氧化石墨烯制备——Hummers改进法
改良hummers合成氧化石墨烯
An improved Hummers method for eco-friendly synthesis of graphene oxideJi Chen,Bowen Yao,Chun Li,Gaoquan Shi*Department of Chemistry,Tsinghua University,Beijing 100084,People’s Republic of ChinaA R T I C L E I N F O Article history:Received 4June 2013Accepted 21July 2013Available online 27July 2013A B S T R A C TAn improved Hummers method without using NaNO 3can produce graphene oxide nearly the same to that prepared by conventional Hummers method.This modification does not decrease the yield of product,eliminating the evolution of NO 2/N 2O 4toxic gasses and sim-plifying the disposal of waste water because of the inexistence of Na +and NO 3Àions.For the first time,we also developed a prototype method of post-treating the waste water col-lected from the systems of synthesizing and purifying graphene oxide.The content of Mn 2+ions in the purified waste water was measured to be lower than the guideline value for drinking water.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionGraphene has a unique atom-thick two-dimensional struc-ture,excellent electronic,mechanical,optical and thermal properties [1].Therefore,it has been widely explored for the applications in electronics [2],catalysis [3],sensors [4],and energy conversion and storage [5,6],etc.For these purposes,the mass-production of graphene materials at low costs is one of the essential requirements.Actually,graphene sheets already exist in nature and we need to exfoliate them from their precursors [7].The exfoliation of graphite to graphene can be realized either physically or chemically [1].Among the various methods,chemical reduction of graphene oxide (GO)to reduced graphene oxide (rGO)is unique and attractive because of its capability of producing single-layer graphene in large scale and at relatively low cost [8].Furthermore,GO and rGO are processible and they can be fabricated or self-assem-bled into macroscopic materials with controlled compositions and microstructures for practical applications [9].GO is the precursor of rGO;thus,it plays a crucial role in controlling the structure,property and the application poten-tial of rGO [10À16].The pioneering work on the synthesis of GO was reported by Brodie in 1859[17].In this method,oneequal weight of graphite was mixed with three equal weights of KClO 3and reacted in fuming HNO 3at 60°C for 4days.Sta-udenmaier improved Brodie method by replacing about two thirds of fuming HNO 3with concentrated H 2SO 4and adding KClO 3in multiple portions [18].This small modification en-ables the overall reaction in a single vessel;thus simplifying the synthesis method.However,this reaction still needs a long time of 4days.The most important and widely applied method for the synthesis of GO was developed by Hummers and Offeman in 1958(Hummers method)[19].In this case,the oxidation of graphite was achieved by harsh treatment of one equal weight of graphite powders in a concentrated H 2SO 4solution containing three equal weights of KMnO 4and 0.5equal weight of NaNO 3.The Hummers method,at least,has three important advantages over previous tech-niques.First,the reaction can be completed within a few hours.Second,KClO 3was replaced by KMnO 4to improve the reaction safety,avoiding the evolution of explosive ClO 2.Third,the use of NaNO 3instead of fuming HNO 3eliminates the formation of acid fog.Hummers method has been paid the most intensive atten-tion because of its high efficiency and satisfying reaction safety.However,it still has the following two flaws:(1)the oxi-0008-6223/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.carbon.2013.07.055*Corresponding author:Fax:+861062771149.E-mail address:gshi@ (G.Shi).dation procedure releases toxic gasses such as NO2and N2O4;(2)the residual Na+and NO3Àions are difficult to be removed from the waste water formed from the processes of synthe-sizing and purifying GO.Tour and co-workers improved the Hummers method by excluding NaNO3,increasing the amount of KMnO4,and performing the reaction in a9:1(by volume)mixture of H2SO4/H3PO4[20].This modification is successful in increasing the reaction yield and