABCD为正方形, DE∥AC,且 CE= CA,直线 EC交 DA延伸线于求证: AE= AF.(初二)DF ECF.F A DB C3、设 P 是正方形ABCD一边 BC上的任一点,PF⊥ AP, CF均分∠ DCE.求证: PA= PF.(初二)AE DFBP C E4、如图, PC切圆 O于 C,AC为圆的直径, PEF为圆的割线, AE、AF 与直线 PO订交于 B、D.求证: AB= DC, BC= AD.(初三)AB O DPEFC经典题(四)A1、已知:△ ABC是正三角形, P 是三角形内一点,PA=3, PB= 4, PC= 5.P 求:∠ APB的度数.(初二)B C2、设 P 是平行四边形ABCD内部的一点,且∠PBA=∠ PDA.求证:∠ PAB=∠ PCB.(初二)A DPB C3、设 ABCD为圆内接凸四边形,求证:AB· CD+AD· BC=AC· BD.(初三)ADB C4、平行四边形ABCD中,设 E、 F 分别是 BC、 AB上的一点, AE 与 CF订交于 P,且AE= CF.求证:∠ DPA=∠ DPC.(初二)A DFPB E C经典难题(五)A1、设 P 是边长为 1 的正△ ABC内任一点, L= PA+ PB+ PC,PB C求证:≤ L<2.2、已知: P 是边长为 1 的正方形ABCD内的一点,求PA+ PB+ PC的最小值.A DPCB3、 P 为正方形ABCD内的一点,而且PA= a, PB= 2a, PC= 3a,求正方形的边长.A DPCB4、如图,△ ABC中,∠ ABC=∠ ACB= 800, D、 E 分别是 AB、 AC上的点,∠ DCA= 300,∠ EBAAE= 200,求∠ BED的度数.经典题(一)1.以下列图做 GH⊥ AB,连结 EO。
初中数学几何证明题思路方法和技巧
![初中数学几何证明题思路方法和技巧](https://img.taocdn.com/s3/m/5c5a8370814d2b160b4e767f5acfa1c7aa0082f0.png)
初中数学几何证明题思路方法和技巧
初中数学几何证明题是数学中比较重要的一部分。
下面介绍一些
思路方法和技巧,帮助初中生更好地解决几何证明问题。
1. 审题:认真读题,弄清楚题目要求证明的内容以及条件,不
能漏读或误读任何一项条件。
2. 破题:尝试找到问题的主要解法,通常需要运用几何定理、
定律、知识点等来解题。
3. 推理:通过有条理的推理和推导,把证明过程清晰地表述出来,尽可能详细地说明每一步的根据,确保推理过程的严谨性。
4. 创新:尝试寻找不同的解法,从不同的角度去证明,发现定
理背后的本质,进而探究更深刻的数学知识。
5. 练习:多做几道几何证明题,积累经验,训练思维能力,提
高解题效率和准确性。
需要注意的是,几何证明题需要注意构图、寻找线索,考虑使用
反证法、归纳法、逆推法等不同的证明方法。
同时,应注意逻辑严密、语言表述准确、步骤清晰,确保证明过程的正确性和可信度。
以上是初中数学几何证明题的思路方法和技巧。
希望对初中生解
决几何证明问题有所帮助。
初中数学几何证明经典题(含答案)
![初中数学几何证明经典题(含答案)](https://img.taocdn.com/s3/m/284a97d1dd88d0d233d46ae2.png)
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG ,即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。
APDAFGCEBOD2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=、CD的中点,AD、BC的延长线交求证:∠DEN=∠F.D2C2B2A2D1C1B1C BD AA1经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(2)若∠BAC=600,求证:AH=AO.F2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于条直线,交圆于B 、C 及D 、E ,直线EB 及Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,ACAF与直线PO相交于B、D经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PC =5.求:∠APB的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA. 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L求证:≤L<2.2、已知:P 是边长为1的正方形ABCD的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
(典型题)沪教版八年级上册数学第十九章 几何证明含答案
![(典型题)沪教版八年级上册数学第十九章 几何证明含答案](https://img.taocdn.com/s3/m/f0a1f954ce84b9d528ea81c758f5f61fb7362889.png)
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、已知三角形的三边长分别为a,b,c,且a+b=10,ab=18,c=8,则该三角形的形状是()A.等腰三角形B.直角三角形C.钝角三角形D.等腰直角三角形2、下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=7,b=24,c=25C.a=4,b=5,c=6 D.a=6,b=8,c=103、如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC 于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①②B.①④⑤C.①②④⑤D.①②③④⑤4、已知△ 和△ 都是等腰直角三角形,,,,是的中点.若将△ 绕点旋转一周,则线段长度的取值范围是()A. B. C. D.5、如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=()A.2B.3C.4D.56、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.57、在下列由线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=4,b=5,c=6B.a=12,b=5,c=13C.a=6,b=8,c=10D.a=7,b=24,c=258、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m9、有一块三角形的草坪△ABC,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在 ( )A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点 C.