hach水质常规分析(COD、氨氮、SS、总磷、色度)
水质实验报告总结
一、实验背景随着工业化和城市化进程的加快,水污染问题日益严重,水质监测对于保障人类健康和生态环境至关重要。
为了深入了解水质状况,本实验针对不同水质指标进行了系统的检测和分析,旨在为水质管理提供科学依据。
二、实验目的1. 掌握水质监测的基本原理和方法。
2. 学习并应用化学、物理、生物等多学科知识,对水质指标进行检测和分析。
3. 了解水质污染的成因及危害,提高环保意识。
三、实验内容本实验主要涉及以下水质指标:1. 化学需氧量(COD)2. 悬浮物(SS)3. 氨氮(NH3-N)4. 总磷(TP)5. pH值6. 溶解氧(DO)四、实验方法1. COD测定:采用重铬酸钾法,通过化学氧化剂氧化水样中的有机污染物,计算消耗的氧化剂量,从而确定COD值。
2. SS测定:采用过滤法,将水样通过0.45μm滤膜,烘干后称重,得到悬浮物含量。
3. 氨氮测定:采用纳氏试剂分光光度法,利用氨氮与纳氏试剂反应生成黄棕色络合物,在特定波长下测定吸光度,计算氨氮浓度。
4. 总磷测定:采用钼酸铵分光光度法,利用钼酸铵与正磷酸根反应生成黄色磷钼杂多酸,在特定波长下测定吸光度,计算总磷含量。
5. pH值测定:采用pH计直接测定水样的pH值。
6. 溶解氧测定:采用溶解氧仪直接测定水样的溶解氧含量。
五、实验结果与分析1. COD:实验结果显示,水样COD值为(mg/L),表明水样中有机污染物含量较高,可能存在一定程度的水污染。
2. SS:实验结果显示,水样SS含量为(mg/L),表明水样中悬浮物含量较高,可能存在悬浮颗粒物污染。
3. 氨氮:实验结果显示,水样氨氮浓度为(mg/L),表明水样中氨氮含量较高,可能存在氮污染。
4. 总磷:实验结果显示,水样总磷含量为(mg/L),表明水样中总磷含量较高,可能存在磷污染。
5. pH值:实验结果显示,水样pH值为(pH),表明水样酸碱度适中。
6. 溶解氧:实验结果显示,水样溶解氧含量为(mg/L),表明水样溶解氧含量较低,可能存在缺氧现象。
污水处理日常必测项目及测定方法分析
污水处理日常必测项目及测定方法分析据了解根据污环保部门要求以及污水排放处理标准,一般污水处理中要测定基本的8项指标。
包括pH、DO、BOD5、COD、氨氮、总磷、SS、总氮等:一、pH的测定方法1、pH试纸将pH试纸放在表面皿或玻璃片上,将被测溶液用玻璃棒蘸取少量,均匀涂抹在pH试纸上。
注意:千万不要用蒸馏水湿润pH试纸,否则pH不准确,酸性溶液pH会增大,碱性溶液pH会减小,所测颜色与ph标准比色卡进行对照,得出结果。
2、玻璃电极法GB6920-86以玻璃电极为指示电极,饱和甘汞电极为参比电极组成电池。
在25℃理想条件下,氢离子活度变化10倍,使电动势偏移59.16mv。
许多pH计上有温度补偿装置,以便校正温度差异,用于常规水样监测可准确和再现至0.1pH单位。
较精密的仪器可准确到0.01pH。
二、DO的测定方法1.碘量法(GB7489-87)在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。
此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰,加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘,再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量。
2.溶氧电极法当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。
电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。
溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应,在阳极(负极),如银-氯化银电极上发生氧化反应,产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。
三、BOD5的测定方法BOD的测定方法有很多种,包括标准稀释法、生物电极法、无汞压差法、有汞压差法、活性污泥法等。
目前应用最广的是传统的标准稀释法和无汞压差法。
无汞压差法:在一个密闭系统中,样品中的微生物消耗氧气同时生成二氧化碳,生成的二氧化碳被NaOH吸收,导致气压发生变化,通过一个压力传感器感测压力变化并转换成BOD值。
常规污水处理必需检测的十个参数
常规污水处理必需检测的十个参数摘要污水处理是环境保护和公共卫生的关键环节,该过程需要遵奉并服从指定的要求和标准。
在污水处理的过程中,需要检测一些参数以确保该过程的有效性,这些参数包括 pH 值、悬浮物、化学需氧量(COD)、氨氮(NH3—N)、总磷、总氮、溶解氧、电导率、温度和浊度。
在本文中,我们将对这些参数进行逐个介绍,并阐述在污水处理过程中的意义。
一、pH 值pH 值是污水处理中的紧要指标,它表示水的酸碱程度。
pH 值对污水处理的各个阶段都有影响,由于细菌和其他微生物的生长都需要适合的 pH 值。
例如,生物处理中,细菌需要在 pH 值介于 6 到 8 之间才能正常生长和繁殖。
二、悬浮物悬浮物是污水处理中的另一个紧要指标,它是指在水中悬浮的固体颗粒或胶体物质。
这些悬浮物能够影响水的质量、颜色、味道和透亮度。
在污水处理过程中,悬浮物的浓度应尽可能低,以确保有效的处理效果。
三、化学需氧量(COD)COD 是污水处理的一个紧要指标,它表示污水中有机化合物的含量。
COD 的浓度越高,则水体中的有机物就越多,这些有机物会消耗氧气和对生态产生毒性影响,因此需要在污水处理过程中被有效地去除。
四、氨氮(NH3—N)氨氮是另一个污水处理中常常被测试的指标,它表示水中溶解的氨化合物的含量。
氨氮是细菌生长和繁殖的紧要营养物质,但过高的氨氮浓度可以导致生态系统的更改,因此需要在污水处理过程中加以掌控。
五、总磷总磷是指水中总磷化合物的含量,它来自于家庭和农业污水以及化学工业废水。
假如总磷浓度太高,会导致富营养化,这意味着水中的营养物质过多,通常会导致藻类过度生长,使水体变得绿色而难以使用。
六、总氮总氮是污水处理中另一个值得关注的参数,它表示水体中全部的氮化合物的含量。
总氮的浓度可以影响生态系统的功能,例如,假如总氮浓度过高,会导致富营养化甚至海藻大量繁殖,并对水中生态系统的平衡产生紧要影响。
七、溶解氧溶解氧是水中最紧要的生物学参数之一,它是指如氧分子之类的气体分子被溶解在水中的程度。
污水水质分析实验报告(3篇)
第1篇一、实验目的本次实验旨在通过一系列的化学和物理分析方法,对某地区生活污水的各项水质指标进行检测,了解其水质状况,为后续污水处理工艺的选择和优化提供依据。
二、实验原理污水水质分析主要包括物理性质分析、化学分析、生物分析等方面。
本实验主要采用化学分析方法,通过测定污水中COD、BOD5、SS、氨氮、总磷等指标,评估污水的污染程度。
三、实验材料与仪器1. 实验材料:生活污水样品氢氧化钠、硫酸、硫酸铜、重铬酸钾、碘化钾、淀粉溶液等化学试剂滤纸、玻璃棒、烧杯、锥形瓶、滴定管、比色皿等实验器材2. 实验仪器:pH计恒温水浴锅紫外可见分光光度计721分光光度计精密电子天平四、实验步骤1. 物理性质分析:pH值测定:用pH计测定污水样品的pH值。
悬浮物含量测定:将污水样品过滤,用滤纸称重,计算悬浮物含量。
2. 化学分析:化学需氧量(COD)测定:采用重铬酸钾法测定污水样品的COD。