reducing toxic gas evolution,while using twice as much KMnO4and 5.2times as much H2SO4as those required by Hummers method and also introducing a new component of H3PO4to the reaction system.Recently,Baek’s group studied the process of etching the basal planes of highly ordered pyrolytic graphite(HOPG)with a hot mixture of H2SO4and HNO3[21].In this case,the graph-ene layers of HOPG were effectively cut and exfoliated after a long-term treatment.This observation indicates that the H2SO4/HNO3mixture used in Hummers method acts as a chemical‘‘scissor’’and a chemical‘‘drill’’for graphene planes to facilitate the penetration of oxidation solution.On the other hand,KMnO4is one of the strongest oxidants,espe-cially in acidic media[22].With the assistance of KMnO4,a complete intercalation of graphite with concentrated H2SO4 can be achieved,forming graphite bisulfate in which every single-layer graphene is sandwiched by the layers of bisulfate ions[23,24].This complete intercalation ensures the effective penetration of KMnO4solution into graphene layers for the oxidation of graphite.Accordingly,KMnO4can also take the role of NaNO3and the latter is unnecessary for the synthesis of GO using Hummers method.In this article,we demon-strate that GO can be produced using an improved Hummers method without using NaNO3.This method decreases the cost and environmental duty of GO production.2.Experimental2.1.Synthesis and purification of GOGO was prepared by the oxidation of natural graphite powder (325mesh,Qingdao Huatai Lubricant Sealing S&T Co.Ltd., Qingdao,China)according to Hummers method with a modi-fication of removing NaNO3from the reaction formula[19]. T ypically,graphite powder(3.0g)was added to concentrated H2SO4(70mL)under stirring in an ice bath.Under vigorous agitation,KMnO4(9.0g)was added slowly to keep the temper-ature of the suspension lower than20°C.Successively,the reaction system was transferred to a40°C oil bath and vigor-ously stirred for about0.5h.Then,150mL water was added, and the solution was stirred for15min at95°C.Additional 500mL water was added and followed by a slow addition of 15mL H2O2(30%),turning the color of the solution from dark brown to yellow.The mixture wasfiltered and washed with 1:10HCl aqueous solution(250mL)to remove metal ions. The resulting solid was dried in air and diluted to600mL, making a graphite oxide aqueous dispersion.Finally,it was purified by dialysis for one week using a dialysis membrane (Beijing Chemical Reagent Co.,China)with a molecular weight cut off of8000À14,000g molÀ1to remove the remaining metal species.The resultant graphite oxide aqueous dispersion was then diluted to 1.2L,stirred overnight and sonicated for 30min to exfoliate it to GO.The GO dispersion was then cen-trifuged at3000rpm for40min to remove the unexfoliated graphite.For comparison,GO was also prepared by conven-tional Hummers method[19],and purified using the same pro-cedures described above.The GO products prepared by the improved and conventional Hummers methods are nomi-nated as GO1or GO2,respectively.2.2.Instruments and characterizationsGO dispersions were freeze-dried and used for morphological and structural characterizations.Raman spectra were re-corded on a Renishaw Raman spectrometer with a514nm la-ser at a power of4.7mW.X-ray photoelectron spectra(XPS) were recorded on an ESCALAB250photoelectron spectrome-ter(ThermoFisher Scientific)with Al K a(1486.6eV)as the X-ray source set at150W and a pass energy of30eV for high resolution scan.UV–visible spectra were taken out by the use of a U-3010UV–visible spectrometer(Hitachi,Japan). Scanning electron micrographs(SEM)were taken out on a field-emission scanning electron microscope(Sirion-200,Ja-pan).The atomic force microscopic(AFM)images of GO sheets were measured using a scanning probe microscope (SPM-9600,Shimadzu).The samples used for SEM and AFM characterizations were deposited on silicon wafers and mica sheets,respectively.Fourier transform infrared spectros-copy-attenuated total reflectance(FTIR-ATR)spectra were re-corded on a Fourier transform infrared spectrometer(Bruker Vertex V70).The zeta potentials of