△ABC三条中线的交点 D.△ABC三条高所在直线的交点10、下列各组数中,不是勾股数的是()A.3,4,5B.5,12,13C.6,8,10D.7,13,1811、如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为( )A.5cmB. cmC. cmD. cm12、如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cmB.8cmC.10cmD.12cm13、如图,长方形ABCD中,点E是边CD的中点,将△ADE沿AE折叠得到△AFE,且点F在长方形ABCD内.将AF延长交边BC于点G.若BG=3CG,则=()A. B.1 C. D.14、如图,在中,,,点D,E分别是AB, BC的中点,连接DE,CD,如果,那么的周长()A.28B.28.5C.32D.3615、下列长度的三条线段能组成锐角三角形的是()A.2,3,3B.2,3,4C.2,3,5D.3,4,5二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为________17、如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为________ cm2.18、如图,是⊙O的直径,C是⊙O上一点,的平分线交⊙O于D,且,则的长为________.19、在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为________ cm.20、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.21、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=4cm,则⊙O半径为________cm.22、如图,在每个小正方形边长为1的网格中,点A,点C均落在格点上,点B 为中点.(Ⅰ)计算AB的长等于________;(Ⅱ)若点P,Q分别为线段BC,AC上的动点,且BP=CQ,请在如图所示的网格中,用无刻度的直尺,画出当PQ最短时,点P,Q的位置,并简要说明画图方法(不要求证明)________.23、如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为________.24、已知矩形OABC中,O为坐标原点,点A在x轴上,点C在y轴上,B的坐标为(10,5),点P在边BC上,点A关于OP的对称点为A',若点A'到直线BC 的距离为4,则点A'的坐标可能为________.25、如图,矩形ABCD中,AB=5,BC=7,E为BC上的动点,将矩形沿直线AE翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作B'F⊥BC于点F,求△B'EF的周长________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE 交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.28、如图,已知∠AOB=30°,P是∠AOB角平分线上一点,CP∥OA,交OB于点C,PD⊥OA,垂足为点D,且PC=4,求PD的长.29、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(≈1.732)30、由于大风,山坡上的一颗树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一颗树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、A5、B6、B7、A8、D9、A10、D11、B12、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)
![[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)](https://img.taocdn.com/s3/m/ec3edfe7fc0a79563c1ec5da50e2524de418d008.png)
[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在△ABC中,若AB=AC,点D是BC的中点,则下列结论正确的是()A. AD垂直于BCB. BD=DCC. ∠BAC=90°D. ∠ABC=∠ACB2. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线平行,则它们的任意一对对应角相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列关于全等三角形的判定,错误的是()A. SASC. AASD. SSD5. 在△ABC中,若∠A=60°,∠B=70°,则边BC与边AC的长度关系是()A. BC > ACB. BC = ACC. BC < ACD. 无法确定6. 下列关于相似三角形的性质,正确的是()A. 对应角相等B. 对应边成比例C. 对应角互补D. 对应边相等7. 若等腰三角形的底角为45°,则其顶角的度数是()A. 45°B. 90°C. 135°D. 180°8. 在平行四边形ABCD中,若AB=6cm,AD=8cm,则对角线AC的长度可能是()A. 4cmB. 10cmC. 12cm9. 下列关于圆的性质,错误的是()A. 圆的半径都相等B. 圆的直径是半径的两倍C. 圆的周长与半径成正比D. 圆的面积与半径成正比10. 在直角坐标系中,点P(a,b)关于y轴对称的点是()A. (a,b)B. (a,b)C. (a,b)D. (b,a)二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
()2. 平行线的同旁内角互补。
()3. 两个等腰三角形的底角相等,则这两个三角形全等。
()4. 在直角三角形中,斜边上的中线等于斜边的一半。
沪教版八年级上册数学第十九章 几何证明 含答案
![沪教版八年级上册数学第十九章 几何证明 含答案](https://img.taocdn.com/s3/m/fde2bd85168884868662d6fd.png)