生化需氧量(BOD5)测定:采用稀释与培养法测定污水样品的BOD5。
氨氮测定:采用纳氏试剂法测定污水样品的氨氮含量。
总磷测定:采用钼锑抗比色法测定污水样品的总磷含量。
3. 生物分析:微生物活性测定:采用BOD5测定方法,评估污水样品的微生物活性。
五、实验结果与分析1. 物理性质分析结果:pH值:某地区生活污水的pH值为6.5。
悬浮物含量:某地区生活污水的悬浮物含量为200 mg/L。
2. 化学分析结果:COD:某地区生活污水的COD值为300 mg/L。
BOD5:某地区生活污水的BOD5值为150 mg/L。
氨氮:某地区生活污水的氨氮含量为50 mg/L。
总磷:某地区生活污水的总磷含量为5 mg/L。
3. 生物分析结果:微生物活性:某地区生活污水的微生物活性较好,BOD5/COD值为0.5。
六、结论通过本次实验,我们了解了某地区生活污水的各项水质指标,发现其主要污染物为COD、BOD5、氨氮和总磷。
针对这些污染物,可以采取以下措施进行治理:物理处理:对污水进行预处理,如格栅除杂、沉淀等,去除悬浮物和部分有机物。
HACH仪器总磷测定方法
Phosphorus, Total
采样和储存 精度检查
Collect samples in plastic or glass bottles that have been acid washed with 1:1 Hydrochloric Acid Solution (Cat. No. 884‐49) and rinsed with deionized water. Do not use commercial detergents containing phosphate for cleaning the glassware used in this test. Analyze samples immediately after collection for best results. If prompt analysis is impossible, preserve samples up to 28 days by adjusting the pH to 2 or less with concentrated Sulfuric Acid (about 2 mL per liter) (Cat. No. 979‐49) and storing at 4 °C. Warm the sample to room temperature and neutralize with 5.0 N Sodium Hydroxide (Cat. No. 2450‐53) before analysis. Correct for volume additions; see Section 3.1.3 Correcting for Volume Additions on page 31.
生活污水水质指标
生活污水水质指标
生活污水是指由居民生活中产生的污水,包括厨房、浴室、洗衣房等产生的污水。
这些污水中含有大量的有机物质、营养物质和微生物,如果不经过处理直接排放到水体中,将对水环境造成严重污染。
为了监测和评估生活污水的水质,人们通常使用一系列的水质指标来进行检测
和分析。
这些指标包括化学需氧量(COD)、生化需氧量(BOD)、氨氮、总磷、总氮等。
这些指标可以反映出生活污水中有机物、营养物质和微生物的含量和影响程度。
化学需氧量(COD)是指在一定条件下,有机物被氧化分解所需的氧化剂的量,它可以反映出生活污水中有机物的含量和污染程度。
生化需氧量(BOD)则是指
微生物在一定条件下对有机物的生化降解能力,它可以反映出水体中的有机物被微生物降解的速度和程度。
氨氮、总磷和总氮则是反映出生活污水中的营养物质含量,这些营养物质如果
排放到水体中,会导致水体富营养化,引起水华等问题,对水体生态造成严重影响。
因此,监测和评估生活污水的水质指标对于保护水环境、预防水污染具有重要
意义。
通过对水质指标的监测和分析,可以及时发现和解决生活污水排放过程中存在的问题,保障水环境的健康和可持续发展。
同时,也可以为生活污水的处理和利用提供科学依据,促进资源的有效利用和循环利用。
综上所述,生活污水水质指标的监测和评估对于水环境保护和水污染防治具有
重要意义,需要引起社会各界的重视和关注。
只有通过科学监测和有效管理,才能实现生活污水的有效治理和水环境的可持续发展。
水质指标监测指导手册(COD、SS、BOD、氨氮、pH)
水质指标监测指导手册目录化学需氧量(COD )的重铬酸钾法测定 (2)化学需氧量(COD )测定方法比较 (6)废水中悬浮物(SS)的测定 (9)生化需氧量(BOD 5)测定 (11)氨氮的测定 (17)水样pH 值的测定 (21)化学需氧量( COD )的重铬酸钾法测定化学需氧量( COD )是指在一定的条件下,用强氧化剂处理水时所消耗氧化剂的量。
COD 反映了水中受还原性物质污染的程度。
水中的还原性物质有有机物、亚硝酸盐、亚铁盐、硫化物等,所以COD 测定又可反映水中有机物的含量。
一、重铬酸钾法测定( COD Cr )的原理在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。
二、仪器1、500mL 全玻璃回流装置。
2、加热装置(电炉) 。
3、25mL 或50mL 酸式滴定管、锥形瓶、移液管、容量瓶等。
三、试剂1、重铬酸钾标准溶液 (C1/6 K2Cr2O7);称取预先在120 ℃烘干2h 的基准或优质纯重铬酸钾12.258g 溶于水中,移入1000mL 容量瓶,稀释至标准线,摇匀。
2、试亚铁灵指示液:称取1.485g 邻菲啰啉( C12H8N2?H2O)、0.695g 硫酸亚铁( FeSO4?7H2O)溶于水中,稀释至100mL ,储于棕色瓶内。
3、硫酸亚铁铵标准溶液 (C(NH 4)2 Fe(SO4)2?6H2O):称取39.5g 硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL 浓硫酸,冷却后移入1000mL 容量瓶中,加水稀释至标线,摇匀。
临用前,用重铬酸钾标准溶液标定。
标定方法:准确吸取10.00mL 重铬酸钾标准溶液于500mL 锥形瓶中,加水稀释至110mL 左右,缓慢加入30mL 浓硫酸,混匀。
冷却后,加入3 滴试亚铁灵指示液(约0.15mL ),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。
哈希水质分析手册-正文
哈希水质实用手册(第五版)前言美国哈希公司出版的《Water Analysis Handbook》,从初版到现在第五版,已经有60多年的历史。
随着哈希公司在水质分析仪表领域领导者地位的逐步确立,该书已经由最初的哈希实验室水质分析仪器的操作指导书,渐渐丰富成为一本综合了从水样采集、保存,到分析操作、精度检查、方法原理的水质分析综合指导书。
有感于此,我们迫切地感觉到有必要将此书翻译成中文,以飨奋斗在环境保护、教育科研、工业等各行业的水质分析工作者。
本书内容主要包括三部分,一、实验室基本操作理论,包括各种实验操作技术、水样的采集与保存、水样的预处理、哈希公司实验室仪器及预制试剂的基本使用方法等。
二、国内在使用的哈希分析方法的详细介绍,包括操作流程、干扰、精度检查等。
三、附录了常用水环境质量标准、排放标准,以供读者参考。
本书可作为哈希实验室产品的使用指导书,也可以做为一本通用水质分析读物,供广大读者参考。
由于译者的水平有限,书中的错误和疏漏在所难免,敬请各位专家和读者指正。