GO aqueous dispersions were measured by the use of HORIBA Nano particle analyzer SZ-100.X-ray diffraction(XRD)was carried out on a D8Ad-vance X-ray diffractometer with Cu K a radiation (k=0.15418nm,Bruker,Germany).2.3.The removing of Mn2+ions from waste waterT ypically,waste water was collected from the process offil-trating GO from the reaction system of improved Hummers method.Successively,20mL of waste water was diluted and neutralized by a0.2g mLÀ1KOH solution.The pH of the solu-tion was adjusted to$10and a precipitate was formed.Then, this system was kept undisturbed overnight to age the precip-itate.Finally the sediment wasfiltrated.The Mn2+ions in the purified waste water(orfiltrate)was test by adding it for sev-eral drops into a3mL aqueous solution of Na2S2O8 (0.1g mLÀ1)followed by boiling the mixture for1min.3.Results and discussionGO samples were synthesized by using Hummers method without(GO1)or with(GO2)using of NaNO3and purified by dialysis and centrifugation.The yields(the weight of GO di-vided by the weight of graphite powder)of GO1and GO2were measured to be92%±3%and96%±2%,respectively.This re-sult indicates that the solution of concentrated H2SO4con-taining KMnO4is capable of oxidizing graphite to GO in a yield close to that of Hummers method even without the assistance of NaNO3.226C A R B O N64(2013)225–229The composition,structure and morphology of GO1were characterized to be nearly the same to those of GO2.Fig.1a is the UV–visible spectrum of the aqueous dispersion of GO1.The spectrum has a main absorption peak at 232nm and a shoulder peak at 300nm,which are attributed to p Àp *tran-sition of C @C bonds and n Àp *transition of C @O bonds,respectively.The overall feature of this spectrum is identical to that of the GO synthesized using conventional Hummers method (GO2,Fig.S1a )and its adsorption peaks are also similar to those of the GO samples reported in literature [20].The dispersion of GO1shows a clear yellow color,indi-cating asuccessful oxidation of graphite to GO [19].The C/O atomic ratios of GO1(Fig.1b)and GO2(Fig.S1b )were mea-sured by XPS to be 2.36and 2.23,respectively,reflecting their similar degrees of oxidation.These values are among the range of 2.1À2.9for the GO products reported previously [19].The C 1s spectrum of GO1(Fig.1c)demonstrates four types of carbon bonds:C–C/C @C (284.6eV),C–O (286.6eV),C @O (287.8eV),and O–C @O (289.0eV).The peak intensities of intact carbon (C–C/C @C)and oxygenated carbon atoms in this XPS spectrum were calculated to be 47.9%and 52.1%(Fig.1c),correspondingly.Those values in the spectrum of GO2were measured to be 46.5%and 53.5%,respectively (Fig.S1c ).This result further confirms that they have compa-rable oxidization degrees.It should be noted here that the oxidation degrees of GO products vary with their synthesis conditions [11,15,20].Either GO1or GO2has a medium oxi-dation degree compared with those of less [15]and highly oxidized counterparts [20].The zeta potentials of GO1and GO2suspensions were measured to be À43.8±1.3and À45.6±0.6mV ,respectively,indicating they are negatively charged because of the presence ofcarboxyl groups.Although GO1has a slightly higher zeta potential than that of GO2,its value is still lower than À30mV ,providing it with peak at 2h =10.9°(Fig.2c),corresponding to a d-space of 0.81nm,and this value is in consistent with that of freeze-dried GO2(Fig.S2c ).The large interlayer spacing of GO1sheets can be attributed to its oxygenated functional groups introduced by the harsh oxidation treatment of graphite [26].Raman and infrared spectral studies also demonstrate that both GO products are structurally the same.The Raman spec-trum of GO1(Fig.2d)or GO2(Fig.S2d )shows a G-band at $1590cm À1and a D-band at $1350cm À1.The G-band is asso-ciated with graphitic carbons and the D-band is related to the structural defects or partially disordered graphitic domains [27].The D-bands in both spectra are strong,confirming the lattice distortions of graphene basal planes.Furthermore,the FTIR ÀATR spectra of GO1and GO2papers (Fig.2e and S2e )show the following characteristic functional groups of GO [20,28]:C ÀO ÀC ($1000cm À1),C ÀO (1230cm À1),C @C ($1620cm À1)and C @O (1740–1720cm À1)bonds.The O ÀH stretching vibrations in the region of 3600–3300cm À1are attributed to the hydroxyl and carboxyl groups of GO and residual water between GO sheets.These hydrophilic oxy-gen-containing functional groups provide GO sheets with a good dispersibility in water [9].Thermalgravimetric analysis (TGA)curves of GO1and GO2are compared in Fig.3.Both curves exhibit similar character-istics:the weight loss before 100°C is caused by the release of trapped water between GO sheets [28];the distinct weight loss between 200and 230°C is attributed to the decomposition of less stable oxygenated functional groups on GO sheets [29].A weaker mass loss in the range of 230–700°C is related to the removal of more stable functional groups.The nearly identi-cal TGA curves of both GO samples reflect their close contents of oxygenated groups.Post-treatment of the waste water collected from the pro-cesses of GO synthesis and purification is crucial for commer-spectrum of a 0.01mg mL À1GO1aqueous dispersion,inset is a photograph of a spectrum of freeze-dried GO1.(c)C 1s XPS spectrum of GO1.C A R B O N64(2013)225–229227to be Mn3O4containing a small amount of Mn(OH)2(Fig.5). The efficiency of removing Mn2+ions from the waste water has been tested by the addition of the purified supernatant into a solution of Na2S2O8to oxidize Mn2+.As shown Fig.4,the test solution remained colorless,indicating the sence of detectable Mn2+ions in the supernatant.Actually, the concentration of Mn2+ions in the purified water quantitatively analyzed to be as low as120l g LÀ1by induc-tively coupled plasma mass spectrometry,and this value even lower than the guideline value(400l g LÀ1)for Mn drinking water suggested by World Health OrganizationThe residual K2SO4in the supernatant can be further sepa-rated from solution by successive neutralization and evapora-tion of water.4.ConclusionsWe developed an improved HummersNaNO3for the synthesis of GO.Thisnates the generation of toxic gasses and simplifies the proce-dure of purifying waste liquid,thus decreases the cost of GO synthesis.The GO products prepared by both the improved and conventional Hummers methods are nearly the same in Fig.5–XRD pattern of the precipitation containing Mn.AFM and(b)SEM images of GO1.(c)XRD pattern,(d)514.5nm excited Raman freeze-dried GO1.Fig.3–TGA curves of freeze-dried GO1and GO2.4–Photographs and illustration of the post-treatment ofwaste water.Insets show the pictures of color test of Mn2+their dispersibility,chemical structures,thicknesses,and lat-eral dimensions.Furthermore,the exclusion of NaNO3does not affect the yield of the overall reaction.The improved Hummers method described here can be used to prepare GO in large scale and it is one-step towards the synthesis of graphene and its derivatives through environmentally friendly approaches.AcknowledgementsThis work was supported by national basic research program of China(973Program,2012CB933402),natural science foun-dation of China(91027028,51161120361,21274074).Appendix A.Supplementary dataSupplementary data associated with this article can be found, in the online version,at /10.1016/j.carbon. 2013.07.055.R E F E R E N C E S[1]Novoselov KS,Fal’ko VI,Colombo L,Gellert PR,Schwab MG,Kim K.A roadmap for graphene.Nature2012;490(7419):192–200.[2]Weiss NO,Zhou H,Liao L,Liu Y,Jiang S,Huang Y,et al.Graphene:an emerging electronic material.Adv Mater2012;24(43):5782–825.[3]Huang C,Li C,Shi G.Graphene based catalysts.EnergyEnviron Sci2012;5(10):8848–68.[4]Liu Y,Dong X,Chen P.Biological and chemical sensors basedon graphene materials.Chem Soc Rev2012;41(6):2283–307.[5]Sun Y,Wu Q,Shi G.Graphene based new energy materials.Energy Environ Sci2011;4(4):1113–32.[6]Wassei JK,Kaner RB.Oh,the places you’ll go with graphene.Acc Chem Res2013./10.1021/ar300184v. [7]Segal M.Selling graphene by the ton.Nat Nanotechnol2009;4(10):612–4.[8]Bai H,Li C,Shi G.Functional composite materials based onchemically converted graphene.Adv Mater2011;23(9):1089–115.[9]Li C,Shi G.Three-dimensional graphene architectures.Nanoscale2012;4(18):5549–63.