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、如图,锐角△ABC中,BC>AB>AC,若想找一点P,使得∠BPC与∠A互补,甲、乙、丙三人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;丙:作BC的垂直平分线和∠BAC的平分线,两线交于P点,则P即为所求.对于甲、乙、丙三人的作法,下列叙述正确的是()A.甲、丙正确,乙错误B.甲正确,乙、丙错误C.三人皆正确 D.甲错误,乙、丙正确2、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中有()A.①②③B.①②③④C.①②D.①3、如图,⊙的直径为10,弦的长为8,且,垂足为,则的长为( )A.1B.2C.3D.44、如图,点A在双曲线上,且OA=4,过A作AC⊥轴,垂足为C,OA 的垂直平分线交OC于B,则△ABC的周长为()A.4B.5C.D.5、如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 6 cm,点D′到BC的距离是()A. B. C. D.6、如图,在正方形ABCD中,AB=1,将正方形ABCD绕点A顺时针旋转60°,得正方形AB′C′D′,则线段AC扫过的面积为()A. πB. πC. πD. π7、如图,已知在中,,分别以为直径作半圆,面积分别记为,则等于( )A. B. C. D.8、在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB 的值等于A. B. C. D.9、勾股定理是“人类最伟大的十个科学发现之一”,我国对勾股定理得证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理得图案被称为“赵爽弦图”.在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A. B. C. D.10、如图,已知l1∥l2∥l3,相邻两条平行直线间的距离均为1,若等腰直角△ABC的三个项点分别在这三条平行直线上,∠C=90°,求AB的长是()A.3B.C.D.11、直角三角形边长度为5,12,则斜边上的高()A. B. C. D.12、如图⊙O的直径垂直于弦,垂足是,,,的长为()A. B.4 C. D.813、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC 的延长线于F,若∠F=30°,BE=4,则AD的长是()A.1B.2C.6D.214、▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为( )A.60 cm 2B.30 cm 2C.20 cm 2D.16 cm 215、在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是________17、若直角三角形的一个锐角为50°,则另一个锐角的度数是________ 度.18、如图,CD是线段AB的垂直平分线,若AC=2cm,BD=4cm,则四边形ACBD的周长是________cm.19、如图,矩形中,点,分别在,上,且,连接,,,且平分,,连接交于点,则线段的长为________.20、如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是________ .21、如图,在平行四边形ABCD中,,,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.22、如图,已知点P是角平分线上的一点,, 于点D,M 是OP的中点,,如果点C是OB上一动点,则PC的最小值为________cm.23、如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=8cm,BC=7cm,则DE=________cm.24、如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE= BE,则长AD与宽AB的比值是________.25、如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x 轴的负半轴上,,顶点C的坐标为,x反比例函数的图象与菱形对角线AO交于点D,连接BD,当轴时,k的值是________.三、解答题(共5题,共计25分)26、在Rt△ABC中,∠ACB=90°,AC=3,tanB= ,求AB的值.27、如图,直线AE、CE分别被直线EF、AC所截,已知∠1=∠2,AB平分∠EAC,CD平分∠ACG,将下列证明AB//CD的过程及理由填写完整.证明:因为∠1=∠2,所以________//________(________),所以∠EAC=∠ACG(________),因为AB平分∠EAC,CD平分∠ACG,所以________= ,________= ,所以________=________,所以AB//CD( ________).28、一个零件的形状如图,按规定这个零件的∠A与∠BDC都要是直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DC=12,BC=13,BD=5.这个零件符合要求吗?29、如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.求点C到AB的距离.30、如图,在中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F,若BE=3,EF=5,试求CF的值.参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、C5、C6、C7、D8、A9、B10、B11、D12、C13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、。
沪教版 八年级数学 暑假同步讲义 第19讲 证明举例(解析版)
![沪教版 八年级数学 暑假同步讲义 第19讲 证明举例(解析版)](https://img.taocdn.com/s3/m/d587cafa02020740bf1e9ba4.png)