译者2009年1月目录前言第一章 缩写和换算1.1操作流程中使用到的缩写1.2换算1.2.1化学形式1.2.2硬度换算第二章 实验室操作规范2.1 温度2.2 混合2.3 消解2.4 蒸馏2.5 过滤2.5.1 真空过滤2.5.2 真空过滤所需仪器2.5.3 重力过滤2.6 试剂2.6.1 试剂和标样稳定性2.6.2 试剂空白2.7 样品稀释2.7.1 含有干扰物质的样品稀释2.8 AccuVac®安瓿瓶2.8.1 安瓿瓶按钮装置的使用2.9 PermaChem®粉枕包2.10 样品池2.10.1 样品池的定位2.10.2 样品池的保养2.10.3 样品池的清洁2.10.4 样品池的匹配2.11 其他仪器2.11.1 沸腾辅助物质2.12 实现准确的量取2.12.1 移液管和量筒2.12.2 倾倒池第三章 化学分析3.1 样品的采集、保存和储藏3.1.1 采集样品3.1.1.1 样品容器的类型3.1.1.2 酸洗3.1.1.3 样品的分配3.1.2 样品的保存和储藏3.1.3 样品体积修正3.1.4 准确度和精密度检查3.1.5 标准溶液3.1.6 加标实验3.1.7 测量结果准确性分析3.1.8 调整标准曲线3.2 干扰3.3 方法性能3.3.1 预估方法检测线(ELD)3.3.2 方法检出线(MLD)3.3.3 精密度3.3.4 预估精密度3.3.5 灵敏度3.4 制作校准曲线3.4.1 吸光度对浓度校准3.5 根据分光光度计调整校准曲线制作流程3.5.1 选择最佳分析波长3.5.1.1 使用分光光度计确定最佳分析波长第四章 通过消解对样品进行预处理4.1 USEPA认可的消解方法4.1.1 USEPA温和消解方法4.1.2 USEPA剧烈消解法4.2 通用凯氏氮消解4.2.1 消解过程的常见问答4.2.2 pH调节4.2.2.1 金属的消解4.2.2.2 比色法总凯氏氮分析的消解第五章 废弃物的管理和安全5.1 废弃物最少化5.2 规章概览5.3 危险废弃物5.3.1 定义5.3.2 样品代码5.3.3 如何确定废弃物是否危险5.3.4 危险废弃物的处置5.4 特殊废弃物管理5.4.1 含氰物质的注意事项5.5 资源5.6 安全5.6.1 仔细阅读试剂标签5.6.2 防护装备5.6.3 急救设备和物资5.6.4 通用安全规章5.7 材料安全数据表(MSDS)5.7.1 如何获得MSDS5.7.2 MSDS的章节5.7.2.1 产品标识5.7.2.2 成分5.7.2.3 理化性质5.7.2.4 消防、燃爆和反应活性数据5.7.2.5 健康危害资料5.7.2.6 防护措施5.7.2.7 急救常识5.7.2.8 泄露及处置流程5.7.2.9 运输信息5.7.2.10 参考资料第六章 各国标准限值对比第七章 USEPA认可(Approved)和接受(Accepted)的定义第八章 操作流程8.1 理化指标色度,铂-钴比色法 8025pH,电化学法 8156电导率,电化学法 8160酸度,甲基橙酸度和酚酞(总)酸度 8201 8202酸碱度,8200 8233碱度,酚酞碱度和总碱度 8203二氧化碳,酚酞指示剂滴定法8.2 无机阴离子硫化物,亚甲基兰法 8131氰化物,嘧啶-吡啶啉酮法 8027硫酸盐,硫酸钡浊度法 8051亚硫酸盐,碘量法 8216硼,胭脂红法 8015余氯,DPD法 8021余氯,DPD法 10069余氯,DPD法 10102余氯,大瓶装DPD法 8021总余氯,DPD法 8167总余氯,DPD法 10070总余氯,DPD法 10101总余氯,碘量法 8209总余氯,DPD-流通池法 8370氯化物,硫氰酸汞法 8113氯化物,硝酸汞法 8206氯化物,硝酸汞法 8207氟化物,SPADNS法 8029氟化物,离子选择性电极法—饮用水 8323氟化物,离子选择性电极法—工业用水 8323 碘,DPD法 8031硅,硅钼兰-流通池法 8282硅,硅钼兰法 8186硅,硅钼杂多酸法 81858.3 营养盐及有机污染物综合指标溶解氧,靛胭脂法 8316溶解氧,膜电极法 8157溶解氧,荧光法 10360化学需氧量(COD),消解比色法 8000化学需氧量(COD),消解比色法 TNTplus 8000 生化需氧量(BOD),稀释法 8043总有机碳,酸碱指示剂法 10129总有机碳,酸碱指示剂法 10173总有机碳,酸碱指示剂法 10128膦酸盐(有机膦),紫外过硫酸氧化法 8007聚合磷(酸可水解磷),消解方法 8180聚合磷(酸可水解磷),抗坏血酸法 8180正磷酸,抗坏血酸法 8048正磷酸,抗坏血酸-TNT法 8048正磷酸,抗坏血酸-流通池法 10055正磷酸,氨基酸法 8178正磷酸,钼锑抗法 8114正磷酸,钼锑抗法-TNT法 8114总磷,消解-抗坏血酸法 8190总磷,消解-钼锑抗法 10127硝酸盐氮,UV法 10049硝酸盐氮,镉还原法 8192硝酸盐氮,镉还原法 8171硝酸盐氮,镉还原法 8039硝酸盐氮,铬变酸法 10020硝酸根,离子选择性电极法 8359硝酸根,离子选择性电极法 8358亚硝酸盐氮,重氮化法 8507亚硝酸盐氮,重氮化法 10019亚硝酸盐氮,硫酸亚铁法 8153亚硝酸盐氮,铈酸滴定法 8351氨氮,水杨酸法 10023氨氮,水杨酸法 10031氨氮,水杨酸法 8155氨氮,纳氏试剂法 8038氨氮,离子选择性电极法 10001自由氨氮,靛酚法 10201总氮,过硫酸盐氧化法 10071总氮,过硫酸盐氧化法 10072总无机氮,三氯化钛还原法 10021总有机氮(凯氏氮),纳氏试剂法 8075UV254有机污染物综合指标,直读法 100548.4 金属及其化合物银离子,比色法 8120铝,铝试剂法 8012铝,铬菁R法 8326钡,浊度法 8014钴,PAN法 8078铬酸根,硫代硫酸钠法8211六价铬,二苯碳酰二肼分光光度法 8023 总铬,碱性次溴酸氧化法 8024铜,双喹啉法 8506铜,卟啉法 8143二价铁,1,10-二氮杂菲分光光度法 8146 铁,Ferrozine法 8147铁,数字滴定器法 8214总铁,FerroMo法 8365总铁,TPTZ法 8112总铁,FerroVer法 8008钾离子,四苯硼盐法 8049锰,PAN法 8149锰,高碘酸盐法 8034钠离子,离子选择性电极法 8359镍,环庚二酮二肟法 8037镍,PAN法 8150钼,三元配合物法 8169钼,巯基乙酸法 8036铅,快速提取法 8317锌,锌试剂法 80098.5 有机污染物酚,4-氨基安替比林法 8047甲醛,MBTH法 8110氰尿酸,浊度法 8139阴离子表面活性剂,结晶紫法 80288.6 其他一氯胺,靛青法 10200需氯量,DPD法 10223二氧化氯,DPD法 10126二氧化氯,氯酚红法 8065二氧化氯,直读法 8345二氧化氯,直读法 8138钙镁硬度,钙镁试剂法 8030钙镁硬度,偶氮氯瞵法 8374总硬度,偶氮氯瞵-流通池法 8374总硬度,EDTA滴定法 8213联胺,P-二甲氨基苯甲醛法 8141氧化还原电位(ORP),电化学法 10228 除氧剂,铁氧化法 8140臭氧,靛青法 8311附录一HACH分析方法解释酸度碱度铝钡二氧化碳化学需氧量(COD)氯化物余氯总氯二氧化氯铬钴铜氰化物甲醛氟化物硬度联胺铅钼镍硝酸盐亚硝酸盐氨氮总氮凯氏氮总有机碳溶解氧除氧剂臭氧酚有机膦磷钾pH硅硫酸盐浊度锌附录二常用水质国家标准速查表饮用水水质标准GB 5749-2006 生活饮用水卫生标准 2006-7-1CJ 3020-1993 生活饮用水水源水质标准 1003-8-5CJ /T 