[10]Zhu Y,Murali S,Cai W,Li X,Suk JW,Potts JR,et al.Grapheneand graphene oxide:synthesis,properties,and applications.Adv Mater2010;22(35):3906–24.[11]Wu Z-S,Ren W,Gao L,Liu B,Jiang C,Cheng H-M.Synthesis ofhigh-quality graphene with a pre-determined number oflayers.Carbon2009;47(2):493–9.[12]Zhang L,Liang J,Huang Y,Ma Y,Wang Y,Chen Y.Size-controlled synthesis of graphene oxide sheets on a largescale using chemical exfoliation.Carbon2009;47(14):3365–8.[13]Zhang L,Li X,Huang Y,Ma Y,Wan X,Chen Y.Controlledsynthesis of few-layered graphene sheets on a large scaleusing chemical exfoliation.Carbon2010;48(8):2367–71. [14]Zhao J,Pei S,Ren W,Gao L,Cheng H-M.Efficient Preparationof large-area graphene oxide sheets for transparentconductivefilms.ACS Nano2010;4(9):5245–52.[15]Xu Y,Sheng K,Li C,Shi G.Highly conductive chemicallyconverted graphene prepared from mildly oxidized graphene oxide.J Mater Chem2011;21(20):7376–80.[16]Li Y,Umer R,Samad YA,Zheng L,Liao K.The effect of theultrasonication pre-treatment of graphene oxide(GO)on the mechanical properties of GO/polyvinyl alcohol composites.Carbon2013;55:321–7.[17]Brodie BC.On the atomic weight of graphite.Philos Trans RSoc London1859;14:249–59.[18]Staudenmaier L.Verfahren zur Darstellung der Graphitsa¨ure.Ber Dtsch Chem Ges1898;31(2):1481–7.[19]Hummers WS,Offeman RE.Preparation of graphitic oxide.JAm Chem Soc1958;80(6):1339.[20]Marcano DC,Kosynkin DV,Berlin JM,Sinitskii A,Sun Z,Slesarev A,et al.Improved synthesis of graphene oxide.ACS Nano2010;4(8):4806–14.[21]Shin Y-R,Jung S-M,Jeon I-Y,Baek J-B.The oxidationmechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture.Carbon2013;52:493–8.[22]Dreyer DR,Park S,Bielawski CW,Ruoff RS.The chemistry ofgraphene oxide.Chem Soc Rev2010;39(1):228–40.[23]Avdeev VV,Monyakina LA,Nikolskaya IV,Sorokina NE,Semenenko KN.The choice of oxidizers for graphitehydrogenosulfate chemical synthesis.Carbon1992;30(6):819–23.[24]Sorokina NE,Khaskov MA,Avdeev VV,Nikol’skaya IV.Reaction of graphite with sulfuric acid in the presence ofKMnO4.Russ J Gen Chem2005;75(2):162–8.[25]Li D,Mueller MB,Gilje S,Kaner RB,Wallace GG.Processableaqueous dispersions of graphene nanosheets.NatNanotechnol2008;3(2):101–5.[26]Chen C,Yang Q-H,Yang Y,Lv W,Wen Y,Hou P-X,et al.Self-assembled free-standing graphite oxide membrane.AdvMater2009;21(29):3007–11.[27]Kudin KN,Ozbas B,Schniepp HC,Prud’homme RK,Aksay IA,Car R.Raman spectra of graphite oxide and functionalized graphene sheets.Nano Lett2008;8(1):36–41.[28]Eigler S,Dotzer C,Hirsch A,Enzelberger M,Mueller P.Formation and decomposition of CO2intercalated graphene oxide.Chem Mater2012;24(7):1276–82.[29]McAllister MJ,Li J-L,Adamson DH,Schniepp HC,Abdala AA,Liu J,et al.Single sheet functionalized graphene by oxidation and thermal expansion of graphite.Chem Mater2007;19(18):4396–404.[30]World Health Organization(WHO).Manganese in DrinkingWater—Background Document for Development of WHOGuidelines for Drinking-Water Quality.Geneva:WHO;2011.C A R B O N64(2013)225–229229。
氧化石墨烯的制备及应用研究
氧化石墨烯的制备及应用研究石墨烯是一种具有独特性质的二维晶体材料,近年来备受关注并且被广泛研究。
氧化石墨烯则是在石墨烯基础上加入氧原子,形成一层极薄的氧化层。
这种材料在原有石墨烯的基础上增强了其化学活性,并且带有一定的半导体性质。
在本文中,我们将讨论氧化石墨烯的制备方法及其在不同应用领域的研究进展。
制备方法氧化石墨烯的制备方法主要有两种,分别是Hummers法以及改进的Hummers 法。
Hummers法是一种通过强酸氧化石墨颗粒来制备氧化石墨烯的方法。
具体步骤如下:首先将石墨颗粒与硝酸,硫酸及重铬酸混合,生成能够氧化石墨的混合液;接着将混合液在低温下反应,并不断加入氧化剂(如过硫酸钾),直到反应结束;最后过滤,洗涤,将得到的产物进行干燥即可得到氧化石墨烯。
改进的Hummers法则是在Hummers法的基础上加入了还原剂以及高温焙烧的步骤,能够得到更多的石墨烯氧化物副产物。
这种方法的优势在于可以通过简单的热处理使得产物里的氧化物逐渐脱掉,得到更单纯的氧化石墨烯。
应用研究氧化石墨烯在不同领域中具有广泛的应用前景。
下面我们将针对其在催化剂,电子器件,以及生物医学领域的应用情况进行详细阐述。
催化剂氧化石墨烯具有大量的杂原子,因此它在催化剂方面具有较好的应用表现,尤其是在金属催化剂方面。
例如,氧化石墨烯可以作为催化剂载体,将金属颗粒均匀地分散在表面上,从而提高反应效率。
此外,氧化石墨烯还可以通过酸还原法或高温焙烧的方法制备成还原氧化石墨烯,这种材料的表面具有许多不饱和键,使其在催化剂领域表现出优秀的性能。
电子器件氧化石墨烯在电子器件方面也具有广泛的应用前景。
由于氧化石墨烯的导电性一定程度上被破坏,它可以作为半导体材料被用于制备场效应晶体管(FET)等电子器件。
此外,氧化石墨烯也可以作为锂离子电池的电极材料,其高的表面积和相对较高的导电性能使其具有更好的锂离子储存性能。
生物医学氧化石墨烯在生物医学领域也显示出了良好的应用前景。
改进Hummers法制备氧化石墨烯及其表征
i mp r o v e d H u mme r s me t h o d we r e c h a r a c t e r i z e d . T h e i mp r o v e d me t h o d wi t h e a s i e r p r o c e d u r e p r o d u c e d a g r e a t e r a mo u n t o f
W a n g Lu