几何证明是八年级数学上学期第十九章第一节内容,主要对演绎证明和命题、公理、定理的概念进行讲解,重点是真假命题的判定,难点是改写出已知命题.通过这节课的学习一方面为我们后面学习垂直平分线和角平分线等几何内容提供依据,另一方面也为后面学习直角三角形性质奠定基础.1、演绎证明的概念演绎证明:演绎推理的过程就是演绎证明.也就是说演绎证明是指:从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理是数学证明的一种常用的、完全可靠的方法.演绎证明是一种严格的数学证明,是我们现在要学习的证明方式,简称为证明.证明举例知识结构模块一:演绎证明知识精讲内容分析班假暑级年八2/ 22【例1】 填空:(1)如图,因为1=60∠︒(已知),2=60∠︒(已知),所以__________//__________(______________________________). (2)如图,因为//AB CD (已知),所以A D ∠+∠=__________ (______________________________), 因为//AD BC (已知),所以A ∠+__________=__________ (______________________________), 所以∠__________=∠__________ (______________________________).(图1)(图2)【答案】(1)a ,b ,内错角相等,两直线平行;(2)180︒,两直线平行,同旁内角互补;B ∠,两直线平行,同旁内角互补;D ,B ,同角的补角相等.【解析】略【总结】考查有关平行线的性质和判定定理的掌握.【例2】 已知:如图,△ABC 中,AB =AC ,AD 是外角∠CAE 的平分线.求证:AD // BC . 【答案】略 【解析】证明:AB AC =,B C ∴∠=∠ CAE ∠是的外角, CAE B C ∴∠=∠+∠12B C CAE ∴∠=∠=∠AD 是CAE ∠的角平分线,12DAE CAD CAE ∴∠=∠=∠例题解析ACDB ab 1 2ABCDEDAE B ∴∠=∠ //AD BC ∴【总结】考查平行线的性质和判定,先判定平行再应用平行线的性质.【例3】 已知:如图,AD BC ⊥于D ,EF BC ⊥于F ,交EF BC ⊥AB 于G ,交CA 延长线于12E ∠∠,=.求证:AD 平分BAC ∠,填写分析和证明中的空白.分析:要证明AD 平分BAC ∠,只要证明__________=__________,而已知12∠∠=,所以应联想这两个角分别和12∠∠=的关系,由已知BC 的两条垂线可推出__________//__________,这时再观察这两对角的关系已不难得到结论. 证明:∵ AD BC EF BC ⊥⊥,(已知)∴__________//__________(______________________________), ∴__________=__________(两直线平行,内错角相等), __________=__________(两直线平行,同位角相等), ∵__________(已知),∴__________即AD 平分BAC ∠(______________________________). 【答案】BAD ∠,CAD ∠,EF ,AD ;EF ,AD ,垂直于同一直线的两直线平行;BAD ∠,1∠,CAD ∠,2∠;12∠=∠,BAD CAD ∠=∠,角平分线的定义.【解析】略【总结】分析过程考查证明题的逆推法思想,证明过程利用相关平行线的性质和判定,先判定再应用相关性质.1、命题:能界定某个对象含义的句子叫作定义;对某一件事情做出判断的句子叫作命题;其判断为正确的命题叫作真命题;其判断为错误的命题叫作假命题.数学命题通常由假设、结论两部分组成,可以写成“如果……那么……”的形式,“如果”开始的部分是题设,“那么”开始的部分是结论.知识精讲模块二:命题、公理、定理AF CE DB12 G班假暑级年八4/ 222、公理:人们从长期的实践中总结出来的真命题.它们可以作为判断其他命题真假的原始依据.3、定理:从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题定理真假的依据,这样的真命题叫做定理.【例4】 判断下列语句是不是命题? (1) 画AOB 的角平分线; (2) 两条直线相交,有几个交点? (3) 直角大于锐角; (4) 直角大于钝角; (5) 今天可能要下雨; (6) 几何多有乐趣啊!【答案】(1)(2)(5)(6)不是命题;(3)(4)是命题【解析】命题是对某一件事情做出判断的句子,由此可知只有(3)(4)是可以判断正误的句子,即命题.【总结】考查命题的定义,能判断一个句子是否是命题.【例5】 判断下列命题的真假.(1) 平行于同一条直线的两直线平行; (2) 垂直于同一条直线的两直线平行; (3) 同角的余角相等; (4) 异号的两数相加得负数; (5) 乘积为1的两个数互为倒数.【答案】(1)(2)(3)(5)是真命题;(2)(4)是假命题【解析】判断为正确的命题叫做真命题,判断为错误的命题叫做假命题,正确的是(1)(3)(5),由此可知即为真命题,(2)(4)为假命题,注意(2)需直线在同一平面内方可成立.【总结】考查真假命题的判定,根据常见的公理定理以及定义性质等进行判断,正确的命题例题解析即为真命题.【例6】下列描述不属于定义的是().A.两组对边分别平行的四边形是平行四边形;B.正三角形是特殊的三角形;C.在同一平面内三条线段首尾相连得到的图形是三角形;D.含有未知数的等式叫做方程.【答案】B【解析】能界定某个对象含义的句子叫做定义,ACD都可判定,只有B不能判定正三角形是何种特殊类型的三角形.【总结】考查定义的含义,并能判定一个句子是否是定义.【例7】把下列命题改写成“如果……,那么……”的形式:(1)直角三角形的两个锐角互余;如果____________________,那么______________________________;(2)角平分线上点到角两边的距离相等;如果____________________,那么______________________________;(3)线段垂直平分线上点到线段两端点的距离相等;如果____________________,那么______________________________.【答案】(1)一个三角形是直角三角形,这个三角形两个锐角互余;(2)一条射线是一个角的角平分线,这条射线上的点到角两边的距离相等;(3)一条直线是一条线段的垂直平分线,这条直线上的点到线段两端点的距离相等.【解析】略【总结】考查命题的“如果……,那么……”形式的改写,注意在改写过程中添加适当的辅助语,使得题目表意清晰完整,注意对相关命题前提的理解和深化.【例8】举出下列假命题的反例:(1)两个角是锐角的三角形是锐角三角形;(2)相等的角是对顶角;(3)一个角的补角大于这个角;(4)若22>,则a ba b>;(5)若已知直线a、b、c,若a b⊥.⊥,b c⊥,则a c【答案】答案不唯一,以下是几个例子【解析】(1)任意三角形中至少有两个角为锐角,取三角形两内角分别为30︒,40︒,则第三个内角为110︒,该三角形是钝角三角形;(2)对顶角必有公共顶点,且角的两边互为反向延长线,两直线平行,此时取一对同位角,可知这对同位角相等,不为对顶角;(3)取一角大小为110︒,则这个角补角180********︒-︒=︒<︒; (4)取1a =-,2b =-,此时22a b <; (5)同一平面内,a b ⊥,b c ⊥,则有//a c .