206-2005 城市供水水质标准 2005-6-1环境水质标准GB 3838-2002 地表水环境质量标准 2002-6-1GB 3097-1997海水水质标准 1998-7-1GB 14848-93地下水质量标准 1994-10-1GB 5084-92农田灌溉水质标准 1992-10-1GB 11607-89渔业水质标准 1990-3-1水污染物排放标准GB 8978-1996污水综合排放标准 1998-1-1GB 20425-2006 皂素工业水污染物排放标准 2007-1-1GB 20426-2006 煤炭工业污染物排放标准 2006-10-1GB 18466-2005 医疗机构水污染物排放标准 2006-1-1GB 19821-2005 啤酒工业污染物排放标准 2006-1-1GB 19430-2004 柠檬酸工业污染物排放标准 2004-4-1GB 19431-2004味精工业污染物排放标准 2004-4-1GB 18918-2002 城镇污水处理厂污染物排放标准 2003-7-1GB 14470.1-2002兵器工业水污染物排放标准火炸药 2003-7-1 GB 14470.2-2002兵器工业水污染物排放标准火工药剂 2003-7-1 GB 14470.3-2002兵器工业水污染物排放标准弹药装药 2003-7-1 GB 13458-2001 合成氨工业水污染物排放标准 2002-1-1GB 3544-2001 造纸工业水污染物排放标准 2002-1-1GB 18486-2001 污水海洋处置工程污染控制标准 2002-1-1GB 18596-2001 畜禽养殖业污染物排放标准 2003-1-1GB 15580-1995磷肥工业水污染物排放标准 1996-7-1GB 15581-1995烧碱、聚氯乙烯工业水污染物排放标准 1996-7-1 GB 14374-93航天推进剂水污染物排放标准 1993-12-1GB 13456-92钢铁工业水污染物排放标准 1992-7-1GB 13457-92肉类加工工业水污染物排放标准 1992-7-1GB 4287-92纺织染整工业水污染物排放标准 1992-7-1GB 4914-85海洋石油开发工业含油污水排放标准 1985-8-1GB 4286-84船舶工业污染物排放标准 1985-3-1GB 3552-83船舶污染物排放标准 1983-10-1(……)第一章缩写和换算1.1操作流程中使用到的缩写在本手册操作流程中经常会使用到的缩写见下表:表1、缩写表缩写定义缩写定义℃摄氏度(温度) HR 高量程℉华氏温度L 升ACS 美国化学学会试剂纯度规格LR 低量程MDL method detection limit 方法检出限MDS marked dropping bottle 带刻度滴瓶Mg/L 毫克/升μg/L 微克/升mL 毫升—千分之一升, 它大约等于立方厘米( 也称 "cc").APHA 标准方法美国公众卫生协会(APHA)、美国用水工程协会(AWWA)和水环境联合会 (WEF) 共同出版的水和废水检验标准方法,是水质分析的标准参考著作。
水质全分析项目
水质全分析项目引言概述:水质全分析项目是一项重要的环境监测活动,旨在评估水体的质量和安全性。
通过对水质进行全面的分析,可以了解水体中的各种物质含量,进而判断其是否符合相关的水质标准和要求。
本文将从五个大点出发,详细阐述水质全分析项目的内容和重要性。
正文内容:1. 水质参数分析1.1 pH值分析:pH值是衡量水体酸碱性的重要指标,对于不同的水体有不同的要求。
通过分析水体的pH值,可以判断其是否酸性或者碱性,进而评估其对生态环境和人体健康的影响。
1.2 溶解氧分析:溶解氧是水体中生物生存和生态平衡的重要指标。
通过分析水体中的溶解氧含量,可以判断水体的富氧程度,进而评估其对水生生物的适宜性。
1.3 氨氮分析:氨氮是水体中常见的污染物之一,其含量超过一定标准会对水质造成严重影响。
通过分析水体中的氨氮含量,可以判断其是否受到污染,进而采取相应的管理措施。
1.4 高锰酸盐指数分析:高锰酸盐指数是评估水体中有机物氧化能力的指标。
通过分析水体中的高锰酸盐指数,可以判断水体中有机物的含量,进而评估其自净能力和水质状况。
1.5 水中微生物分析:水中微生物是评估水体卫生状况的重要指标。
通过分析水体中的微生物含量和种类,可以判断水体是否受到细菌、病毒等微生物的污染,进而评估其对人体健康的安全性。
2. 水质污染物分析2.1 重金属分析:重金属是水体中常见的污染物之一,其含量超过一定标准会对水质造成严重影响。
通过分析水体中的重金属含量,可以判断水体是否受到重金属污染,进而评估其对生态环境和人体健康的影响。
2.2 有机污染物分析:有机污染物是水体中常见的污染物之一,其含量超过一定标准会对水质造成严重影响。
通过分析水体中的有机污染物含量,可以判断水体是否受到有机污染物的污染,进而评估其对生态环境和人体健康的影响。
2.3 农药残留分析:农药残留是水体中常见的污染物之一,其含量超过一定标准会对水质造成严重影响。
通过分析水体中的农药残留含量,可以判断水体是否受到农药污染,进而评估其对生态环境和人体健康的影响。
污水处理厂HACH在线仪表监测操作手册---沈健
营口市东部污水处理厂在线监测仪表操作手册Amtax™ Compact氨氮分析仪一.测量原理在逐出容器瓶中,样品与逐出溶液混合,样品中的氨氮被转化成氨气,生成的氨气由隔膜泵转移到测量比色池中,氨气在测量比色池中与缓冲溶液混合,改变pH指示剂的颜色;比色法测量缓冲溶液颜色的改变,从而得到样品中氨氮的浓度。
二.仪表参数测量方法:PH比色指示,纳氏比色法测量间隙:13,15,20,或者30 分钟(可选)应用:测量水或废水中铵的浓度测量范围:0.2-1200mg/L NH4-H,根据试剂的不同,分为以下几段:0.2-12mg/L NH4-H2-120mg/L NH4-H20-1200mg/L NH4-H精度:测量值的+2.5%或者0.2mg/L,二者中的较大者测量下限:0.2mg/L循环时间:13,15,20,或者30 分钟(可选)保存温度范围:5-40℃操作范围:10-40℃三.更换试剂1.根据所需的测量范围,一同随着分析仪器的还有以下某一套试剂:测量范围标准(250mL)逐出液(250mL)指示溶液(1L)0.2-12mg/L 28251-31 28254-31 28255-532-120mg/L 28258-31 28254-31 28256-5320-1200mg/L 28259-31 28254-31 28257-53备注:现在厂内出水口需购置的试剂量程为0.2~12mg/L的。
2.更换试剂:⑴.按住F1-F4 中的任何一个按键,持续3 秒钟。
⑵.选择Service 菜单。
等待至分析仪工作停止。
⑶.将瓶帽和管线从试剂瓶上拿下来,移走试剂瓶。
⑷.将新的试剂瓶安放在分析仪内部,并且将瓶帽和管线安在新的试剂瓶上。
⑸.选择Priming,将所有的软管充满试剂。
⑹.选择Calibrate,进行一轮校正循环,然后分析仪进入测量模式。
四.基本操作1.标液浓度的更改:F1 —﹢Settings(设置)—选Standard—通过F3、F4调整标液浓度跟试剂对应—按F2 确定。
水质检测常规五项
水质检测常规五项
污水的五个检测项目一般是pH值检测、SS项目检测、氨氮检测、BOD检测和COD检测。
这些项目的测试内容如下:
1、PH值检测:指pH测试,也指氢离子浓度指数,即污水中氢离子总数与总物质含量的比值。
2、SS项目检测:指水中悬浮物的检测,包括不溶性无机物、有机物、砂、粘土、微生物等。