( S c h o o l o f P a c k a g i n g a n dMa t e i r a l E n g i n e e i r n g , H u n a nU n i v e r s i t yo f T e c h n o l o g y , Z h u z h o uH u n n4 a 1 2 0 0 7 , C h i n a)
第7 卷第2 期
2 0 1 5 年4 月
包 装
学
报
Vo 1 . 7 No . 2 Ap r i l 2 0 1 5
Pa c k a g i n gJ o u r n a l
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 4 — 7 1 0 0 . 2 0 1 5 . l a c e d b y c o n c e n r t a t e d H2 S O 4 ) : H3 P O 4 ) =9 : 1 . T h e s u r f a c e o f t h e G O p r e p a r e d b yt r a d i t i o n a l H u mme r s m e t h o d a n d
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》
《还原氧化石墨烯及其复合材料的制备与气敏性能研究》篇一一、引言近年来,氧化石墨烯和其复合材料因具有优异的电学、热学、机械及气敏性能等,被广泛应用于众多领域。
特别是其出色的气敏性能,使其在气体传感器方面展现出巨大的应用潜力。
本篇论文主要围绕还原氧化石墨烯及其复合材料的制备,以及其气敏性能进行研究,旨在通过对其性能的深入研究,为实际生产与应用提供理论依据。
二、材料制备1. 氧化石墨烯的制备氧化石墨烯的制备主要采用改进的Hummers法。
首先,对天然石墨进行预处理,然后与强氧化剂混合,经过一系列的化学反应后得到氧化石墨。
接着,通过超声剥离得到氧化石墨烯。
2. 还原氧化石墨烯及其复合材料的制备在氧化石墨烯的基础上,通过化学或热还原法得到还原氧化石墨烯。
同时,为了进一步提高其性能,我们可以将其与其它材料进行复合,如金属氧化物、聚合物等。
制备复合材料时,可以通过溶液混合、原位生长等方法实现。
三、气敏性能研究1. 检测原理还原氧化石墨烯及其复合材料的气敏性能主要基于其表面与气体分子的相互作用。
当特定气体接触材料表面时,由于气体分子的吸附和脱附,会导致材料电导率的变化,从而产生可测量的电信号。
2. 实验方法我们采用静态法和动态法对材料的气敏性能进行测试。
静态法主要通过测量材料在不同气体浓度下的电导率变化;动态法则是测量材料对气体响应的速度和稳定性。
同时,我们通过扫描电子显微镜(SEM)、X射线衍射(XRD)等手段对材料进行表征,以分析其结构和性能。
3. 结果分析实验结果显示,还原氧化石墨烯及其复合材料对多种气体均有良好的响应。
其中,某些复合材料在特定气体下的响应更为明显。
这主要归因于材料表面的化学性质和结构特点,以及气体分子与材料之间的相互作用。
此外,我们还发现材料的电导率、响应速度和稳定性等性能均受到制备方法和条件的影响。
四、性能优化与应用前景针对还原氧化石墨烯及其复合材料的气敏性能,我们提出以下优化策略:一是通过调整制备方法和条件,进一步优化材料的结构和性能;二是通过设计新的复合材料,利用不同材料之间的协同效应提高气敏性能;三是通过引入催化剂或敏感层等手段,提高材料对特定气体的响应。
改进Hummers法化学合成石墨烯及其表征
改进Hummers法化学合成石墨烯及其表征作者:洪菲, 周立群, 黄莹, 宋荷娟, 王婷, 罗辛茹, 伍珍, HONG Fei, ZHOU Li-qun,HUANG Ying, SONG He-juan, WANG Ting, LUO Xin-ru, WU Zhen作者单位:湖北大学化学化工学院,湖北 武汉,430062刊名:化学与生物工程英文刊名:Chemistry & Bioengineering年,卷(期):2012,29(5)被引用次数:1次参考文献(14条)1.Geim A K;Novoselov K S The rise of graphene[外文期刊] 2007(03)2.Novoselov K S;Geim A K;Morozov S V Electric field effect in atomically thin carbon films[外文期刊] 2004(5696)3.Chae H K;Siherio-Perez D Y;Kim J A route to high surface area,poros(l)y and inclusion of large molecules in crystals[外文期刊] 2004(6974)4.Zhang Y;Tan J W;Kim P Experimental observation of the quantum Hall effect and Berry's phase in graphene[外文期刊] 2005(7065)5.张辉;博强;崔义Ru(0001)表面石墨烯的外廷生长及其担载纳米金属催化剂的研究[期刊论文]-科学通报2009(13)6.Cai W W;Piner R D;Stadermann F J Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[外文期刊] 2008(5897)7.Mcallister M J;Lio J L;Adamsond H Single sheet functionalized graphene by oxidation and thermal expansion of graphite[外文期刊] 2007(18)8.李旭;赵卫峰;陈国华石墨烯的制备与表征研究[期刊论文]-材料导报 2008(08)9.Hummers W S;Offeman R E Preparastion of graphite oxide[外文期刊] 1958(06)10.Zhang L;Liang J J;Huang Y Sizze-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation 2009(14)11.Szabo T;Berkesi O;Dekany I Drift study of deuterium-exch-anged graphite oxide[外文期刊] 2005(15)12.He H;Klinowski J;Lerf A A new structural model for graphite oxide[外文期刊] 1998(1-2)13.Wang J;Han Z D The combustion behavior of polyacrylate ester/graphite oxide composites[外文期刊] 2006(04)14.向康;刘春华;王平华石墨烯纳米复合材料的制备与结构表征[期刊论文]-高分子材料科学与工程 2011(10)引用本文格式:洪菲.周立群.黄莹.宋荷娟.王婷.罗辛茹.伍珍.HONG Fei.ZHOU Li-qun.HUANG Ying.SONG He-juan. WANG Ting.LUO Xin-ru.WU Zhen改进Hummers法化学合成石墨烯及其表征[期刊论文]-化学与生物工程 2012(5)。
改进型Hummers法制备石墨烯及其表征
改进型Hummer s法制备石墨烯及其表征龙吟1,陶呈安1,夏林1,朱慧1,王建方1,*1国防科技大学理学院化学与生物学系,湖南长沙,410073* E-mail: wangjianfang@自2004年由Geim等人采用胶带剥离高定向石墨制得石墨烯[1]后,石墨烯的研究步入了一个快速发展的阶段,石墨烯的制备方法也层出不穷。
目前制备石墨烯的方法主要有微机械剥离法、液相或气相直接剥离法、化学气相沉积法、氧化还原法等,其中氧化还原法因其操作简单、原料易得、成本低廉等优点,是实现石墨烯规模化制备的不二选择。
本文采用改进型Hummers法[2]对天然鳞片石墨进行氧化处理得到氧化石墨,超声处理后利用水合肼进行还原得到稳定性较高的石墨烯溶液,纯化干燥后得到石墨烯粉末。
利用红外光谱、拉曼光谱、X射线衍射分析、扫描电子显微镜(SEM)以及透射电子显微镜(TEM)进行结构、谱学及形貌分析。
结果表明,氧化石墨表面形成以C=O、C-OH、-COOH 和C-O-C 等官能团形式的共价键型石墨层间化合物;水合肼还原氧化石墨比较完全,但仍有部分含氧基团残留;还原后的石墨烯呈半透明片状,边缘有自发形成的卷曲。