【总结】假命题的反例,需对命题所涉知识点进行分析,找准题目考查的知识内容,结合知识点的理解,即可进行举例.【例9】 下列说法中,正确的是().A .命题一定是正确的;B .不正确的判断就不是命题;C .公理都是真命题;D .真命题都是定理. 【答案】C【解析】根据命题的定义,命题是对某一件事情做出判断的句子,判断正确的是真命题,判断错误的是假命题,由此可知AB 错误,公理是人们从长期实践中总结出来的真命题,可知C 正确,真命题且可用来推导其它命题正确与否的命题是定理,可知D 错误. 【总结】考查命题、公理、定理的定义和相互关系,公理和定理一定是真命题,但真命题不一定是定理或公理.【例10】下列命题是假命题的是().A .有两角及其中一角的角平分线对应相等的两个三角形全等;B .有两角及其中一角的对边上的高对应相等的两个三角形全等;C .有两边及其中一边上的高对应相等的两个三角形全等;D .有两边及其中一边上的中线对应相等的两个三角形全等. 【答案】C【解析】三角形中,两角确定,第三个角大小也可确定,即三角形形状固定,加上一条边上的高或角平分线可确定三角形,可知AB 正确;“倍长中线法”可证明D 选项图形唯一确定,对于C 选项,三角形形状有锐角三角形和钝角三角形的差别,可作出不止一种图形,可知C 错误.【总结】考查全等三角形判定的拓展延伸,只要根据三角形的边角关系对应确定即可.【例11】已知:如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,点E 在AC 上,CE BC =,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB FC =. 【答案】略【解析】证明:EF AC CD AB ⊥⊥,9090F FCE A FCE ∴∠+∠=︒∠+∠=︒,A F ∴∠=∠90ACB CEF CE BC ∠=∠=︒=, ABC FCE ∴∆≅∆ AB FC ∴=【总结】垂直较多的图形中,根据同角(或等角)的余角相等易得到相等角,进而可证全等.【例12】如图,已知Rt ABC 中,90ACB CD AB ∠=︒⊥,于D AE ,为A ∠的角平分线,交CD 于E ,过E 作BC 的平行线,交AB 于点F . 求证:AF AC =. 【答案】略【解析】证明:90ACB ∠=︒,CD AB ⊥90ACD BCD ∴∠+∠=︒,90B BCD ∠+∠=︒ ACD B ∴∠=∠ //EF BCDFE B ∴∠=∠ ACD DFE ∴∠=∠例题解析模块三:证明举例ACEBFDCABFDEAE 是A ∠的角平分线,CAE DAE ∴∠=∠ AE AE = CAE FAE ∴∆≅∆ AF AC ∴=【总结】考查等角的余角相等知识点,结合相关平行线的性质证角相等证全等即可.【例13】已知:如图,AB CD AD BC AE CF ===,,.求证:=E F ∠∠.【答案】略【解析】证明:连结AC ,AB CD AD BC AC AC ===,, ABC CDA ∴∆≅∆B D ∴∠=∠AB CD AE CF ==,AB AE CD CF ∴+=+,即BE DF = AD BC = BCE DAF ∴∆≅∆E F ∴∠=∠【总结】考查全等三角形的判定条件,在合适的知识体系条件下进行应用,不能应用平行四边形知识证明.【例14】如图,四边形ABCD 中,DE 平分ADC ∠,交AB 于点E , BGC GBC ∠=∠,BG 平行ED 交AD 延长线于点P .求证://AD BC .【答案】略【解析】证明:DE 平分ADC ∠,2ADC EDC ∴∠=∠ //BG ED EDC BGC ∴∠=∠BGC GBC ∠=∠,2ADC BGC BGC GBC ∴∠=∠=∠+∠ 180BGC GBC C ∠+∠+∠=︒BACEDBF180ADC C ∴∠+∠=︒ //AD BC ∴【总结】考查平行线的性质和判定,经常可以跟三角形的内角和180︒结合起来.【例15】如图,已知ABC 中,D 是边BC 的中点,E F 、分别在边AB AC ,上,且//EF BC ,ED FD =.求证:AEF AFE ∠=∠.【答案】略 【解析】证明:ED FD =,FED EFD ∴∠=∠ //EF BCFED EDB EFD FDC ∴∠=∠∠=∠, AEF B AFE C ∠=∠∠=∠, EDB FDC ∴∠=∠ ED FD BD DC ==, EDB FDC ∴∆≅∆ B C ∴∠=∠∴AEF AFE ∠=∠【总结】考查平行线的性质,结合全等三角形可以进行相互关联得到相关边角关系.【例16】如图,点C 是AB 上的一点,在AB 的同旁做等边ACD 和等边BCE AE ,与CD 交于点M BD ,与CE 相交于点N .求证:CM CN =. 【答案】略【解析】证明:ACD ∆和BCE ∆是等边三角形,60AC CD BC CE ACD BCE ∴==∠=∠=︒,,60120DCE ACE DCB ∴∠=︒∠=∠=︒, ACE DCB ∴∆≅∆ CAE CDB ∴∠=∠结合60ACM DCE ∠=∠=︒,AD CD =ACM DCN ∴∆≅∆ CM CN ∴=【总结】考查等边三角形中的旋转平移,会产生全等三角形,先判定再应用相关性质.ACDBFEABCDNEM【例17】如图,已知在ABC 中,AD 平分//BAC BE AD ∠,,交CA 延长线于点E F,是BE 的中点.求证:AF BE ⊥.【答案】略 【解析】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠ //BE ADBAD FBA CAD E ∴∠=∠∠=∠,FBA E ∴∠=∠ AE AB ∴=F 是BE 的中点, AF BE ∴⊥【总结】考查平行线和角平分线一起会产生等腰三角形的基本图形,注意对基本图形的分离和等腰三角形性质的应用.【例18】如图,已知BE CF 、是ABC 的高,且..求证:AP AQ ⊥. 【答案】略【解析】证明:BE CF 、是ABC 的高,90AFC AEB ∴∠==︒9090FAC ACF FAC ABE ∴∠+∠=︒∠+∠=︒,ACF ABE ∴∠=∠BP AC CQ AB ==, AQC PAB ∴∆≅∆ BAP Q ∴∠=∠ 90QAF Q ∠+∠=︒90QAF BAP ∴∠+∠=︒,即90QAP ∠=︒,得证AP AQ ⊥.【总结】考查同角的余角相等的知识点,即“子母三角形”基本图形.C【例19】 如图所示,问1234∠∠∠∠、、、要满足什么条件可以证明?AB CD【答案】2314∠+∠=∠+∠【解析】过点E 作射线//EM AB ,过点F 作射线//FN CD则有1BEM ∠=∠,4NFC ∠=∠,2134∠-∠=∠-∠ MEF EFN ∴∠=∠ //EM FN ∴ //AB CD ∴【总结】考查平行线的基本性质,在“Z ”字型平行线间角的等量关系.