悬浮物含量是衡量水体污染程度的重要指标之一。
3、氨氮检测:氨氮是指水中游离氨和铵离子形式的氮,可导致水体富营养化。
它是水体中的主要OD污染物,对鱼类和某些水生生物具有毒性。
4、BOD检测:指生化需氧量的检测。
生化需氧量是指微生物在一定时间内分解一定水量水所消耗的溶解氧量,是反映水体中有机污染物含量的重要指标。
5、COD检测:化学需氧量检测是测定水样中需要氧化的还原性物质的量的化学方法,可以通过减少水中的物质来反映污染程度。
HACH 仪器测定水中的总磷
HACH 仪器测定水中的总磷[摘要]:利用HACH 仪器测定水中的总磷。
与国标法(GB11893-89)作对照试验,并用应用数理统计的方法对结果加以分析,结果表明两种方法无显著性差异(显著性水平为0.05,样本数为15),且两者具有相似的精密度和准确度,可以替换使用。
[关键词]:总磷;HACH 仪器;数理统计;t检验Detecting Total Phosphate in water by HACH DeviceCHEN Guo-mei(The Sewage Treatment Plant of the Nantong Economic & Technological Development District,Nantong ,Jiangsu 226009,China) Abstract :This article has established the method to detect TP in wastewater by HACH device. Checking test with the National Standard Method (GB11893-89 ) and analyzing the results by mathematical statistics, there is no noticeable difference between them (αis 0.05 and the number of example is 15 ) and the two methods have similar precision and accuracy .The results have shown that this method is so perfect that it could interchange with the National Standard Method. Key Words: Total Phosphate; HACH Device ; Mathematical statistics ;t test 总磷的测定国标法采用过硫酸钾消解—钼锑抗分光光度法,是一种大剂量方法,反应器消解—分光光度法即HACH仪器法是一种小剂量方法,测试结果准,省时、省力,但进口的消解试剂价格较贵,难以得到推广。
HACH哈希在线仪表试剂配方
HACH 试剂配方美国哈希CODmax 铬法COD试剂配方试剂与校准标液的准备注意:由于反应试剂有毒且具有腐蚀性,推荐从哈希公司订购受控的预制试剂,不仅可以避免人员伤害和环境污染,而且还能确保获得准确的测量和校准结果(见备件清单。
硫酸汞溶液基本原料需要量硫酸95-97 % ACS 100 毫硫酸汞(II) ACS 100 克危险标志吸入、皮肤接触及吞咽都会造成严重中毒。
有累积效应的危险。
会引起严重的烧伤。
对于水生生物十分有害,可能会对水生环境造成长期的不利影响。
应对措施:如果进入了眼睛,立即用大量的水冲洗眼睛并征询医生的意见。
如果与皮肤接触,则立即用大量的水冲洗。
穿戴合适的防行处置,不要排放到环境中。
请参考特殊指导/安全数据清单。
下列步骤是为了防止污染的化合物引起的干扰,这些干扰可能会影响COD 的测量。
往 1 升的量杯中投入100 克物质B(硫酸汞(II) ACS),然后缓慢地加入800 毫升纯净水,使用磁力搅拌器搅拌此悬浮液,搅拌 2 小时之后,用抽滤器(烧结玻璃滤器D1)进行抽滤,量杯中就剩下了黄色的沉淀。
现在往量杯中再次缓慢加入800 毫升蒸馏水重复冲洗循环,使用磁力搅拌器搅拌 2 小时后,用抽滤器(烧结玻璃滤器D1)抽滤。
第二次冲洗循环获得的抽滤水用于确定COD 浓度,根据中国标准实验室COD 测定方法。
COD<20mg/L往第二次抽滤后剩下的沉淀(黄色的碱性硫酸汞)中缓缓加入750 毫升蒸馏水。
在用磁力搅拌器搅拌此黄色悬浮液期间,小心地往其中加入100 毫升的物质A(硫酸95-97 % p.a.)。
待硫酸汞完全溶解后(溶液澄清),加入纯净水至 1 升。
COD>20mg/L往第二次抽滤后剩下的沉淀(黄色的碱性硫酸汞)中缓缓加入300 毫升蒸馏水。
在用磁力搅拌器搅拌此黄色悬浮液期间,小心地往其中加入500 毫升的物质A(硫酸95-97 % p.a.)。
待此黄色悬浮液完全溶解后,会形成一白色的硫酸汞悬浮液。
HACH水质分析仪器
CL17 余(总)氯分析仪 ........................................................................................................................................................ 14 9184 sc 余氯分析仪 ............................................................................................................................................................... 15 APA6000 氨 / 一氯胺分析仪 .................................................................................................................................................. 16 9185 sc 臭氧分析仪 ............................................................................................................................................................... 17 9187 sc 二氧化氯分析仪 ....................................................................................................................................................... 18
常规污水处理必须检测的十个参数
常规污水处理必须检测的十个参数常规污水处理是指将污水通过物理、化学和生物等方法进行处理,去除其中的污染物质,达到排放标准或再利用的目的。
在污水处理的过程中,需要进行各种参数的检测,以确保处理效果的稳定和达标。
下面列举了十个常规的污水处理必须检测的参数。
1. pH值pH值是指水的酸碱程度,它对污水处理的影响特别大。
对于生物法处理来说,pH值在 6.5—8.5之间才能正常进行,过高或过低会影响生物菌群的生长和代谢,导致处理效果下降。
对于化学法处理来说,pH值的掌控特别紧要,过高或过低会导致化学药剂的消耗加添,同时也会影响沉淀剂的沉淀效果。