Fig. 1 TEM image of graphene Fig. 2 SEM image of graphene关键词:石墨烯;氧化石墨烯;改进型Hummers法;参考文献[1] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films [J].Science,2004, 306: 666-669.[2] Hummers W, Offeman R. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339.Synthesis and characterization of grapheneby the modified Hummers methodLong Yin1, Tao Cheng’an 1, Xia Lin1, Zhu Hui1, Wang Jianfang 1,*1Department of Chemistry and Biology, College of Science, National University of DefenseTechnology, 410073, ChangshaThe graphite oxide (GO) was prepared from purified natural flake graphite by the modified Hummers method. The colloidal form of graphene was subsequently prepared by ultrasonicating GO in the presence of hydrazine hydrate. The samples were characterized by FTIR, Raman, Scanning electron microscope (SEM) and Transmission electron microscope (TEM). The results suggest that the graphite is oxidized to covalent bond-type graphite intercalation compounds with various oxygen bearing functional groups (C=O, C-OH, -COOH and C-O-C). FTIR spectra show that the functional groups on graphite oxide (GO) surface are mostly removed by hydrazine hydrate. SEM image shows graphene presents translucent slide with curly edge.。
石墨烯制备过程(改进后)
石墨烯制备过程Hummer法制备氧化石墨烯:首先,将1000mL的干燥烧瓶在冰水浴中冷却5 min,然后加入100mL的分析纯的硫酸,搅拌中加入2g 鳞片石墨、1.8g硝酸铜、5.4g氯酸钠(2g鳞片石墨、1.2g硝酸钠、9±1g高锰酸钾),控制反应温度在5℃,搅拌反应2h。
然后,将烧瓶取出,置于集热式恒温加热搅拌器上,在35℃条件下搅拌反应2h。
最后,加入150mL去离子水,在用即热式恒温加热搅拌器将反应温度升高至95℃,继续搅拌1h。
随后,取出烧瓶,擦干烧瓶外部,立即加入500mL去离子水和40 mL 30%的过氧化氢,于室温下搅拌反应1h。
搅拌反应完成后,将烧瓶于超声洗涤器中超声2h。
(超声前往烧瓶中加入10 mL 30%的过氧化氢,超声过程中每半个小时应当换一次水!)超声后,将反应液在4500r\min下离心30 min,将上层清夜导入一个干燥的大烧杯中;沉淀物用去离子水和无水乙醇洗涤,用pH试溶液检验不出纸测试洗涤液的pH值,直至pH值大于6且用BaCl22-为止。
将沉淀物取出,放在烘箱中于50—60℃条件下干燥12h。
SO4Hummer法制备氧化石墨烯:称取5g鳞片石墨和100g氯化钠混合均匀然后放在玛瑙碾磨中30min,随后用水将氯化钠洗掉;将石墨放在烘箱中于60℃下烘干24h;将115mL浓硫酸和石墨固体于1000mL 烧瓶中混合,室温下搅拌24h;接下来,加入0.5g硝酸钠于烧瓶中,搅拌20min;20分钟后,加入15mL去离子水,将温度升至100℃,反应20min;20分钟后,再次加入15mL去离子水,反应30min;30min 后,加入200mL去离子水。
将反应液冷却至50℃,加入500mL冰水;15min后,加入50mL30%过氧化氢;接下来,室温下,搅拌1h;然后,将反应液在4500r/min下离心3次,用5%的盐酸洗涤2次和用去离子水洗涤3次。
最后,将氧化石墨烯在真空干燥器中干燥一周。
Hummers法制备氧化石墨烯
Hummers法制备氧化石墨烯氧化石墨烯是一种重要的石墨烯衍生物,具有丰富的官能团和良好的水溶性,在材料科学、生物医学、能源等领域具有广泛的应用前景。
制备高质量的氧化石墨烯是进一步研究和应用的基础。
Hummers法是一种常用的制备氧化石墨烯的方法,本文将探讨Hummers法制备氧化石墨烯的关键点,以期为相关研究提供参考。
Hummers法,氧化石墨烯,浓硫酸,还原性气体,过滤,干燥将天然石墨与浓硫酸混合,并在冰浴中搅拌均匀。
在30℃下保持1小时,然后升高温度至50℃并保持1小时。
在30℃下搅拌30分钟,然后过滤得到氧化石墨烯。
干燥采用真空干燥箱,温度为60℃,时间为2小时。
Hummers法制备氧化石墨烯具有制备过程简单、产率高、产品质量好等优点。
通过控制实验条件,可以调控制备的氧化石墨烯的氧化程度,从而获得具有优良性能的氧化石墨烯。
然而,该方法也存在一些不足之处,如使用浓硫酸和高温条件可能导致设备腐蚀和安全隐患。
实验过程中产生的大量废液也增加了环保压力。
为了解决这些问题,可以尝试优化实验条件,减少废弃物的产生,实现绿色合成。
通过对比实验发现,优化后的Hummers法制备氧化石墨烯的实验条件如下:石墨与浓硫酸的重量比为1:10,高锰酸钾的加入量为石墨质量的3%,反应温度控制在30℃以下,双氧水的加入量为石墨质量的5%,搅拌速度为400转/分钟,过滤使用纤维素滤纸,洗涤使用乙醇和去离子水的混合液(体积比为1:1),干燥采用真空干燥箱,温度为40℃,时间为1小时。
在优化后的实验条件下,不仅提高了氧化石墨烯的产率,还降低了设备腐蚀和安全隐患的风险,同时减少了废液的产生,有利于环保。
通过使用乙醇和去离子水的混合液进行洗涤,可以进一步脱除氧化石墨烯中的杂质,提高产品的纯度和质量。
本文探讨了Hummers法制备氧化石墨烯的关键点,并对其进行了优化。
通过控制实验条件,可以制备出高质量的氧化石墨烯,具有较高的产率和优良的性能。
hummers法制备石墨烯
主要原材料:石墨粉(粒度小于30μm的粒子。
含量大于95%,碳含量99.85%),浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80%氧化石墨(GO)的制备采用Hummers 方法[12]制备氧化石墨。
具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。
趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。
最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。
石墨烯的制备将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。
然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。
具体实验步骤:一:氧化石墨烯的制备1:一只大烧杯250Ml,里面放冰块,提供冰水浴2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,0.5g硝酸钠,3g高锰酸钾3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。
4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶5:控制温度小于20℃,搅拌反应2个小时6:升温至35℃,继续搅拌30分钟7:将水和蒸馏水配置46mL的去离子水(14摄氏度)8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟9:取出5g双氧水(30%),加入锥形瓶10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。
氧化石墨烯的制备与性能
氧化石墨烯的制备与性能1. 氧化石墨烯的概述氧化石墨烯(Graphene Oxide,GO)是一种由石墨烯经过氧化反应处理而得到的材料。
GO是具有非常广泛应用前景的新兴纳米材料,它的化学稳定性和电学性质使其在石墨烯生物学、光伏电池、半导体材料、传感器、储能材料等领域得到了广泛的关注。
下面将介绍氧化石墨烯的制备方法以及其主要性质。
2. 氧化石墨烯的制备方法目前,制备氧化石墨烯主要有两种方法:Hummers法和改良Hummers法。
(1)Hummers法Hummers法由美国人W.S. Hummers在1958年创立。
此法的核心是石墨的强酸氧化,以得到氧化石墨烯。
该方法操作简单、容易控制,但是存在强酸和钾氟化物等有毒有害物质,有一定的安全风险。
(2)改良Hummers法为了去除Hummers法中存在的安全隐患,许多研究者对其进行了改良。
改良后的方法通常会用不同的氧化剂与酸进行氧化反应,以得到氧化石墨烯。
不同的改良方法会对氧化石墨烯的质量和性质产生不同的影响。
3. 氧化石墨烯的性质(1)表面化学基团氧化石墨烯表面具有氧、羧、羟基等化学基团。
这些基团可以在改性上起到重要的作用。
(2)导电性GO为一种氧化物,其导电性质显著降低,但仍可用于柔性电子器件等应用。
(3)光学性质GO在紫外光谱和红外光谱上有明显的吸收峰。
此外,GO的吸收峰随着其结构的不同而产生不同的变化。
(4)尺寸及结构特征GO的片层结构可以通过透射电子显微镜等手段进行表征。
GO的片层结构尺寸非常小,同时其结构也很有序。
4. 氧化石墨烯的应用前景氧化石墨烯具有很广泛的应用前景,特别是与其它材料的复合应用十分值得探究。
(1)血糖传感器氧化石墨烯和纳米金的复合可以制备出高灵敏的血糖传感器,用于血糖检测。
(2)柔性电子材料由于GO的柔韧性和高强度,它可以制造出柔性电子材料,如可弯曲的屏幕等。
(3)能源领域氧化石墨烯可以用于制造超级电容器和锂离子电池等储能材料。
氧化石墨烯复合材料的制备及其性能研究