【例20】已知:如图所示,90AB AC A AE CF BD DC ∠=︒===,,,.求证:FD ED ⊥. 【答案】略【解析】证明:连结AD ,90AB AC BAC =∠=︒, 45B C ∴∠=∠=︒ BD CD =AD BC ∴⊥,即90ADC ∠=︒1452BAD CAD BAC ∴∠=∠=∠=︒CD AD ∴= AE CF = AED CFD ∴∆≅∆ ADE CDF ∴∠=∠90ADE ADF ADF CDF ∴∠+∠=∠+∠=︒ 即FD ED ⊥【总结】考查等腰直角三角形斜边上的高把三角形分成两个全等的小等腰直角三角形,结合相关条件可分割成全等的两个部分.ACE DBF【例21】如图,已知锐角ABC ,分别以BC BA 、为一直角边,皆以B 为直角顶点,向ABC 内侧作等腰BCD 和BAE ,延长DA EC 、,交于点F . 求证:DF EF ⊥.【答案】略【解析】证明:90DBC ABE ∠=∠=︒DBC ABC ABE ABC ∴∠-∠=∠-∠,即DBA CBE ∠=∠ AB BE DB BC ==, DBA CBE ∴∆≅∆ DAB CEB ∴∠=∠180CEB BAF DAB BAF ∴∠+∠=∠+∠=︒ 90ABE ∠=︒36090F CEB BAF ABE ∴∠=︒-∠-∠-∠=︒即DF EF ⊥【总结】考查等腰直角三角形的旋转变形,两个等腰直角三角形叠加会产生全等三角形,先全等判定再应用性质. 【例22】如图,已知D E 、两点分别在AB AC 、上,AD AE BD CE BE CD ==,,、交于点F . 求证:FB FC =. 【答案】略 【解析】证明:AD AE BD CE ==,,AD DB AE CE ∴+=+,即AB AC = AD AE A A =∠=∠, ABE ACD ∴∆≅∆ B C ∴∠=∠BD CE DFB EFC =∠=∠, DFB EFC ∴∆≅∆ FB FC ∴=【总结】考查全等三角形的判定和性质,结合题意,发现题目中的全等三角形往往不止一对.FACEDFB【例23】 如图所示,在ABC 中,2AB AC =, D 是AB 的中点,E 是AD 的中点.求证:2BC CE =.【答案】略【解析】证明:延长EF 到F ,使EF CF =,连结DF ,AE DE AEC DEF =∠=∠, AEC DEF ∴∆≅∆ A FDE AC DF ∴∠=∠=, 2AB AC AD DB ==, BD AD AC DF ∴=== ADC ACD ∴∠=∠BDC A ACD FDE ADC FDC ∴∠=∠+∠=∠+∠=∠ CD CD =CFD CBD ∴∆≅∆ 2BC FC CE ∴==【总结】“倍长中线法”构造全等三角形可将线段或角转移到全等或一个图形中.【习题1】 命题“互余的两个角一定是锐角”是_________命题(填“真”或“假”). 【答案】真【解析】根据互余的定义,两个角和为90︒即为互余,且角都为正值,可判断出两个角大小都在0︒到90︒之间,即为锐角.【总结】定义均为真命题,本题考查互余的定义.【习题2】 下列命题中,是真命题的有().A .两锐角之和是锐角B .钝角减去锐角得锐角C .钝角大于它的补角D .锐角小于它的余角【答案】C【解析】根据补角的定义,可知钝角的补角是锐角,由此可知钝角大于它的补角,C 正确,为真命题,ABD 选取合适的角度均可找到反例,都为假命题.【总结】考查关于角的互余和互补的相关概念,抓住概念,即可得出相关命题真假,若有反例则为假命题.随堂检测FAE DB班假暑级年八14/ 22【习题3】 将下列命题改写成“如果……,那么……”的形式: (1)同角的余角相等; (2)直角都相等; (3)对顶角相等;(4)在一个三角形中,等角对等边.【答案】(1)如果两个角是同一个角的余角,那么这两个角相等; (2)如果有一些角是直角,那么它们都相等; (3)如果两个角互为对顶角,那么它们相等;(4)在一个三角形中,如果有两个相等的角,那么这两个角所对的边相等. 【解析】略【总结】考查命题的“如果……,那么……”形式的改写,注意在改写过程中添加适当的辅助语,使得题目表意清晰完整,注意对相关命题前提的理解和深化.【习题4】 求证“三角形内角和等于180°”,并说明其中的因果关系. 【答案】略【解析】证明:如图,延长BC 到点D ,过点C 作射线//CE AB ,//CE AB (已知)B ECD ∴∠=∠(两直线平行,同位角相等) A ACE ∠=∠(两直线平行,内错角相等) 180ACB ACE ECD ∠+∠+∠=︒(平角定义) 180A B ACB ∴∠+∠+∠=︒(等量代换)【总结】三角形内角和的证明过程需进行记忆,充分利用平行线的相关性质即可进行证明和理解应用.【习题5】 已知:四边形ABCD 中,AD BC ,E 是线段DC 的中点,AE 是BAD ∠的平分线.求证:BE 是ABC ∠的平分线.【答案】略【解析】证明:延长AE 与BC 的延长线交于点F ,//AD BCDAE F ∴∠=∠AEDCBDE CE AED CEF =∠=∠, ADE FCE ∴∆≅∆AE EF ∴=AE 是BAD ∠的角平分线, BAE DAE F ∴∠=∠=∠ AB BF ∴= AE EF =BE ∴是ABC ∠的角平分线.【总结】考查“倍长中线法”结合平行线证等腰三角形,再结合等腰三角形的性质可以证明一系列的结论.【习题6】 如图,已知:在ABC 中,AD 平分BAC BD CD ∠=,.求证: AB AC =. 【答案】略【解析】证明:延长AD 到E ,使DE AD =,连结CE ,BD CD ADB CDE =∠=∠, ABD ECD ∴∆≅∆ BAD E AB CE ∴∠=∠=,AD 平分BAC ∠ CAD BAD E ∴∠=∠=∠ AC CE ∴= AB AC ∴=【总结】注意,边边角不能用来证明全等,在这个题目里面根据中点“倍长中线”构造全等三角形即可.【习题7】 如图,已知,AD 是ABC 的角平分线,2C B ∠=∠, 将ABC 沿直线AD 翻折,点C 落在AB 的E 处.试判断EBD 的形状,并加以证明. 【答案】EBD 等腰三角形【解析】证明:AED ∆是ACD ∆翻折形成,即得ACD AED ∆≅∆FACEDBAED C ∴∠=∠2C B ∠=∠,2AED B EDB B ∴∠=∠=∠+∠ B EDB ∴∠=∠ BE DE ∴=即证EBD 是等腰三角形.【总结】翻折问题,翻折前后两个三角形始终保持全等不变.【习题8】 如图,已知CA AB ⊥,E 为AB 上一点,CE 平分ACD ∠,DE 平分CDB ∠,90CED ∠=︒.求证:AB DB ⊥. 