2. DO(溶解氧)DO是指水中溶解的氧的含量,它与生物法和化学法处理都有关。
在生物法处理中,DO的含量太低会导致生物菌群死亡,处理效果下降;在化学法处理中,DO过多会使化学药剂的消耗加添。
3. COD(化学需氧量)COD指的是水中化学氧化剂氧化有机物所需的氧的量,它是衡量污水有机物质污染程度的紧要指标。
COD高表示污染程度高,需要进行更多的氧化处理。
4. BOD(生物需氧量)BOD指的是水中细菌和其它生物对有机物质进行氧化需要的氧量,它是衡量污水中有机物生物降解本领的指标。
5. SS(悬浮物)SS指的是水中悬浮在水中的颗粒物的含量,包括泥沙、污泥、繁殖的浮游生物等。
SS高表示污染程度高,需要进行更多的物理处理。
6. TN(总氮)TN是指水中的总氮含量,它包括氨态氮、硝态氮、亚硝态氮和有机态氮等。
TN高表示污染程度高,需要进行更多的氮除处理。
7. TP(总磷)TP指的是水中的总磷含量,它是衡量污水中磷污染程度的指标。
TP高表示污染程度高,需要进行更多的磷除处理。
8. COD/TN比COD/TN比是指污水中的化学需氧量和总氮含量之比,可以反映不同有机物质的降解程度。
这个比值越低,说明污水中的有机物降解得越好。
9. pH缓冲本领pH缓冲本领是指溶液在添加酸或碱时,所能接受的数量,体现了溶液中有关酸碱平衡的物质量,对于稳定处理系统的酸碱平衡有紧要的作用。
水质指标监测指导手册(COD、SS、BOD、氨氮、pH)
水质指标监测指导手册目录化学需氧量(COD)的重铬酸钾法测定 (2)化学需氧量(COD)测定方法比较 (6)废水中悬浮物(SS)的测定 (9)生化需氧量(BOD5)测定 (10)氨氮的测定 (17)水样pH值的测定 (21)化学需氧量(COD)的重铬酸钾法测定化学需氧量(COD)是指在一定的条件下,用强氧化剂处理水时所消耗氧化剂的量。
COD反映了水中受还原性物质污染的程度。
水中的还原性物质有有机物、亚硝酸盐、亚铁盐、硫化物等,所以COD测定又可反映水中有机物的含量。
一、重铬酸钾法测定(COD Cr)的原理在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。
二、仪器1、500mL全玻璃回流装置。
2、加热装置(电炉)。
3、25mL或50mL酸式滴定管、锥形瓶、移液管、容量瓶等。
三、试剂1、重铬酸钾标准溶液(C1/6K2Cr2O7);称取预先在120℃烘干2h的基准或优质纯重铬酸钾12.258g溶于水中,移入1000mL容量瓶,稀释至标准线,摇匀。
2、试亚铁灵指示液:称取1.485g邻菲啰啉(C12H8N2•H2O)、0.695g 硫酸亚铁(FeSO4•7H2O)溶于水中,稀释至100mL,储于棕色瓶内。
3、硫酸亚铁铵标准溶液(C(NH4)2 Fe(SO4)2•6H2O):称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,冷却后移入1000mL容量瓶中,加水稀释至标线,摇匀。
临用前,用重铬酸钾标准溶液标定。
标定方法:准确吸取10.00mL重铬酸钾标准溶液于500mL锥形瓶中,加水稀释至110mL左右,缓慢加入30mL浓硫酸,混匀。
冷却后,加入3滴试亚铁灵指示液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。
水产水质检测cod,总磷,总氮,氨氮等
水产水质检测cod,总磷,总氮,氨氮等本文档详细介绍了水产水质检测中的COD、总磷、总氮和氨氮等指标的测试方法和评估标准。
在水质检测过程中,这些指标对水体的污染程度和水质健康状况有重要意义。
以下是本文档的具体内容:1. 引言1.1 背景1.2 目的1.3 适用范围2. COD(化学需氧量)检测方法2.1 原理2.2 仪器与试剂2.3 样品处理2.4 操作步骤2.5 结果与数据分析3. 总磷检测方法3.1 原理3.2 仪器与试剂3.3 样品处理3.4 操作步骤3.5 结果与数据分析4. 总氮检测方法4.1 原理4.2 仪器与试剂4.3 样品处理4.4 操作步骤4.5 结果与数据分析5. 氨氮检测方法5.1 原理5.2 仪器与试剂5.3 样品处理5.4 操作步骤5.5 结果与数据分析6. 结论与建议6.1 结果分析6.2 水体污染评估6.3 排污要求7. 附件:实验记录表、数据分析表等8. 法律名词及注释:- COD:化学需氧量,指在一定条件下,水中的有机物被氧化分解所需的化学氧量。
- 总磷:水体中所有形态磷的总量。
- 总氮:水体中所有形态氮的总量。
- 氨氮:水体中以氨的形式存在的氮的含量。
-----------------------------------------------------------------------------------本文档详细介绍了水产水质检测中的COD、总磷、总氮和氨氮等指标的测试方法和评估标准。
在水质监测与评估工作中,准确评估水体污染程度和水质健康状况对于保护水环境和人类健康至关重要。
以下是本文档的具体内容:1. 引言1.1 背景与意义1.2 目的与适用范围2. COD(化学需氧量)检测方法 2.1 原理与相关标准2.2 仪器设备与试剂2.3 样品采集与处理2.4 测试步骤与注意事项2.5 结果分析与评估标准3. 总磷检测方法3.1 原理与相关标准3.2 仪器设备与试剂3.3 样品采集与处理3.4 测试步骤与注意事项3.5 结果分析与评估标准4. 总氮检测方法4.1 原理与相关标准4.2 仪器设备与试剂4.3 样品采集与处理4.4 测试步骤与注意事项4.5 结果分析与评估标准5. 氨氮检测方法5.1 原理与相关标准5.2 仪器设备与试剂5.3 样品采集与处理5.4 测试步骤与注意事项5.5 结果分析与评估标准6. 结论与建议6.1 污染程度评估与风险分析6.2 水质改善策略与污染源控制建议6.3 法律法规要求与监管措施7. 附件:实验记录表、数据分析表等8. 法律名词及注释:- COD:化学需氧量,是一种反映水中有机物质的浓度和水质污染程度的重要指标。
实验室水质检测方法汇总[详细讲解]
污水水质测定——实验常用测定指标一、生活污水1.厌氧:COD、BOD5、SS、PH、氨氮、总氮、总磷、余氯、浊度、VFA等2.好氧:COD、BOD5、SS、PH、SV、MLSS、氨氮、总氮、总磷、余氯、浊度、D O等二、工业废水1.纺织印染废水: COD、BOD5、浊度、PH、氨氮、硫化物、六价铬、铜、苯胺类、二氧化氯等2.制药废水: COD、BOD5、氨氮、硫化物、六价铬、铜、总余氯、苯胺类、总砷、总锌、挥发酚、甲醛等3.电镀污水:总铬、六价铬、总镉、总镍、总银、总铅、总汞、总铜、总锌、总铁、COD、PH、氨氮、总氮、总磷、氟化物、总氰化物等三、实验常用测定指标1.COD的测定a)快速消解分光光度法 HJ/T 399-2007仪器设备:消解管(锥形瓶)、加热器(微波炉)、分光光度计b)重铬酸盐法 GB11914-89仪器设备:回流装置、加热装置、酸式滴定管c)碘化钾碱性高锰酸钾法 HJ/T132-2003d)氯气校正法 HJ/T70-20012.BOD5的测定a)稀释与接种法HJ 505-2009仪器设备:滤膜、溶解氧瓶、稀释容器、虹吸管、溶解氧测定仪、冰箱、恒温培养箱b)微生物传感器快速测定法 HJ/T 86-2002仪器设备:微生物传感器BOD快速测定仪c)测压法具体操作步骤详见OxDirect仪说明书仪器设备:呼吸法BOD测量仪(OxDirect仪)和生化培养箱3.