氧化石墨烯复合材料的制备及其性能研究随着科技的不断进步,新材料的研究也越来越活跃。
材料工程领域中,复合材料一直以来都是一个热门领域,因为这种材料的强度、韧性和耐腐蚀性较普通材料均有明显提高。
而最近,氧化石墨烯复合材料的研究逐渐引起了人们的关注。
本文将介绍氧化石墨烯复合材料的制备方法以及其性能研究。
一、氧化石墨烯复合材料的制备方法氧化石墨烯是目前使用最为广泛的石墨烯衍生物之一,它的制备方法主要有 Hummers 法、改进的 Hummers 法、Brodie 法、化学剥离法、还原氧化石墨烯等。
而将氧化石墨烯应用于复合材料的制备中,需要更多地考虑材料的界面结合、稳定性、均匀性等问题。
目前,氧化石墨烯复合材料的制备方法主要有四种:1. 微波-水热法: 在微波加热下,将氧化石墨烯和其他纳米材料一起经过水热反应制备而成。
2. 喷射干燥法: 将氧化石墨烯和其他纳米材料一起通过喷射干燥制备而成。
3. 溶胶-凝胶法: 将氧化石墨烯和其他纳米材料一起置于溶胶-凝胶体系中,在热处理后制备而成。
4. 化学共沉淀法: 在化学共沉淀过程中加入氧化石墨烯,通过沉淀离子制备复合材料。
二、氧化石墨烯复合材料的性能研究氧化石墨烯复合材料具有很好的机械强度、导电性和导热性,因此广泛应用于各种领域,如电子、光电、催化、生物、环保等。
1. 机械性能氧化石墨烯复合材料在机械性能方面有很好的表现。
例如,研究人员通过将氧化石墨烯与碳纳米管复合制备出的材料,能够有效地增强材料的机械强度。
同时,另外一些研究课题中,研究人员在制备复合材料时加入了更多的纳米材料,如硼氮化物纳米管和碳化硅纳米晶体等,使复合材料的力学性能得到了进一步提升。
2. 电学性能将氧化石墨烯与金属或半导体材料复合制备的材料,常因氧化石墨烯的导电性,能有效地提高材料的导电性。
研究表明,将氧化石墨烯与金属、半导体复合制备的材料,相比单一的金属或半导体材料,具有更好的导电性能。
3. 热学性能氧化石墨烯复合材料的热学性质也很显著。
氧化石墨烯制法
氧化石墨烯制法氧化石墨烯制法(Hummers方法):具体的过程如下:3.0 g石墨和1.5 g的硝酸钠在搅拌的条件下加入到70 mL的0 oC浓硫酸中。
保持强烈搅拌的条件下,9.0 g高猛酸钾缓慢加入反应体系中,在该过程反应放热需要冷却保持温度不超过20 oC。
然后,反应体系升温到35-40 oC并在此温度下保持30 min。
50 mL的蒸馏水缓慢加入,温度迅速升高到98 oC反应物搅拌15 min。
加入170 mL蒸馏水,用40 mL的双氧水(30%)终止反应。
此时,溶液由咖啡色变成亮黄色。
反应混合物抽滤,用10%的盐酸水溶液洗涤滤饼,旨在移去金属离子;随后用大量水反复冲洗除去残留的酸。
过滤得到的固体通过超声波1 h分散在600 mL蒸馏水中,得到氧化石墨烯的悬浮液。
在3000 rpm的条件下离心分离30 min,得到棕色上清液。
最后,利用透析的方法进行纯化,得到石墨氧化物GO溶液,也可以近一步冷冻干燥得到GO固体。
改进氧化石墨烯制备方法46 mL H2SO4 (98%)加入到2 g石墨粉末中(45 µm),搅拌8 h,然后缓慢加入6.0 g高猛酸钾,在该过程反应放热需要冷却保持温度不超过20 ℃。
加入蒸馏水稀释溶液,升温至100 oC,保持30 min,然后350 mL蒸馏水逐步加入,温度保持低于100 oC,加入20 mL的双氧水(30%)和300 mL蒸馏水终止反应,慢慢的溶液由咖啡色变成亮黄色。
用5% HCl和蒸馏水交替洗涤离心分离(8000 rpm,25 min),产品放到透析袋中纯化,透析袋中的产品超声2-3 h,离心分离(3000 rpm,30 min),得到剥离的氧化石墨烯。
氧化石墨烯的制备及其应用研究
氧化石墨烯的制备及其应用研究石墨烯是一种由碳原子组成的单层晶体材料,因其重要的电学、光学、热学等性质而备受关注。
氧化石墨烯是石墨烯的氧化产物,与石墨烯相比具有更广泛的应用前景。
本文将对氧化石墨烯的制备及其应用进行探讨。
一、氧化石墨烯的制备方法氧化石墨烯的制备方法主要有两种,即Hummers氧化法和改良Hummers氧化法。
Hummers氧化法是目前最常用的制备氧化石墨烯的方法之一。
该方法通过硫酸、硝酸和氯酸的混合物对天然石墨进行氧化,产生氧化石墨烯。
该方法具有简单、易于掌握等优点。
但是,Hummers氧化法存在环境污染、危险性较高以及产品质量不稳定等缺点。
改良Hummers氧化法是一种对Hummers氧化法进行改进的方法。
该方法采用硫酸、氯化亚铁和氢氧化钠对天然石墨进行氧化,生成的氧化石墨烯质量更高、成本更低。
改良Hummers氧化法具有环保、安全、简单等优点。
二、氧化石墨烯的应用1. 超级电容器超级电容器是一种高性能电能储存器,具有储能密度高、快速充放电等优点。
石墨烯氧化物作为电极材料可以提高其比电容量和循环寿命,因此在超级电容器领域具有广泛的应用前景。
2. 透明导电膜氧化石墨烯是一种透明的导电材料,可以应用于屏幕、灯光等领域的透明导电膜。
与传统的ITO透明导电膜相比,石墨烯氧化物具有更高的透明度、更好的柔性和更好的稳定性。
3. 传感器石墨烯氧化物作为传感器的敏感材料具有快速响应、高灵敏度等特点,可以用于气体探测、生物传感器等领域。
4. 锂离子电池石墨烯氧化物作为锂离子电池的阳极材料可以提高电池的荷电容量和循环寿命,因此在锂离子电池的研究中具有广泛的应用前景。
5. 光催化石墨烯氧化物具有优异的光催化性能,可以用于有机污染物的降解。
石墨烯氧化物光催化具有高效、环保等特点,因此在环境保护领域具有广泛应用前景。
三、结语随着石墨烯和氧化石墨烯的性质逐渐被认识,氧化石墨烯在能源、材料、环境等领域的应用前景越来越受到关注。
氧化石墨烯制备——Hummers改进法
氧化石墨烯制备——Hummers改进法
氧化石墨烯的制备
1准备冰浴
2加入40mlH3PO4
3加入360mlH2SO4
4 加入3g石墨
5加入18gKMnO4(缓慢加入防止过热)
6冰浴搅拌30min
750℃水浴搅拌;反应12h
8冰浴30min
9 用针筒吸取3ml 30%浓度的H2O2,缓慢注射入反应物中反应30min(由于反应时放热剧烈,所以注射时速度不能过快)10将反应产物倒入烧杯中,取适量的产品放入试管中进行第一次离心(每支试管中的产品不得超过30g),离心90min。
离心后去除上层液体
11 准备冰浴,将试管放入冰浴中,用蒸馏水洗涤下层液体,待冷却后进行第二次离心,离心60min。
并去除上层液体
12 重复上述操作进行第三次离心。
13 将除去上层液体的产品放入烧杯中,加入200ml蒸馏水进行超声,超声后离心过滤,放入烘箱烘干。
石墨烯制方法:Hummers法
改进的Hummers法制备氧化石墨改进的Hummers法制备氧化石墨:在冰水浴中装配好500 ml的反应瓶,将5 g石墨粉和5 g 硝酸钠与200 ml浓硫酸混合均匀,搅拌下加入25 g高氯酸钾,均匀后,再分数次加入15 g 高锰酸钾,控制温度不超过20 ℃,搅拌一段时间后,撤去冰浴,将反应瓶转移至电磁搅拌器上,电磁搅拌持续24 h。
之后,搅拌下缓慢加入200 ml去离子水,温度升高到98 ℃左右,搅拌20 min后,加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。
然后分次以10000 rpm转速离心分离氧化石墨悬浮液,并先后用5%HCl溶液和去离子水洗涤直到分离液pH=7。
将得到的滤饼真空干燥即得氧化石墨。
氧化石墨的制备工艺流程如图3-1所示。
注:低温反应(<20℃)中,由于温度很低,硫酸的氧化性比较低,不足以提供插层反应的驱动力,所以,石墨烯原先没有被氧化。
当加入高锰酸钾后,溶液的氧化性增强,石墨烯的边缘首先被氧化。
随着氧化过程的进行和高锰酸钾加入量的增加,石墨里的碳原子平面结构逐渐变成带有正电荷的平面大分子,边缘部分因氧化而发生卷曲。
此时,硫酸氢根离子和硫酸分子逐渐进入石墨层间,形成硫酸-石墨层间化合物。
中温反应(<40℃)时,硫酸-石墨层间化合物被深度氧化,混合液呈现褐色。
高温反应(90℃-100℃)阶段,残余的浓硫酸与水作用放出大量的热,使混合液温度上升至98℃左右,硫酸-石墨层间化合物发生水解,大量的水进入硫酸-石墨层间化合物的层间,成为层间水并排挤出硫酸,而水中的OH-与硫酸氢根离子发生离子交换作用,置换出部分硫酸氢根离子并与石墨层面上的碳原子相结合,结果使石墨层间距变大,出现石墨烯体积膨胀现象,此时溶液呈亮黄色。
在水洗和干燥过程中,氧化石墨层间的OH-与H+结合以水分子形式脱去,因此产物由金黄色逐渐变成黑色。
石墨烯制备:图3-2为氧化石墨制备石墨烯的工艺流程图。
将氧化石墨研碎,称取300 mg 分散于60 ml去离子水中,得到棕黄色的悬浮液,超声分散1 h后得到稳定的胶状悬浮液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化石墨烯的制备
1准备冰浴
2加入40mlH3PO4
3加入360mlH2SO4
4 加入3g石墨
5加入18gKMnO4(缓慢加入防止过热)
6冰浴搅拌30min
750℃水浴搅拌;反应12h
8冰浴30min
9 用针筒吸取3ml 30%浓度的H2O2,缓慢注射入反应物中反应30min(由于反应时放热剧烈,所以注射时速度不能过快)
10将反应产物倒入烧杯中,取适量的产品放入试管中进行第一次离心(每支试管中的产品不得超过30g),离心90min。
离心后去除上层液体
11 准备冰浴,将试管放入冰浴中,用蒸馏水洗涤下层液体,待冷却后进行第二次离心,离心60min。
并去除上层液体
12 重复上述操作进行第三次离心。
13 将除去上层液体的产品放入烧杯中,加入200ml蒸馏水进行超声,超声后离心过滤,放入烘箱烘干。