【答案】略【解析】证明:90CED ∠=︒,90ECD EDC ∴∠+∠=︒CE 平分ACD ∠,DE 平分CDB ∠, 22180ACD CDB ECD EDC ∴∠+∠=∠+∠=︒ //AC BD ∴ CA AB ⊥AB DB ∴⊥【总结】反推思想证明题可知证上下底边平行即可,根据角平分线即可快速得出结论.【习题9】 已知:如图,ABC ∆中, 90C AC BC AD DB AE CF ∠=︒===,,,.求证:DE DF =. 【答案】略【解析】证明:连结CD ,90AC BC BCA =∠=︒, 45A B ∴∠=∠=︒AD DB = CD AB ∴⊥1452ACD BCD BCA ∴∠=∠=∠=︒CD AD ∴=ACEDBFADBEC=AE CF∴∆≅∆AED CFD∴=DE DF【总结】考查等腰直角三角形斜边上的高把三角形分成两个全等的小等腰直角三角形,结合相关条件可分割成全等的两个部分.课后作业【作业1】下列语句中,正确的是().A.相等的角是对顶角;B.三角形的两锐角互余;C.判定两个三角形全等,至少需要一对边相等;D.面积相等的两个三角形全等.【答案】C【解析】对顶角必须是有公共顶点且角的两边互为反向延长线的角,A错误;互余是两角相加和为90︒,只有直角三角形两锐角互余,B错误;全等判定定理中,都至少包含一条边,C正确;面积相等,底和高可能都不相等,不一定全等,D错误.【总结】考查三角形中一些基本知识和相关定理的认识.【作业2】把下列命题改写成“如果……那么……”的形式,并指出这个命题的题设和结论.(1)对顶角相等;(2)同位角相等,两直线平行;(3)同角的余角相等.【答案】(1)如果两个角互为对顶角,那么它们相等;(2)一条直线截另两条直线形成一对同位角,如果这都同位角相等,那么被截的两条直线平行;(3)如果两个角是同一个角的余角,那么这两个角相等.【解析】略【总结】考查命题的“如果……,那么……”形式的改写,注意在改写过程中添加适当的辅助语,使得题目表意清晰完整,注意对相关命题前提的理解和深化.【作业3】 如图,已知:△ABC 中,∠B = 2∠C ,BC = 2AB .求证:∠A = 90°.【答案】略【解析】证明:作ABC ∠的角平分线BD 交AC于点D ,作DE BC ⊥交BC 于E ,22ABC DBE C ∠=∠=∠ DBE C ∴∠=∠ BD DC ∴=12BE CE BC ∴==2BC AB =AB BE ∴=ABD EBD BD BD ∠=∠=,ABD EBD ∴∆≅∆ 90A BED ∴∠=∠=︒【总结】考查306090︒︒︒,,角的直角三角形问题,注意本题中不能通过取BC 中点证明.【作业4】 已知:如图,∠1=∠2,AB >AC .求证:BD >DC . 【答案】略【解析】证明:在AB 上截取AF AC =,连结DF ,12AD AD ∠=∠=, ADF ADC ∴∆≅∆ADC ADF DF DC ∴∠=∠=, 1ADC B ∠=∠+∠121BFD ADF B ∠=∠+∠=∠+∠ BFD B ∴∠>∠ BD DF DC ∴>=A CDACB【总结】本题应用“大角对大边”知识点,或通过延长AD 作AB 平行线也可证,但会应用到相似三角形知识点.【作业5】 已知:如图,//AD BC AE BE ,、分别平分DAB ∠和CBA DC ∠,过点E .求证:AB AD BC =+.【答案】略【解析】证明:延长AE 交BC 延长线于点F ,//AD BCDAE F ∴∠=∠ DAE EAB ∠=∠ EAB F ∴∠=∠ AB BF ∴=BE 是CBA ∠的角平分线, AE EF ∴= AED CEF ∠=∠ADE FCE ∴∆≅∆ AD CF ∴= AB BF BC CF AD BC ∴==+=+【总结】考查“倍长中线法”结合平行线证等腰三角形,再结合等腰三角形的性质可以证明一系列的结论.【作业6】 已知:10812AB AC A =∠=︒∠=∠,,.求证:BC AB CD =+.【答案】略【解析】证明:在BC 上截取BE AB =,连结DE ,12BD BD ∠=∠=,ABD EBD ∴∆≅∆108AB BE BED A ∴=∠=∠=︒, 108A AB AC ∠=︒=, 36ABC C ∴∠=∠=︒由108BED ∠=︒,可得108EDC ∠=︒,故72EDC ∠=︒AC DEBFBCCE CD ∴=BC BE CE AB CD ∴=+=+【总结】考查“倍角三角形”中的角平分线分三角形为等腰三角形,由此可得线段之间的等量关系.【作业7】 如图,已知:在四边形ABCD 中,//AB CD BE ,平分ABC AB CD BC ∠+=,.求证:CE 平分BCD ∠.【答案】略【解析】证明:在BC 上截取BF AB =,连结DF ,ABE CBE BE BE ∠=∠=,ABE FBE ∴∆≅∆ A BFE ∴∠=∠ //AB CD180A EDC ∴∠+∠=︒ 180BFE EFC ∠+∠=︒ EDC EFC ∴∠=∠BC AB CD BF CF AB BF =+=+=, CD CF ∴= CFD CDF ∴∠=∠EFD EDF ∴∠=∠ EF ED ∴= EFC EDC ∴∆≅∆ FCE DCE ∴∠=∠即CE 平分BCD ∠.【总结】注意,本题不能用“倍长中线法”解题,因为条件之间的相互关联性和因果关系不能得出相应的答案,只能用“截长补短法”,注意证明全等时不能通过边边角进行证明,而是进行相应转化再得出结果.CA【作业8】 到三角形三条边距离相等的点,叫做此三角形的内心,由此我们引入如下定义:到三角形的两条边距离相等的点,叫做此三角形的准内心.举例:如图若AD 平分CAB ∠,则AD 上的点E 为△ABC 的准内心.应用:(1)如图AD 为等边三角形ABC 的高,准内心P 在高AD 上,且12PD AB =,则 ∠BPC 的度数为_____________度. (2)如图已知直角ABC 中,斜边53AB BC ==,,准内心P 在边BC 上,求CP 的长.【答案】(1)90;(2)43【解析】(1)AD 是等边三角形ABC 的高,1302BAC BAC ∴∠=∠=︒ 12BD AB PD ∴=- 45BPD PBD ∴∠=∠=︒290BPC BPD ∴∠=∠=︒(2)作PD AB ⊥交AB 于点D ,依题意可知AP 是BAC ∠的角平分线,90AP AP C ADP =∠=∠=,ADP ACP ∴∆≅∆AC AD PC PD ∴==,5390AB BC C ==∠=︒,,2222534AC AB BC ∴=-=-=4AD AC ∴==541BD AB AD ∴=-=-=设CP x =,则3BP x =-,DP x =,在Rt BDP ∆中,根据勾股定理可得222BD DP BP +=,即()22213x x +=-,解得43x =,即43CP =. A B C E A C B P D【总结】考查对新定义题型的理解,本题中即对角平分线性质的运用和理解,最后把长度转化到直角三角形中应用勾股定理即可解题.【作业9】 如图,已知:点D 为等边ABC 内一点,DA DB P =,为等边ABC 外一点,BP AB DBP DBC =∠=∠,. 求证:12P C ∠=∠. 【答案】略【解析】证明:连结CD ,ABC ∆是等边三角形, AB BC AC BP ∴===DBP DBC BD BD ∠=∠=,BDP BDC ∴∆≅∆P BCD ∴∠=∠DA DB CD CD ==,ACD BCD ∴∆≅∆12BCD ACD ACB ∴∠=∠=∠ 即得12P BCD ACB ∠=∠=∠ 【总结】考查等边三角形中的全等三角形,结合题目条件先猜想再验证.C A B PD。