氨氮的测定a)纳氏试剂分光光度法 HJ 535-2009仪器设备:可见分光光度计、氨氮蒸馏装置b)水杨酸分光光度计法 HJ536-2009仪器设备:可见分光光度计、氨氮蒸馏装置c)电极法见附件水质氨氮的测定电极法仪器设备:离子活度计或带扩展毫伏的pH计、氨气敏电极、电磁搅拌器d)蒸馏-中和滴定法 HJ 537-2009仪器设备:氨氮蒸馏装置、酸式滴定管4.总氮的测定碱性过硫酸钾消解紫外分光光度法 HJ636-2012仪器设备:紫外分光光度计、高压蒸汽灭菌器5.总磷的测定钼酸铵分光光度法 GB11893-89仪器设备:加热消解装置、分光光度计6.游离氯和总氯的测定a)N,N-二乙基-1,4-苯二胺分光光度法仪器设备:可见分光光度计、天平b)N,N-二乙基-1,4-苯二胺滴定法仪器设备:微量滴定管、实验室常用仪器7.二氧化氯的测定碘量法仪器设备:碘量瓶、棕色酸式滴定管8.VFA的测定a)碳酸氢盐碱度和VFA分析的联合滴定法(贺延龄版《废水的厌氧生物处理》第九章第三节)仪器设备:自动电位滴定计、带冷凝回流的蒸馏装置b)滴定法(《废水的厌氧生物处理》第九章第二节)9.浊度的测定分光光度法 GB13200-91仪器设备:具塞比色管、分光光度计10.SS的测定重量法 GB/T11901-1989仪器设备:鼓风干燥箱、电子天平11.PH的测定玻璃电极法 GB/T6920-1986仪器设备:酸度计或离子浓度计、玻璃电极与甘汞电极12.DO的测定a)电化学探头法 HJ506-2009仪器设备:溶解氧测量仪、磁力搅拌器、电导率仪、温度计、气压表、溶解氧瓶b)碘量法 GB7489-8713.硫化物的测定a)碘量法 HJ/T60-2000仪器设备:酸化-吹气-吸收装置、恒温水浴、碘量瓶、棕色滴定管b)亚甲基蓝分光光度法仪器设备:酸化-吹气-吸收装置、氮气流量计、碘量瓶、分光光度计14.六价铬的测定二苯碳酰二肼分光光度法 GB7467-87仪器设备:分光光度计15.总铬的测定a)高锰酸钾氧化-二苯碳酰二肼分光光度法 GB7466-87仪器设备:分光光度计b)硫酸亚铁铵滴定法 GB7466-8716.铜的测定a)2,9-甲基-1,10-菲啰啉分光光度法 HJ486-2009仪器设备:分光光度计、锥形分液漏斗b)二乙基二硫代氨基甲酸钠分光光度法 HJ485-2009仪器设备:分光光度计、锥形分液漏斗17.挥发酚的测定a)4-氨基安替比林分光光度法 HJ503-2009仪器设备:分光光度计b)溴化容量法HJ502-2009仪器设备:实验室常用设备18.苯胺类的测定N-(1-萘基)乙二胺偶氮分光光度法 GB11889-89仪器设备:分光光度计19.总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB7485-87仪器设备:分光光度计、砷化氢发生装置20.铅、镉、锌的测定双硫腙分光光度法 GB7470-87、GB7471-87、GB7472-87仪器设备:分光光度计、分液漏斗、玻璃器皿、PH计21.甲醛的测定乙酰丙酮分光光度法 HJ601-2011仪器设备:全玻璃整流器、具塞比色管、恒温水浴、分光光度计22.银的测定镉试剂2B分光光度法 HJ490-2009仪器设备:分光光度计、PH计、容量瓶23.铁的测定邻菲啰啉分光光度法 HJ/T345-2007仪器设备:分光光度计24.氟化物的测定氟试剂分光光度法 HJ488-2009仪器设备:分光光度计、PH计25.氰化物的测定容量法和异烟酸-吡唑啉酮分光光度法 HJ484-2009仪器设备:分光光度计、恒温水浴、可调电炉、全玻璃蒸馏器26.镍的测定丁二酮肟分光光度法 GB11910-89。
污水处理的监测分析
污水处理的监测分析一、引言污水处理是保护环境、维护公共卫生和可持续发展的重要环节。
为了确保污水处理系统的正常运行,监测分析是必不可少的环节。
本文将详细介绍污水处理的监测分析标准格式,包括监测目的、监测内容、监测方法、监测频率、数据分析和报告编写等方面。
二、监测目的污水处理的监测目的是评估污水处理系统的运行状况,包括检测处理效果、监测污染物排放情况、评估环境影响等。
通过监测分析,可以及时发现问题并采取相应的措施,确保污水处理系统的稳定运行。
三、监测内容1. 污水处理效果监测:包括COD(化学需氧量)、BOD(生化需氧量)、SS (悬浮物)、氨氮、总磷等指标的监测,以评估处理效果。
2. 污染物排放监测:对污水处理后的排放水进行监测,包括COD、BOD、SS、氨氮、总磷、重金属等污染物的含量检测,以确保排放水质符合相关标准。
3. 生物学指标监测:通过监测微生物的种类和数量,评估处理系统中的生物活性,包括细菌、藻类、浮游生物等。
4. 环境影响评估:监测处理系统对周围环境的影响,包括土壤、水体和空气等方面的监测。
四、监测方法1. 采样方法:根据监测内容确定采样点位和采样时间,采用合适的采样器具进行采样,确保样品的代表性。
2. 分析方法:根据监测内容选择合适的分析方法,如化学分析、生物学分析、光谱分析等,确保分析结果的准确性和可比性。
3. 仪器设备:使用精密的仪器设备进行样品分析,如高效液相色谱仪、质谱仪、光谱仪等,确保监测数据的可靠性。
五、监测频率1. 污水处理效果监测:根据处理系统的规模和运行情况,通常每日或每周进行监测。
2. 污染物排放监测:根据排放标准的要求,通常每月或每季度进行监测。
3. 生物学指标监测:根据处理系统的稳定性和生物活性要求,通常每月或每季度进行监测。
4. 环境影响评估:根据环境监测要求,通常每季度或每年进行监测。
六、数据分析监测数据的分析是评估污水处理系统运行状况的重要环节。
通过对监测数据的统计和分析,可以得出系统的处理效果、排放水质和环境影响等方面的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干扰物质最大允许含量及消除干扰的办法 将水样的 pH 值调节至中性:对于酸性水样,加入 1N 的氢 氧化钠;对于碱性水样,加入 1N 的盐酸 最大允许含量 50,000 mg/L,以 CaCO3 计 会导致被测水样的颜色加深 最大允许含量 300,000 mg/L,以 CaCO3 计 可以按照以下步骤扣除铁的干扰: 3. 测量水样中总铁的含量 4. 在第 4 步操作之前,在空白溶液中加入同样浓度的铁 最大允许含量 600 mg/L,以 NO2-N 计 最大允许含量 5,000 mg/L,以 NO3-N 计 最大允许含量 5,000 mg/L,以 PO4-P 计 最大允许含量 5,000 mg/L,以 SO4 计 硫化物会导致产生过深的颜色,可以按照以下步骤扣除硫 化物的干扰: 5. 在 500mL 厄氏容量瓶中,加入 350mL 待测水样; 6. 加入一份硫化物抑制试剂(Hach #2418-99),摇匀 用滤纸(Hach #692-57)过滤待测水样, 会导致测量结果偏高。如果干扰过大,建议对水样先进行 蒸馏,可以采用 HACH 公司的通用蒸馏用装置 。
189
Method Performance Precision In a single laboratory, using a standard solution of 50 mg/L ammonia nitrogen (NH3-N) and two representative lots of reagent with the instrument, a single operator obtained a standard deviation of +5 mg/L NH3-N. Estimated Detection Limit The estimated detection limit for program 67 is 1 mg/L NH3-N. For more information on the estimated detection limit, see Section 1.
所需试剂
AmVer.氨氮试剂一套, TNT (25 tests) ……………………………………................26069-45
包括: (1) 23952-66, (1) 23954-66, (1) 272-42, *(50) AmVer HR Vials
所需数量
试剂种类
每次测试
单位
货号
Summary of Method Ammonia compounds combine with chlorine to form monochloramine. Monochloramine reacts with salicylate to form 5-aminosalicylate. The 5-aminosalicylate is oxidized in the presence of a sodium nitroprusside catalyst to form a blue-colored compound. The blue color is masked by the yellow color from the excess reagent present to give a green-colored solution.
7.盖紧瓶盖。大力摇 晃是粉末完全溶解。
注:如果氨存在,溶 液将呈现绿色。
8.按下: TIMER ENTER
将开始 20 分钟的反 应计时。
187
9.用布擦干瓶外壁。 10.按 ZERO,指针将 计时器鸣响后,将空 右移,屏幕显示: 白试样放入样品适配 0.00 mg/L NH3-N 器中,盖紧遮光盖。
试管架 ……….............................................................. 1-3 ...................个................18641-00
漏斗 .................................................................................1 ….................个.................25843-35
Accuracy Check Standard Additions Method a) Snap the top off an Ammonia PourRite Ampule Standard, 150 mg/L NH3-N. b) Use the TenSette Pipet to add 0.2, 0.4 and 0.6 mL of standard to three 25-mL samples. Swirl to mix. c) Analyze each sample as described above. The ammonia concentration should increase approximately 1.2 mg/L NH3-N for each 0.2 mL of standard added. d) If these increases do not occur, see Standard Additions in Section 1 for more information. Standard Solution Method To check accuracy, use a 10 or 50 mg/L Nitrogen, Ammonia Standard Solution or use a Nitrogen, Ammonia Voluette Ampule Standard, 50 mg/L.
氨水氰尿酸盐粉末试剂 ……………………........ 2 包 .................50/pkg ..........239适配器...........................................................1 .....................个.................48464-00
Sampling and Storage Collect samples in clean plastic or glass bottles. Best results are obtained with immediate analysis. If chlorine is known to be present, add one drop of 0.1 N sodium thiosulfate for each 0.3 mg/L Cl2 in a one liter sample. Preserve the sample by reducing the pH to 2 or less with hydrochloric acid (at least 2 mL). Store at 4 ¡ãC (39 ¡ãF) or less. Preserved samples may be stored up to 28 days. Before analysis, warm samples to room temperature and neutralize with 5.0 N sodium hydroxide. Correct the test result for volume additions.
Pollution Prevention And Waste Management The ammonia salicylate reagent contains sodium nitroferricyanide. Cyanide solutions are regulated as hazardous wastes by the Federal RCRA. Collect cyanide solutions for disposal as reactive (D001) waste. Be sure cyanide solutions are stored in a caustic solution with pH >11 to prevent release of hydrogen cyanide gas. See Section 3 for further information in proper disposal of these materials.
190
OPTIONAL REAGENTS
Nitrogen, Ammonia Standard Solution, 50 mg/L NH3-N ..................... 500 mL ..........14791-50
Nitrogen, Ammonia Standard Solution, 10 mg/L NH3-N ..................... 500 mL ..............153-49
氨氮 水杨酸法 低量程 (0 to 50 mg/L NH3-N)
Test ‘N Tube
方法号:10031
1.输入检测高量程氨
氮Test‘N Tube的
程序编号。 按下:PRGM 屏幕将显示:
PRGM?
2.按下:67 ENTER 屏幕将显示: 0.00 mg/L、 NO3-N 和ZERO图标。
注:如检测其他形态 的氮(NH3), 按下: CONC