初中数学几何证明题的答题技巧
![初中数学几何证明题的答题技巧](https://img.taocdn.com/s3/m/1f821832e2bd960590c67788.png)
初中数学几何证明题的答题技巧一要审题。
很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。
我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
二要记。
这里的记有两层意思。
第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。
如给出对边相等,就用边相等的符号来表示。
第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
三要引申。
难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
四要分析综合法。
分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。
看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。
)结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
五要归纳总结。
很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。
以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:(1)正向思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明题的技巧
1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分。
求证:DE =DF
CD ,易得CD AD =,
证明:连结CD
AC BC A B
ACB AD DB
CD BD AD DCB B A AE CF A DCB AD CD
=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,
∴≅∴=∆∆ADE CDF
DE DF
说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的
中线。
本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。
有兴趣的同学不妨一试。
说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证边或者角;
(2)添辅助线能够直接得到的两个全等三角形 2、证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证。
证两条直线垂直, 例2. 已知:如图4所示,AB = 证明一:连结AD
AB AC BD DC
DAE BAC BD DC
BD AD
B DAB DAE
==∴+=︒==︒=∴=∴==,∠∠,∠∠,∠∠∠129090
在∆ADE 和∆BDF 中,
AE BF B DAE AD BD ADE BDF FD ED
===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆31
3290
说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
3、证明一线段和的问题
(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法) 例3. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。
分析:在AC 上截取AF =AE 。
易知∆∆AEO AFO ≅,∴∠=∠12。
由∠=︒B 60,知
∠+∠=︒∠=︒∠+∠=︒566016023120,,。
∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,
证明:在AC 上截取AF =AE
()
∠=∠=∴≅∴∠=∠BAD CAD AO AO
AEO AFO SAS ,∆∆42
又∠=︒B 60
∴∠+∠=︒∴∠=︒
∴∠+∠=︒∴∠=∠=∠=∠=︒
∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC
()
即AC AE CD =+
(二)延长一较短线段,使延长后的线段等于另一较长线段,证明该线段等于较长线段。
(补短法)
例4. 已知:如图7所示,正方形
分析: 证明:延长CB 至G ,使BG =
∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13
又∠=︒EAF 45
∴∠+∠=︒∴∠+∠=︒23452145
即∠GAE =∠FAE
∴=∴=+GE EF
EF BE DF
【实战模拟】
1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。
求证:DE CD =
1
2
为BC 的中点。
求证:MP =MQ
又∠+∠=︒∠+∠=︒14901390,
∴∠=∠=∴≅∴=∴=431
2
AC CE
ACF CED ASA CF ED
DE CD
∆∆()
BCD ECD CD CD CBD CED
B E
BAC B BAC E
∠=∠=⎨⎪
⎩
⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22
又∠=∠+∠BAC ADE E
∴∠=∠∴=∴==+=
ADE E AD AE
BC CE AC AE ,
3. 证明:延长PM 交CQ 于R
CQ AP BP AP BP CQ PBM RCM
⊥⊥∴∴∠=∠,//
又BM CM BMP =∠=∠,
∴≅∴=∆∆BPM CRM
PM RM
∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ。