(北京卷)高考数学一题多解(含17年高考试题)

合集下载

2017年高考理科数学全国卷2(含答案解析)

2017年高考理科数学全国卷2(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共6页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.3i 1i +=+ ( )A .12i +B .12i -C .2i +D .2i -2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330,2330,30.x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥则2z x y =+的最小值是( )A .15-B .9-C .1D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B .3C .2D .23310.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .32B .155C .105D .3311.若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为 ( ) A .1-B .32e --C .35e -D .112.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________最小是( ) A .2-B .32-C . 43-D .1-二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX = .14.函数23()sin 4f x x x =+-([0,])2x π∈的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c 已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o90BAD ABC ∠=∠=,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.20.(12分)设O 为坐标原点,动点M 在椭圆22:12xC y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.23.[选修4—5:不等式选讲](10分)已知0a >,0b >,332a b +=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2017年普通高等学校招生全国统一考试理科数学答案解析一、选择题 1.【答案】D【解析】试题分析:由复数除法的运算法则有:3i (3i)(1i)2i 1i 2++-==-+,故选D . 名师点睛:复数的代数形式的运算主要有加、减、乘、除.除法实际上是分母实数化的过程.在做复数的除法时,要注意利用共轭复数的性质:若1z ,2z 互为共轭复数,则221212||||z z z z ⋅=⋅,通过分子、分母同乘以分母的共轭复数将分母实数化.【考点】复数的除法 2.【答案】C【解析】试题分析:由{1}AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140m -+=,3m =,{1,3}B =,故选C .名师点睛:集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 【考点】交集运算,元素与集合的关系 3.【答案】B【解析】试题分析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B .名师点睛:用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.【考点】等比数列的应用,等比数列的求和公式4.【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .名师点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.【考点】三视图,组合体的体积 5.【答案】A【解析】试题分析:画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2(6)(3)15Z =⨯-+-=-,故选A .名师点睛:求线性目标函数(0)z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.【考点】应用线性规划求最值 6.【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种.故选D .名师点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解. 【考点】排列与组合,分步乘法计数原理 7.【答案】D【解析】试题分析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D .名师点睛:合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下) 【考点】合情推理 8.【答案】B【解析】试题分析:阅读程序框图,初始化数值1a =-,1K =,0S =. 循环结果执行如下:第一次:011S =-=-,1a =,2K =; 第二次:121S =-+=,1a =-,3K =; 第三次:132S =-=-,1a =,4K =;第四次:242S =-+=,1a =-,5K =; 第五次:253S =-=-,1a =,6K =; 第六次:363S =-+=,1a =-,7K =. 结束循环,输出3S =.故选B .名师点睛:识别、运行程序框图和完善程序框图的思路:①要明确程序框图的顺序结构、条件结构和循环结构;②要识别、运行程序框图,理解框图所解决的实际问题;③按照题目的要求完成解答并验证. 【考点】程序框图 9.【答案】A【解析】试题分析:由几何关系可得,双曲线22221x y a b -=(00)a b >>,的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线距离为d ==则点(2,0)到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e =.故选A . 名师点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【考点】双曲线的离心率,直线与圆的位置关系,点到直线的距离公式 10.【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1BC D ∠,1=2BC 60=3BD,11=C D AB易得22211=C D BD BC +,因此111cos =5BC BC D C D ∠,故选C .名师点睛:平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π(0]2,,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【考点】异面直线所成的角,余弦定理,补形的应用 11.【答案】A 【解析】试题分析:由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)ex f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A .名师点睛:(1)可导函数()y f x =在点0x 处取得极值的充要条件是0()0f x '=,且在0x 左侧与右侧()f x '的符号不相同;(2)若()f x 在()a b ,内有极值,那么()f x 在()a b ,内绝不是单调函数,即在某区间上单调增或减的函数没有极值.【考点】函数的极值,函数的单调性 12.【答案】B【解析】试题分析:如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22233()22)22(22PA PB PC x y y x y ⋅+=-=+--≥,当(0P 时,所求最小值为32-,故选B .【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【考点】平面向量的坐标运算,函数的最值二、填空题 13.【答案】1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()C 1n kkk n p X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.【考点】二项分布的期望与方差14.【答案】1【解析】试题分析:化简三角函数的解析式,则22231()1cos cos(cos144f x x x x x x=--=-+=-+由π[0,]2x∈可得cos[0,1]x∈,当cos x=()f x取得最大值1.名师点睛:本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合、密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面进行分析.【考点】三角变换,复合型二次函数的最值15.【答案】21nn+【解析】试题分析:设等差数列的首项为1a,公差为d,由题意有113,4102432,adda+⨯=+=⎧⎪⎨⎪⎩解得11,1,da=⎧⎨=⎩数列的前n项和1(1)(1)(1)11222nn n n n nSnn da n--+++⨯==⨯=,裂项可得12112()(1)1kS k k k k==-++,所以1111111122[(1)()()]2(1)223111nk knS n n n n==-+-++-=-=+++∑.名师点睛:等差数列的通项公式及前n项和公式,共涉及五个量1a,n a,d,n,n S,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而1a和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【考点】等差数列前n项和公式,裂项求和.16.【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与x轴交于点F',作MB l⊥与点B,NA l⊥与点A,由抛物线的解析式可得准线方程为2x=-,则2AN=,4FF'=在直角梯形ANFF'中,中位线32AN FFBM'+==,由抛物线的定义有:3MF MB==,结合题意,有3MN MF==,故336FN FM NM=+=+=.【考点】抛物线的定义,梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题17.【答案】(1)15cos17B=;(2)2b=.【解析】试题分析:(1)利用三角形内角和定理可知A B C+=,再利用诱导公式化简sin()A C+,利用降幂公式化简21cossin22B B-=,结合22sin cos1B B+=即可求出cos B;(2)利用(1)中结论15cos17B=,结合三角形面积公式可求出ac的值,根据6a c+=,进而利用余弦定理可求出b的值.试题解析:(1)由题设及πA B C ++=,可得2sin 8sin 2BB =,故sin 4(1cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217ABC S ac B ac =△.又=2ABC S △,则172ac =.由余弦定理及6a c +=得:222217152cos ()2(1cos )362(1)4217b ac ac B a c ac B =+-=+-+=-⨯⨯+=,所以2b =.【考点】余弦定理,三角形面积公式【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正余弦定理、三角形面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意a c +,ac ,22a c +三者之间的关系,这样的题目小而活,备受命题者的青睐. 18.【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关; (3)52.35 kg .【解析】试题分析:(1)利用相互独立事件概率公式即可求得事件A 的概率估计值; (2)写出列联表计算的2K 观测值,即可确定有99%的把握认为箱产量与养殖方法有关; (3)结合频率分布直方图估计中位数为52.35 kg .试题解析:(1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50 kg 的频率为0.0120.0140.0240.0340.0()4050.62⨯++++=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为0.0680.0460.0100.00850.6)6(+++=⨯, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值22200(62663438)15.70510010096104K ⨯⨯-⨯=⨯⨯⨯≈. 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为0.0040.0200.04450(.)340.5++⨯=<,箱产量低于55 kg 的直方图面积为0.0040.0200.0440.0685(0.680.)5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.38(kg)0.068-+≈.名师点睛:(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大. (2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.【考点】独立事件概率公式,独立性检验原理,频率分布直方图估计中位数 19.【答案】(1)证明:取PA 的中点F ,连结EF ,BF . 因为E 是PD 的中点,所以EF AD ∥,1=2EF AD ,由=90BAD ABC =∠∠得BC AD ∥, 又1=2BC AD ,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥. 又BF ⊂平面PAD ,BCE ∉平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC ,(1,0,0)AB , 设(,,)M x y z ,则(1,,)BM x y z =-,(,1,PM x y z =-,因为BM 与底面ABCD 所成的角为45°,而=(0,0,1)n 是底面ABCD 的法向量, 所以cos ,sin 45BM 〈〉=n2=,即222(1)0x y z -+-=.① 又M 在棱PC 上,设PM PC λ=,则x λ=,1y =,z =.②由①②解得,11,x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),11,x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以(1M -,从而(1AM =. 设000(,,)x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧++=⎪⎨=⎪⎩所以可取(0,m .于是cos ,||||⋅〈〉==m n m n m n ,因此二面角M AB D --. 【解析】试题分析:(1)取PA 的中点F ,连结EF ,BF ,由题意证得CE BF ∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:(0,m ,(0,0,1)n ,然后利用空间向量的相关结论可求得二面角M AB D --. 名师点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,〈〉m n 互补或相等,故有|cos ,|||o |s |c θ⋅〈〉==m nm n m n .求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【考点】判定线面平行,面面角的向量求法20.【答案】(1)设(,)P x y =,00(,)M x y ,则0(,0)N x ,0(,)NP x x y -,0(0,)NM y .由2NP NM =得0x x =,0y y . 因为00(,)M x y 在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F =-.设(3,)Q t =-,(,)P m n =,则,(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】试题分析:(1)设出点P 、M 的坐标,利用2NP NM =得到点P 与点M 坐标之间的关系即可求得轨迹方程为222xy +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得0OQ PF ⋅=,即OQ PF ⊥,据此即可得出结论. 名师点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系(,)0F x y ==. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点(,)P x y =依赖于另一动点00(,)Q x y 的变化而运动,常利用代入法求动点(,)P x y =的轨迹方程. 【考点】轨迹方程的求解,直线过定点问题 21.【答案】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)=0g ,()0g x ≥,故(1)=0g ',而1()g x a x'=-,(1)1g a '=-,得1a -. 若1a -,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递咸; 当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥. 综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--.设()22ln h x x x =--,则1()2'x h x=-.当1(0,)2x ∈ 时,()0h'x <;当1(,)2x ∈+∞时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又2(e )0h ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(1)e 0,-∈,1(e )0f '-≠得120()(e )e f x f -->=. 所以220e ()2f x --<<.【解析】试题分析:(1)根据题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(2)结合(1)的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式成立.名师点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【考点】利用导数研究函数的单调性,利用导数研究函数的极值 22.【答案】(1)()()22240x y x -+=≠ (2)2【解析】试题分析:(1)设出P 的极坐标,然后利用题意得出极坐标方程,最后转化为直角坐标方程;(2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得OAB △面积的最大值.理科数学试卷 第21页(共22页) 理科数学试卷 第22页(共22页) 试题解析:(1)设P 的极坐标为()()0ρθρ,>,M 的极坐标为11()()0ρθρ,>. 由题设知OP ρ=,14cos OM ρθ==. 由16OM OP ⋅=得2C 的极坐标方程为0)4cos (ρθρ=>,因此2C 的直角坐标方程为22(240)()x y x -+=≠.(2)设点B 的极坐标为()(0)B B ραρ,>,由题设知2OA =,4cos B ρα=,于是OAB △的面积1ππsin 4cos sin 2sin 22233B S OA AOB ρααα⎛⎫⎛⎫=⋅⋅∠=⋅-=-+ ⎪ ⎪⎝⎭⎝⎭ 当π12α=-时,S取得最大值2+OAB △面积的最大值为2.名师点睛:本题考查了极坐标方程的求法及应用。

2017年北京市高考数学试卷(理科)(附详细答案)

2017年北京市高考数学试卷(理科)(附详细答案)

2017年北京市高考数学试卷〔理科〕一、选择题.〔每题5分〕1.〔5分〕假设集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=〔〕A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3} 2.〔5分〕假设复数〔1﹣i〕〔a+i〕在复平面内对应的点在第二象限,则实数a 的取值范围是〔〕A.〔﹣∞,1〕B.〔﹣∞,﹣1〕C.〔1,+∞〕D.〔﹣1,+∞〕3.〔5分〕执行如下图的程序框图,输出的S值为〔〕A.2 B.C.D.4.〔5分〕假设x,y满足,则x+2y的最大值为〔〕A.1 B.3 C.5 D.95.〔5分〕已知函数f〔x〕=3x﹣〔〕x,则f〔x〕〔〕A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.〔5分〕设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.〔5分〕某四棱锥的三视图如下图,则该四棱锥的最长棱的长度为〔〕A.3 B.2 C.2 D.28.〔5分〕根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则以下各数中与最接近的是〔〕〔参考数据:lg3≈0.48〕A.1033 B.1053 C.1073 D.1093二、填空题〔每题5分〕9.〔5分〕假设双曲线x2﹣=1的离心率为,则实数m=.10.〔5分〕假设等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=.11.〔5分〕在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为〔1,0〕,则|AP|的最小值为.12.〔5分〕在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,假设sinα=,则cos〔α﹣β〕=.13.〔5分〕能够说明“设a,b,c是任意实数.假设a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.〔5分〕三名工人加工同一种零件,他们在一天中的工作情况如下图,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.〔1〕记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.〔2〕记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.〔13分〕在△ABC中,∠A=60°,c=a.〔1〕求sinC的值;〔2〕假设a=7,求△ABC的面积.16.〔14分〕如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.〔1〕求证:M为PB的中点;〔2〕求二面角B﹣PD﹣A的大小;〔3〕求直线MC与平面BDP所成角的正弦值.17.〔13分〕为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.〔1〕从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;〔2〕从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E〔ξ〕;〔3〕试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.〔只需写出结论〕18.〔14分〕已知抛物线C:y2=2px过点P〔1,1〕.过点〔0,〕作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.〔1〕求抛物线C的方程,并求其焦点坐标和准线方程;〔2〕求证:A为线段BM的中点.19.〔13分〕已知函数f〔x〕=e x cosx﹣x.〔1〕求曲线y=f〔x〕在点〔0,f〔0〕〕处的切线方程;〔2〕求函数f〔x〕在区间[0,]上的最大值和最小值.20.〔13分〕设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}〔n=1,2,3,…〕,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.〔1〕假设a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;〔2〕证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.2017年北京市高考数学试卷〔理科〕参考答案与试题解析一、选择题.〔每题5分〕1.〔5分〕假设集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=〔〕A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.【点评】此题考查的知识点集合的交集运算,难度不大,属于基础题.2.〔5分〕假设复数〔1﹣i〕〔a+i〕在复平面内对应的点在第二象限,则实数a 的取值范围是〔〕A.〔﹣∞,1〕B.〔﹣∞,﹣1〕C.〔1,+∞〕D.〔﹣1,+∞〕【分析】复数〔1﹣i〕〔a+i〕=a+1+〔1﹣a〕i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数〔1﹣i〕〔a+i〕=a+1+〔1﹣a〕i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是〔﹣∞,﹣1〕.故选:B.【点评】此题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.〔5分〕执行如下图的程序框图,输出的S值为〔〕A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】此题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.〔5分〕假设x,y满足,则x+2y的最大值为〔〕A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A〔3,3〕,目标函数的最大值为:3+2×3=9.故选:D.【点评】此题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.〔5分〕已知函数f〔x〕=3x﹣〔〕x,则f〔x〕〔〕A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f〔﹣x〕=﹣f〔x〕,即函数f〔x〕为奇函数,由函数y=3x为增函数,y=〔〕x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f〔x〕=3x﹣〔〕x=3x﹣3﹣x,∴f〔﹣x〕=3﹣x﹣3x=﹣f〔x〕,即函数f〔x〕为奇函数,又由函数y=3x为增函数,y=〔〕x为减函数,故函数f〔x〕=3x﹣〔〕x为增函数,故选:A.【点评】此题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.〔5分〕设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】此题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.〔5分〕某四棱锥的三视图如下图,则该四棱锥的最长棱的长度为〔〕A.3 B.2 C.2 D.2【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA===2,故选:B.【点评】此题考查了三视图的问题,关键画出物体的直观图,属于基础题.8.〔5分〕根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则以下各数中与最接近的是〔〕〔参考数据:lg3≈0.48〕A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈10,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈10,∴M≈3361≈〔10〕361≈10173,∴≈=1093,故选:D.【点评】此题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题〔每题5分〕9.〔5分〕假设双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1〔m>0〕的离心率为,可得:,解得m=2.故答案为:2.【点评】此题考查双曲线的简单性质,考查计算能力.10.〔5分〕假设等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【点评】此题考查等差数列以及等比数列的通项公式的应用,考查计算能力.11.〔5分〕在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为〔1,0〕,则|AP|的最小值为1.【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:〔x﹣1〕2+〔y﹣2〕2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.【点评】此题主要考查曲线的极坐标方程和圆外一点到圆上一点的距离的最值,难度不大.12.〔5分〕在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,假设sinα=,则cos〔α﹣β〕=﹣.【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ=,cosα=﹣cosβ,∴cos〔α﹣β〕=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣方法二:∵sinα=,当α在第一象限时,cosα=,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα=,cosβ=﹣cosα=﹣,∴cos〔α﹣β〕=cosαcosβ+sinαsinβ=﹣×+×=﹣:∵sinα=,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=,∴cos〔α﹣β〕=cosαcosβ+sinαsinβ=﹣×+×=﹣综上所述cos〔α﹣β〕=﹣,故答案为:﹣【点评】此题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题13.〔5分〕能够说明“设a,b,c是任意实数.假设a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.假设a>b>c,则a+b>c”是假命题,则假设a >b>c,则a+b≤c”是真命题,举例即可,此题答案不唯一【解答】解:设a,b,c是任意实数.假设a>b>c,则a+b>c”是假命题,则假设a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,〔答案不唯一〕,故答案为:﹣1,﹣2,﹣3【点评】此题考查了命题的真假,举例说明即可,属于基础题.14.〔5分〕三名工人加工同一种零件,他们在一天中的工作情况如下图,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.〔1〕记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1.〔2〕记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.【分析】〔1〕假设Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的纵坐标;进而得到答案.〔2〕假设p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.【解答】解:〔1〕假设Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,〔2〕假设p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【点评】此题考查的知识点是函数的图象,分析出Q i和p i的几何意义,是解答的关键.三、解答题15.〔13分〕在△ABC中,∠A=60°,c=a.〔1〕求sinC的值;〔2〕假设a=7,求△ABC的面积.【分析】〔1〕根据正弦定理即可求出答案,〔2〕根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.【解答】解:〔1〕∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,〔2〕a=7,则c=3,∴C<A,由〔1〕可得cosC=,∴sinB=sin〔A+C〕=sinAcosC+cosAsinC=×+×=,∴S=acsinB=×7×3×=6.△ABC【点评】此题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题16.〔14分〕如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.〔1〕求证:M为PB的中点;〔2〕求二面角B﹣PD﹣A的大小;〔3〕求直线MC与平面BDP所成角的正弦值.【分析】〔1〕设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;〔2〕取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;〔3〕求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】〔1〕证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;〔2〕解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D〔2,0,0〕,A〔﹣2,0,0〕,P〔0,0,〕,C〔2,4,0〕,B〔﹣2,4,0〕,M〔﹣1,2,〕,,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;〔3〕解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.【点评】此题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.17.〔13分〕为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.〔1〕从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;〔2〕从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E〔ξ〕;〔3〕试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.〔只需写出结论〕【分析】〔1〕由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.〔2〕由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E〔ξ〕.〔3〕由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【解答】解:〔1〕由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p==.〔2〕由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,P〔ξ=0〕=,P〔ξ=1〕==,P〔ξ=2〕==,∴ξ的分布列如下:ξ012PE〔ξ〕==1.〔3〕由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【点评】此题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.18.〔14分〕已知抛物线C:y2=2px过点P〔1,1〕.过点〔0,〕作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.〔1〕求抛物线C的方程,并求其焦点坐标和准线方程;〔2〕求证:A为线段BM的中点.【分析】〔1〕根据抛物线过点P〔1,1〕.代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;〔2〕设过点〔0,〕的直线方程为y=kx+,M〔x1,y1〕,N〔x2,y2〕,根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:〔1〕∵y2=2px过点P〔1,1〕,∴1=2p,解得p=,∴y2=x,∴焦点坐标为〔,0〕,准线为x=﹣,〔2〕证明:设过点〔0,〕的直线方程为y=kx+,M〔x1,y1〕,N〔x2,y2〕,∴直线OP为y=x,直线ON为:y=x,由题意知A〔x1,x1〕,B〔x1,〕,由,可得k2x2+〔k﹣1〕x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+〔1﹣k〕•2x1=2x1,∴A为线段BM的中点.【点评】此题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.19.〔13分〕已知函数f〔x〕=e x cosx﹣x.〔1〕求曲线y=f〔x〕在点〔0,f〔0〕〕处的切线方程;〔2〕求函数f〔x〕在区间[0,]上的最大值和最小值.【分析】〔1〕求出f〔x〕的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;〔2〕求出f〔x〕的导数,再令g〔x〕=f′〔x〕,求出g〔x〕的导数,可得g〔x〕在区间[0,]的单调性,即可得到f〔x〕的单调性,进而得到f〔x〕的最值.【解答】解:〔1〕函数f〔x〕=e x cosx﹣x的导数为f′〔x〕=e x〔cosx﹣sinx〕﹣1,可得曲线y=f〔x〕在点〔0,f〔0〕〕处的切线斜率为k=e0〔cos0﹣sin0〕﹣1=0,切点为〔0,e0cos0﹣0〕,即为〔0,1〕,曲线y=f〔x〕在点〔0,f〔0〕〕处的切线方程为y=1;〔2〕函数f〔x〕=e x cosx﹣x的导数为f′〔x〕=e x〔cosx﹣sinx〕﹣1,令g〔x〕=e x〔cosx﹣sinx〕﹣1,则g〔x〕的导数为g′〔x〕=e x〔cosx﹣sinx﹣sinx﹣cosx〕=﹣2e x•sinx,当x∈[0,],可得g′〔x〕=﹣2e x•sinx≤0,即有g〔x〕在[0,]递减,可得g〔x〕≤g〔0〕=0,则f〔x〕在[0,]递减,即有函数f〔x〕在区间[0,]上的最大值为f〔0〕=e0cos0﹣0=1;最小值为f〔〕=e cos﹣=﹣.【点评】此题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.20.〔13分〕设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}〔n=1,2,3,…〕,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.〔1〕假设a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;〔2〕证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【分析】〔1〕分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由〔b k﹣na k〕﹣〔b1﹣na1〕≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣n,c n﹣c n=﹣1对∀n∈N*均成立;+1〔2〕由b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:〔1〕a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则〔b k﹣na k〕﹣〔b1﹣na1〕,=[〔2k﹣1〕﹣nk]﹣1+n,=〔2k﹣2〕﹣n〔k﹣1〕,=〔k﹣1〕〔2﹣n〕,由k﹣1>0,且2﹣n≤0,则〔b k﹣na k〕﹣〔b1﹣na1〕≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;〔2〕证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,〔i∈N*,且1≤i≤n〕,则b i﹣a i n=[b1+〔i﹣1〕d1]﹣[a1+〔i﹣1〕d2]×n,=〔b1﹣a1n〕+〔i﹣1〕〔d2﹣d1×n〕,下面分d1=0,d1>0,d1<0三种情况进行讨论,①假设d1=0,则b i﹣a i n═〔b1﹣a1n〕+〔i﹣1〕d2,当假设d2≤0,则〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣n〕d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②假设d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,〔b i﹣a i n〕﹣〔b1﹣a1n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i≤n〕,因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③假设d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,〔b i﹣a i n〕﹣〔b n﹣a n n〕=〔i﹣1〕〔﹣d1n+d2〕≤0,〔i∈N*,1≤i ≤n〕,因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+〔d1﹣a1+d2〕+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,假设C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;假设C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】此题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.。

全国I卷2018年高考数学一题多解含17年高考试

全国I卷2018年高考数学一题多解含17年高考试

(全国I 卷)2018年高考数学一题多解(含17年高考试题)1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【知识点】函数的奇偶性;单调性;抽象函数;解不等式。

【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。

【解析】解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得13x ≤≤,故选D 。

解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。

2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<【答案】D【知识点】比较大小;对数的运算;对数函数的单调性;【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。

属于中档题。

【解析】解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55t z t ==, 要比较2x 与3y ,只需比较1lg 22,1lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<,故23x y >.要比较2x 与5z ,只需比较1lg 22,1lg 55,即比较5lg 2与2lg 5,即比较lg32,lg 25,易知lg 25lg32<,故52z x >.所以325y x z <<. 解析二:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =,2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55t z t ==, ()()1111lg 2lg33lg 22lg3lg8lg902366-=-=-<,所以11lg 2lg 323<即23x y >. ()()1111lg5lg 22lg55lg 2lg32lg 250521010-=-=->,所以11lg 5lg 252<即52z x >. 所以325y x z <<.3、【2017年高考数学全国I 理第18题】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【答案】见解析【知识点】线面垂直的判定;面面垂直的判定;求二面角。

2023年全国统一高考数学试卷(北京卷)含答案

2023年全国统一高考数学试卷(北京卷)含答案

2023年普通高等学校招生全国统一考试(北京卷)数学本试卷满分150分.考试时间120分钟.一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{20},{10}M x x N x x ∣∣,则M N ()A.{21}x x ∣B.{21}x x ∣C.{2}xx ∣ D.{1}xx ∣2.在复平面内,复数z 对应的点的坐标是( ,则z 的共轭复数z ()A.1B.1C.1D.13.已知向量a b,满足(2,3),(2,1)a b a b rrrr,则22||||a b rr()A.2B.1C.0D.14.下列函数中,在区间(0,) 上单调递增的是()A.()ln f x x B.1()2xf xC.1()f x xD.|1|()3x f x 5.512x x的展开式中x 的系数为().A.80B.40C.40D.806.已知抛物线2:8C y x 的焦点为F ,点M 在C 上.若M 到直线3x 的距离为5,则||MF ()A.7B.6C.5D.47.在ABC V 中,()(sin sin )(sin sin )a c A C b A B ,则C ()A.π6B.π3C.2π3 D.5π68.若0xy ,则“0x y ”是“2y xx y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为()A.102mB.112mC.117mD.125m10.已知数列 n a 满足 31166(1,2,3,)4n n a a n,则()A.当13a 时, n a 为递减数列,且存在常数0M ≤,使得n a M 恒成立B.当15a 时, n a 为递增数列,且存在常数6M ,使得n a M 恒成立C.当17a 时, n a 为递减数列,且存在常数6M ,使得n a M 恒成立D.当19a 时, n a 为递增数列,且存在常数0M ,使得n a M 恒成立二、填空题:本题共5小题,每小题5分,共25分.11.已知函数2()4log xf x x ,则12f____________.12.已知双曲线C 的焦点为(2,0) 和(2,0),离心率为,则C 的方程为____________.13.已知命题:p 若, 为第一象限角,且 ,则tan tan .能说明p 为假命题的一组, 的值为 __________, _________.14.我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列 n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ,则7a ___________;数列 n a 所有项的和为____________.15.设0a,函数2,,(),1,.x x a f x a x a x a ,给出下列四个结论:①()f x 在区间(1,)a 上单调递减;②当1a 时,()f x 存在最大值;③设 111222,,,M x f x xa N x f x x a ,则||1MN ;④设 333444,,,P x f x xa Q x f x x a .若||PQ 存在最小值,则a 的取值范围是10,2.其中所有正确结论的序号是____________.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.如图,在三棱锥 P ABC 中,PA 平面ABC ,1PA AB BC PC,.(1)求证:BC 平面PAB ;(2)求二面角A PC B 的大小.17.设函数π()sin cos cos sin 0,||2f x x x.(1)若(0)2f,求 的值.(2)已知()f x 在区间π2π,33上单调递增,2π13f,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求, 的值.条件①:π3f;条件②:π13f;条件③:()f x 在区间ππ,23上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天-++0---++0+0--+-+00+第21天到第40天0++0---++0+0+---+0-+用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)19.已知椭圆2222:1(0)x y E a b a b 的离心率为3,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC .(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .20.设函数3()e ax b f x x x ,曲线()y f x 在点(1,(1))f 处的切线方程为1y x .(1)求,a b 的值;(2)设函数()()g x f x ,求()g x 的单调区间;(3)求()f x 的极值点个数.21.已知数列 ,n n a b 的项数均为m (2)m ,且,{1,2,,},n n a b m L ,n n a b 的前n 项和分别为,n n A B ,并规定000A B .对于 0,1,2,,k m L ,定义max ,{0,1,2,,}k i k r i B A i m L ∣,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ,求0123,,,r r r r 的值;(2)若11a b ,且112,1,2,,1,j j j r r r j m L ,求n r ;(3)证明:存在 ,,,0,1,2,,p q s t m L ,满足,,p q s t 使得t p sq A B A B .参考答案【1题答案】A 【2题答案】D 【3题答案】B 【4题答案】C 【5题答案】D 【6题答案】D 【7题答案】B 【8题答案】C 【9题答案】C 【10题答案】B 【11题答案】1【12题答案】22122x y 【13题答案】9π4π3【14题答案】48384【15题答案】②③【16题答案】(1)证明略(2)π3【17题答案】(1)π3.(2)条件①不能使函数()f x 存在;条件②或条件③可解得1 ,π6.【18题答案】(1)0.4(2)0.168(3)不变【19题答案】(1)22194x y (2)证明略【20题答案】(1)1,1a b(2)略(3)3个【21题答案】(1)00r ,11r ,22r ,33r (2),n r n n N (3)证明略。

函数零点问题-学会解题之高三数学多题一解【原卷版】

函数零点问题-学会解题之高三数学多题一解【原卷版】

函数零点问题【高考地位】函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点.其经常与函数的图像、性质等知识交汇命题,多以选择、填空题的形式考查.类型一 零点或零点存在区间的确定万能模板 内 容使用场景 一般函数类型解题模板第一步 直接根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0; 第二步 若其乘积小于0,则该区间即为存在的零点区间;否则排除其选项即可.例1 函数()43xf x e x =+-的零点所在的区间为( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭ C .13,24⎛⎫ ⎪⎝⎭ D .3,14⎛⎫ ⎪⎝⎭【变式演练1】(2023·全国·高三专题练习)在下列区间中,函数()23xf x x =--的零点所在的区间为( )A .)(01,B .()12,C .()23,D .()34,【变式演练2】(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【变式演练3】(2022·全国·高一课时练习)已知函数()226xf x x =+-的零点为0x ,不等式06x x ->的最小整数解为k ,则k =( ) A .8B .7C .5D .6类型二 零点的个数的确定方法1:定义法万能模板 内 容使用场景一般函数类型解题模板 第一步 判断函数的单调性;第二步 根据零点的存在性定理验证区间端点处的函数值的乘积是否小于0;若其乘积小于0,则该区间即为存在唯一的零点区间或者直接运用方程的思想计算出其 零点;第三步 得出结论.例2.函数x e x f x3)(+=的零点个数是( ) A .0 B .1 C .2 D .3【变式演练4】(2022·重庆·三模)已知函数()21,02log ,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,则函数()()12g x f x =-的零点个数为( )A .0个B .1个C .2个D .3个【变式演练5】(2023·全国·高三专题练习)已知函数|2|1()2x f x -=,()g x 是定义在R 上的奇函数,且满足(2)(2)g x g x +=-,当[0,2]x ∈时,2()log (1)g x x =+.则当[0,2022]x ∈时,方程()()f x g x =实根的个数为_______.【变式演练6】(2022·北京·高三开学考试)已知函数()x af x a x a+=--,给出下列四个结论: ①存在a ,使得函数()f x 可能没有零点; ②存在a ,使得函数()f x 恰好有1个零点; ③存在a ,使得函数()f x 恰好有2个零点; ④存在a ,使得函数()f x 恰好有3个零点. 其中所有正确结论的序号是______.方法2:数形结合法万能模板 内 容使用场景 一般函数类型解题模板第一步 函数()g x 有零点问题转化为方程()()f x m x =有根的问题; 第二步 在同一直角坐标系中,分别画出函数()y f x =和()y m x =的图像;第三步 观察并判断函数()y f x =和()y m x =的图像的交点个数第四步 由()y f x =和()y m x =图像的交点个数等于函数()0g x =的零点即可得出结论.例3. 方程3()|log |3x x =的解的个数是 ( ) A .3 B .2 C .1 D .0【变式演练7】(2023·全国·高三专题练习)已知函数()f x 是定义在R 上的偶函数,满足()()1f x f x +=-,当[]0,1x ∈时,()πcos 2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5【变式演练8】(2022·河北省曲阳县第一高级中学高三阶段练习)(多选)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()()()1g x f f x =+,则下列说法正确的是( ) A .当0a >时,()g x 有4个零点 B .当0a >时,()g x 有5个零点 C .当0a <时,()g x 有1个零点D .当0a <时,()g x 有2个零点【变式演练9】(2022·湖南师大附中三模)(已知)已知函数()[)[)1,0,1,21,1,2,3x x f x x x ⎧-∈⎪=⎨-∈⎪-⎩对定义域内任意x ,都有()(2)f x f x =-,若函数()()=-g x f x k 在[0,+∞)上的零点从小到大恰好构成一个等差数列,则k 的可能取值为( ) A .0B .1C 2D 21【高考再现】1.【2021年北京市高考数学试题】已知函数,给出下列四个结论: ①若,则有两个零点; ①,使得有一个零点; ①,使得有三个零点; ①,使得有三个零点. 以上正确结论得序号是_______.2.【2021年天津高考数学试题】设,函数,若在区间()lg 2f x x kx =--0k =()f x 0k ∃<()f x 0k ∃<()f x 0k ∃>()f x a ∈R 22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩()f x (0,)+∞内恰有6个零点,则a 的取值范围是( ) A .B .C .D .3.【2020年高考天津卷9】已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞4.【2020年高考上海卷11】已知a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件,①对任意0x R ∈,0()f x 的值为0x 或02x ;②关于x 的方程()f x a =无实数解;则a 的取值范围为 .5. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}6.【2018年全国普通高等学校招生统一考试数学(浙江卷)】已知λ①R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________①7.【2017江苏】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .8.【2018年全国普通高等学校招生统一考试理科数学(天津卷)】已知a >0,函数f(x)={x 2+2ax +a, x ≤0,−x 2+2ax −2a,x >0.若关于x 的方程f(x)=ax 恰有2个互异的实数解,则a 的取值范围是______________.【反馈练习】1.函数的图象与函数的图象交点横坐标所在的区间可能为( )95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭()()=x f x e ()2ln g x x =-A .B .C .D .【来源】重庆市南开中学2022届高三上学期7月考试数学试题2.(2022·河南·高三阶段练习(文))已知直线l 与曲线ln (01)y x x =<<相切于点00(,)M x y ,若OM l ⊥,则0x 所在的取值区间是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭3.(2022·重庆南开中学高三阶段练习)已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,44.(2023·全国·高三专题练习)已知()=ln f x x ,()e x g x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭5.(2023·全国·高三专题练习)正实数,,a b c 满足422,33,log 4ab a bc c -+=+=+=,则实数,,a b c 之间的大小关系为( ) A .b a c <<B .a b c <<C .a c d <<D .b c a <<6.(2022·江西·南昌二中高三开学考试(理))已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1x g x x =++的一个零点,132log 5c =,则( )A .a c b <<B .a b c <<C .b c a <<D .a c b <<或c b a <<7.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .68.(2022·甘肃·兰州市第五十五中学高三开学考试(文))定义域在R 上的奇函数()f x ,当0x ≥时,12log (1),01()13,1x x f x x x +≤<⎧⎪=⎨⎪--≥⎩,则关于x 的函数()()12g x f x =-的所有零点的和是( )A 21B .122C .122-D .129.(2022·河南·高三开学考试(文))已知定义域为R 的偶函数()f x 的图像是连续不间断的曲线,且()0,1()1,2()2,3()3,4(2)()(1)f x f x f ++=,对任意的1x ,20[]2,x -∈,12x x ≠,()()12120f x f x x x ->-恒成立,则()f x 在区间[]100,100-上的零点个数为( ) A .100B .102C .200D .20210.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( ) A .5或6个B .3或9个C .9或10个D .5或9个11.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()e 2x y f x -=--B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+12.(2022·陕西·西安铁一中滨河高级中学高三阶段练习(理))函数()222,0,23,0lnx x x x f x x x x ⎧-+>=⎨--≤⎩的零点个数为( ) A .0B .1C .2D .313.(2022·全国·模拟预测(文))已知函数()2,1,121,11,,1,1xx x f x x x x x x ⎧<-⎪+⎪=--≤≤⎨⎪⎪>-⎩方程()()()()2220f x a f x a a R -++=∈的不等实根个数不可能是( ) A .2个B .3个C .4个D .6个14.(2023·全国·高三专题练习)(多选)已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A .120x x +>B .120x x <C .12ln 0xe x +=D .12121x x x x -+<15.(2022·福建·上杭一中高三阶段练习)(多选)已知函数()1,0ln ,0kx x f x x x +≤⎧=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数判断正确的是( ) A .当0k <时,有1个零点; B .当0k >时,有4个零点; C .无论k 取何值,均有2个零点;D .无论k 取何值,均有4个零点;16.(2022·全国·高二专题练习)设定义域为(0,)+∞的单调函数()f x ,对任意的,()0x ∈+∞,都有[]3()log 4f f x x -=,若0x 是方程()2()3f x f x '-=的一个解,且*0,(1),N x a a a ∈+∈,则实数a =_____. 17.(2022·重庆·高三阶段练习)函数||21()2x f x x ⎛⎫=- ⎪⎝⎭的零点个数是______.18.(2021·福建·福州市第十中学高三开学考试)已知函数24,1()lg 1,1x x x f x x x ⎧-≥⎪=⎨-<⎪⎩,则((9))f f -=__________,()f x 的零点个数为__________个.19.已知函数有两个不同的零点,则实数k 的取值范围是_________. 【来源】河北省衡水市饶阳中学2021届高三5月数学精编试题20.【陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试文科】已知函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-+->⎪⎩. (1)求斜率为12的曲线()y f x =的切线方程; (2)设()()f x g x m x=-,若()g x 有2个零点,求m 的取值范围.()()112 ()1421x x f x k -=-+-。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 .【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{an }的前n项和为Sn,a3=3,S4=10,则= .【解答】解:等差数列{an }的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,Sn=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 .【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y),由题意可得N(x,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y),可得x﹣x0=0,y=y,即有x0=x,y=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由kOQ=﹣,kPF=,由kOQ •kPF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x﹣2﹣lnx=0,所以f(x0)=﹣x﹣xlnx=﹣x+2x﹣2=x﹣,由x0<可知f(x)<(x﹣)max=﹣+=;由f′()<0可知x<<,所以f(x)在(0,x0)上单调递增,在(x,)上单调递减,所以f(x)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

2017年高考真题全国1卷理科数学(附答案解析)

2017年高考真题全国1卷理科数学(附答案解析)
(1)证明:平面 PAB⊥平面 PAD;
(2)若 PA=PD=AB=DC, ∠APD = 90o,求二面角 A−PB−C 的余弦值.
19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取
16 个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产线正
( ) 常状态下生产的零件的尺寸服从正态分布 N µ,σ 2 .
x − y ≤ 0
15.已知双曲线 C

x2 a2

y2 b2
= 1(a
> 0,b > 0) 的右顶点为
A ,以
A 为圆心, b
为半径作
圆 A ,圆 A 与双曲线 C 的一条渐近线于交 M 、 N 两点,若 ∠MAN = 60o,则 C 的离心
率为__________.
16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D,E,F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的 等腰三角形.沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ECA,△FAB, 使得 D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3) 的最大值为______.
(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在
( µ − 3σ , µ + 3σ ) 之外的零件数,求 P ( X ≥ 1) 及 X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在 ( µ − 3σ , µ + 3σ ) 之外的零件,就认为这
条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:

(新高考Ⅰ卷)高考数学一题多解探寻圆锥曲线压轴破解之策与算法优化(含解析)

(新高考Ⅰ卷)高考数学一题多解探寻圆锥曲线压轴破解之策与算法优化(含解析)

2022新高考Ⅰ卷21题解析几何压轴题解法探究2022新高考Ⅰ卷数学试题,据称是近20年来史上第二难高考数学试题(史上最难2003).本文将对该卷21题解析几何压轴题,从不同的角度进行解析剖析.以期总结方法规律,优化思考方向,破解难点疑点,为广大的2023届高考师生提供有益的参考和帮助.【2022新高考1卷21题】已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【答案】(1)1-(2)9方法一:直线双参+韦达法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线PQ 的方程为y kx m =+,设1122(,),(,)P x y Q x y , 联立2212x y y kx m ⎧-=⎪⎨⎪=+⎩消去y 得222(21)4220k x kmx m -+++=2121222422,2121km m x x x x k k +∴+=-=--, 由121211022AP BP y y k k x x --+=+=--可得1221(1)(2)(1)(2)0y x y x --+--= 即1221(1)(2)(1)(2)0kx m x kx m x +--++--=展开整理得12122(12)()4(1)0kx x m k x x m +--+--= 即2222242(12)()4(1)02121m km k m k m k k +⋅+--⋅---=-- 即2(1)210m k k k +++-=,(1)(21)0k m k ++-=故1k =-或12m k =-当12m k =-时的方程为12y kx k =+-,其恒过定点(2,1)A ,与题意不符故直线PQ 的斜率1k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP的方程为12)y x -=-,直线AP的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以2Q x +=,Q x =于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=.【点评】联立方程韦达定理,是解析几何压轴大题最流行的方法套路.本题引入直线PQ 的双参方程y kx m =+,参与计算变形,使得运算过程相对繁复,产生了较大的运算量.要想变形到(1)(21)0k m k ++-=这一步,没有过硬的计算能力是很难达到的.方法二:直线单参+设点求点【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,设直线AP 的倾斜角为θ,不妨设其斜率0k >,则直线AQ 的斜率为k -直线AP 的方程为1(2)y k x -=-,代入2212x y -=整理得点,A P 的横坐标为方程的两根,故2122(21)2221k x k -+=-,22122(21)14422121k k k x k k -+-+∴==--,2112241(2)121k k y k x k -+-=-+=-于是点P 坐标为2222442241(,)2121k k k kP k k -+-+---,用k -代换k 可得2222442241(,)2121k k k kQ k k ++----- 故22222222241241212114424422121PQ k k k k k k k k k k k k k ----+----==-++-+---(2)由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ= 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=±因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在,P Q的坐标中令k =P Q x x ==于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】直线过圆锥曲线上已知一点时,可尝试设点求点的套路求出另一点的坐标.本题引入直线AP 的单参方程1(2)y k x -=-,可直接求出点P 的坐标,用k -代换k 立即可得点Q 的坐标,从而顺利求得PQ 的斜率.本解法思路清晰自然,单参变形所产生的运算量适中,无需特殊方法技巧.方法三:点差法+整体代换【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 代入0AP BP k k +=化简整理得122112122240x y x y x x y y +----+=⋅⋅⋅⋅⋅⋅①点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=-+即12122()PQ x x k y y +=+ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 代入0AP BP k k +=化简整理得122112122240x y x y x x y y ++++++=⋅⋅⋅⋅⋅⋅⑤①-⑤得12122()4()0x x y y +++=,所以12122()x x y y +=-+所以1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式进行整体变形,轻松求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.方法四:齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 双曲线可化为22[(2)2][(1)1]12x y -+--+=即22(2)2(1)4[(2)(1)]0x y x y ---+---=设直线PQ 的方程为(2)(1)1a x b y -+-=联立22(2)2(1)4[(2)(1)]0(2)(1)1x y x y a x b y ⎧---+---=⎨-+-=⎩可得22(2)24[(2)(1)][(2)(1)]0x y x y a x b y --+----+-=即22(41)(2)4()(2)(1)(42)(1)0a x b a x y b y +-+----+-=两边同除2(2)x -整理得211(42)()4()(41)022y y b a b a x x --++--+=-- 其中12y x --表示直线AP 与BP 的斜率,AP AQ k k 由于4()024AP AQ a b k k b-+=-=+ 所以a b =,直线PQ 的斜率为1a k b =-=-. (2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=±因为双曲线2212x y -=渐近线斜率为±tan θ=因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP 的方程为12)y x -=-,直线AP 的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以1623Q x ++=,103Q x +=于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】齐次化在解决圆锥曲线同构问题上往往有奇效.本题直线,AP AQ 的斜率具有相同的结构,即12y x --的形式,于是可考虑构造关于1y -与2x -的二次齐次方程.直接将直线PQ 的方程设为(2)(1)1a x b y -+-=,进行“1代换”,为齐次化带来了方便.本解法思路奇巧,运算简洁明了.但需要考生平时付出大量训练才能掌握此方法的精髓和技巧! 方法五:坐标平移+齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 对坐标系进行平移,使坐标原点与点A 重合,在新坐标系下: 双曲线方程为22(2)(1)12x y ---=即2224()0x y x y -+-= 设直线PQ 的方程为1ax by +=联立2224()01x y x y ax by ⎧-+-=⎨+=⎩可得2224()()0x y x y ax by -+-+=即22(41)4()(42)0a x b a xy b y ++--+=两边同除2x 得2(42)()4()(41)0yy b a b a x x++--+= 其中y x表示直线AP 与BP 的斜率,AP AQ k k 由于平移不改变直线的斜率,故4()024AP AQ a b k k b -+=-=+ 所以a b =,直线PQ 的斜率为1-.(2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在新坐标系下,直线,AP BP的方程分别为,y y ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13P x =,于是|||1)P AP x ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13Q x =-,于是|||1)Q AQ x ==而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】坐标平移后,在新坐标系下的齐次化过程更加直观自然.运算也变得简单明了了.方法六:参数方程法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线AP :112cos 1sin x t y t θθ=+⎧⎨=+⎩,其中θ为AP 的倾斜角 则直线AQ :222cos()1sin()x t y t πθπθ=+-⎧⎨=+-⎩,即222cos 1sin x t y t θθ=-⎧⎨=+⎩代入双曲线方程得 解得1222224cos 4sin 4cos 4sin ,cos 2sin cos 2sin t t θθθθθθθθ-++==-- 直线PQ 的斜率12121212sin 1cos y y t t k x x t t θθ--==⋅=--+ (2)不妨设直线AP 的斜率0AP k >,其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=可得sin θθ==于是12t t ==而由tan PAQ ∠=sin PAQ ∠=所以121||||sin 29PAQ S t t PAQ ∆=∠=. 【点评】直线参数方程的介入,使问题转化为对两参数12,t t 的讨论,思路自然,运算量适中.新教材《选择性必修第一册》68P 探究与发现栏目,对直线的参数方程进行了简单的介绍.所以新高考使用直线参数方程解题是被允许的.此方法同样需要考生付出大量训练才能掌握精髓和技巧!方法七:点差法+分式合分比定理【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=⋅⋅⋅⋅⋅⋅-+⑤ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 由0AP BP k k +=可得121212*********(1)2(1)AP y y x x k x x y y --++==-==---++ 由分式合分比定理可得12121212121212121442(2)2()AP y y y y x x x x k x x x x y y y y -+--++====+--++- 变形得1212121242(2)y y x x x x y y -+-=-++ 结合⑤得121212121212121212124(4)()12(2)2()2(2)2()y y x x x x x x x x x x y y y y y y y y -+-++--+====--+++++-+ 即1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ=因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式,结合分式合分比定理进行整体变形,求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.但要求考生对分式合分比定理有较深刻的认识并能较熟练的应用.【总结】解决解析几何压轴题的方法策略主要有三种:1、根与系数的关系法(主流方法).设出动直线的方程:①y kx m =+,②x my n =+,③00()y y k x x -=-, ④{00cos sin x x t y y t αα=+=+(t 为参数),与圆锥曲线方程联立消元得到关于(x y t )或参数的一元二次方程,得两根之和两根之积,同时兼顾0,0∆>∆=或的要求,利用两根之和两根之积进行整体代换整体变形而求解.2、多变量多参数联动变换法.此种方法有别于方法1,不联立方程消元求解,而是直接将所设出点的坐标代入曲线(直线)方程和题设中,得到若干个关于点的坐标与参数间的关系式,对这些关系式进行整体变形整体代换而求解.如弦中点问题常用点差法处理.同构问题齐次化处理.此种方法对多变量多参数的代数式的驾驭能力及变换技巧是一种考验.3、设点求点法.方法1、2均采用了设而不求的策略.当问题中直线与曲线的交点易求时,可考虑直接求出点的坐标进行求解,即设点求点法.如:动直线过曲线上一已知点时,则另一交点坐标可直接求出;再如动直线y kx =与椭圆22221x y a b+=的交点易求出. 以上七种解决方案中,本人最青睐的是方法三点差整体变形法,轻巧灵动四两拔千斤!其次是方法二设点求点法,思路清晰自然运算简单明了!。

精品解析:2024年北京高考数学真题(原卷版)(合并)

精品解析:2024年北京高考数学真题(原卷版)(合并)

绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <2.已知1i iz=--,则z =().A.1i --B.1i -+C.1i- D.1i+3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A. B.2 C.3 D.4.在(4x -的展开式中,3x 的系数为()A .6B.6- C.12D.12-5.设a ,b 是向量,则“()()·0a b a b +-= ”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A.1B.2C.3D.47.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S < D.d =,1S >第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则M 中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <【答案】C 【解析】【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.已知1i iz=--,则z =().A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】直接根据复数乘法即可得到答案.【详解】由题意得()i 1i i 1z =--=-.故选:C.3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A.B.2C.3D.【答案】D 【解析】【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+==故选:D.4.在(4x -的展开式中,3x 的系数为()A.6B.6- C.12D.12-【答案】A 【解析】【分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T xxr --+==-=,令432r-=,解得2r =,故所求即为()224C 16-=.故选:A.5.设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量数量积分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件分析判断.【详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b =,即()()0a b a b +⋅-= ,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A .1B.2C.3D.4【答案】B 【解析】【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点,则12minπ22T x x -==,即πT =,且0ω>,所以2π2Tω==.故选:B.7.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =【答案】D 【解析】【分析】根据题意分析可得12112.1,3.15ln ln S S N N --==,消去S 即可求解.【详解】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =.故选:D.8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.【答案】D 【解析】【分析】取点作辅助线,根据题意分析可知平面PEF ⊥平面ABCD ,可知⊥PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====,分别取,AB CD 的中点,E F ,连接,,PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF 平面ABCD EF =,PO ⊂平面PEF ,所以⊥PO 平面ABCD ,由题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PF PO EF⋅==,当相对的棱长相等时,不妨设4PA PC ==,PB PD ==,因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+【答案】B 【解析】【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误;对于选项C :例如121,x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误,故选:B.10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S <D.d =,1S >【答案】C 【解析】【分析】先以t 为变量,分析可知所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,结合图形分析求解即可.【详解】对任意给定[]1,2x ∈,则()210xx x x -=-≥,且[]0,1t ∈,可知()222x x t x x x x x x ≤+-≤+-=,即2x y x ≤≤,再结合x 的任意性,所以所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,如图阴影部分所示,其中()()()1,1,2,2,2,4A B C,可知任意两点间距离最大值d AC ==;阴影部分面积11212ABC S S <=⨯⨯△.故选:C.【点睛】方法点睛:数形结合的重点是“以形助数”,在解题时要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维.使用数形结合法的前提是题目中的条件有明确的几何意义,解题时要准确把握条件、结论与几何图形的对应关系,准确利用几何图形中的相关结论求解.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.【答案】()4,0【解析】【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,由此即可得解.【详解】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.【答案】12-##0.5-【解析】【分析】首先得出π2π,Z k k βα=++∈,结合三角函数单调性即可求解最值.【详解】由题意π2π,Z k k βα=++∈,从而()cos cos π2πcos k βαα=++=-,因为ππ,63α⎡⎤∈⎢⎥⎣⎦,所以cos α的取值范围是1,22⎡⎢⎣⎦,cos β的取值范围是1,22⎡⎤--⎢⎥⎣⎦,当且仅当π3α=,即4π2π,Z 3k k β=+∈时,cos β取得最大值,且最大值为12-.故答案为:12-.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.【答案】12(或12-,答案不唯一)【解析】【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12(或12-,答案不唯一).14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .【答案】①.23②.57.5##1152【解析】【分析】根据体积为公比为10的等比数列可得关于高度的方程组,求出其解后可得前两个圆柱的高度.【详解】设升量器的高为1h ,斗量器的高为2h (单位都是mm ),则2222212325325ππ230221065325ππ22h h h ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,故223mm h =,1115mm 2h =.故答案为:11523mm,mm 2.15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.【答案】①③④【解析】【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【详解】对于①,因为{}{},n n a b 均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故M 中至多一个元素,故①正确.对于②,取()112,2,n n n n a b --==--则{}{},n n a b 均为等比数列,但当n 为偶数时,有()1122n n n n a b --===--,此时M 中有无穷多个元素,故②错误.对于③,设()0,1nn b AqAq q =≠≠±,()0n a kn b k =+≠,若M 中至少四个元素,则关于n 的方程n Aq kn b =+至少有4个不同的正数解,若0,1q q >≠,则由n y Aq =和y kn b =+的散点图可得关于n 的方程n Aq kn b =+至多有两个不同的解,矛盾;若0,1q q <≠±,考虑关于n 的方程n Aq kn b =+奇数解的个数和偶数解的个数,当n Aq kn b =+有偶数解,此方程即为nA q kn b =+,方程至多有两个偶数解,且有两个偶数解时ln 0Ak q >,否则ln 0Ak q <,因,ny A q y kn b ==+单调性相反,方程nA q kn b =+至多一个偶数解,当n Aq kn b =+有奇数解,此方程即为nA q kn b -=+,方程至多有两个奇数解,且有两个奇数解时ln 0Ak q ->即ln 0Ak q <否则ln 0Ak q >,因,ny A q y kn b =-=+单调性相反,方程nA q kn b =+至多一个奇数解,因为ln 0Ak q >,ln 0Ak q <不可能同时成立,故n Aq kn b =+不可能有4个不同的整数解,即M 中最多有3个元素,故③正确.对于④,因为{}n a 为递增数列,{}n b 为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)2π3A =;(2)选择①无解;选择②和③△ABC 面积均为1534.【解析】【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出33sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sinC ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【小问1详解】由题意得32sin cos cos 7B B B =,因为A 为钝角,则cos 0B ≠,则32sin 7B b =,则7sin sin sin 37b a BA A ===,解得3sin 2A =,因为A 为钝角,则2π3A =.【小问2详解】选择①7b =,则sin 714142B b ==⨯=,因为2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则33sin 14B ==,则代入32sin 7B b =得3332147b ⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭13121421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7322144ABC S ab C ==⨯⨯⨯=.选择③sin c A =2c ⨯=,解得5c =,则由正弦定理得sin sin a c A C =5sin 32C =,解得53sin 14C =,因为C 为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+ ⎪⎝⎭3111533321421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯=△17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.【答案】(1)证明见解析(2)3030【解析】【分析】(1)取PD 的中点为S ,接,SF SC ,可证四边形SFBC 为平行四边形,由线面平行的判定定理可得//BF 平面PCD .(2)建立如图所示的空间直角坐标系,求出平面APB 和平面PCD 的法向量后可求夹角的余弦值.【小问1详解】取PD 的中点为S ,接,SF SC ,则1//,12SF ED SF ED ==,而//,2ED BC ED BC =,故//,SF BC SF BC =,故四边形SFBC 为平行四边形,故//BF SC ,而BF ⊄平面PCD ,SC ⊂平面PCD ,所以//BF 平面PCD .【小问2详解】因为2ED =,故1AE =,故//,=AE BC AE BC ,故四边形AECB 为平行四边形,故//CE AB ,所以CE ⊥平面PAD ,而,PE ED ⊂平面PAD ,故,CE PE CE ED ⊥⊥,而PE ED ⊥,故建立如图所示的空间直角坐标系,则()()()()()0,1,0,1,1,0,1,0,0,0,2,0,0,0,2A B C D P --,则()()()()0,1,2,1,1,2,1,0,2,0,2,2,PA PB PC PD =--=--=-=-设平面PAB 的法向量为(),,m x y z =,则由0m PA m PB ⎧⋅=⎪⎨⋅=⎪⎩可得2020y z x y z --=⎧⎨--=⎩,取()0,2,1m =- ,设平面PCD 的法向量为(),,n a b c =,则由0n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩可得20220a b b c -=⎧⎨-=⎩,取()2,1,1n = ,故cos ,30m n ==-,故平面PAB 与平面PCD 夹角的余弦值为303018.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)【答案】(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中()E X 估计值【解析】【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求ξ的分布列及数学期望,从而可求()E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求()E Y ,从而即可比较大小得解.【小问1详解】设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得()603010180010060301010P A ++==++++.【小问2详解】(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题设中的统计数据可得()()800410010,0.810005100010P P ξξ======,603( 1.6)100050P ξ===,303( 2.4)1000100P ξ===,101(3)1000100P ξ===,故()4133100.8 1.6 2.430.27851050100100E ξ=⨯+⨯+⨯+⨯+⨯=故()0.40.2780.122E X =-=(万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255⨯⨯+⨯⨯=,故()0.1220.40320.40.1252E Y =+-=(万元),从而()()E X E Y <.19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)221,422x y e +==(2)2t =【解析】【分析】(1)由题意得b c ==,进一步得a ,由此即可得解;(2)设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k --+==++,而()121112:y y AD y x x y x x -=-++,令0x =,即可得解.【小问1详解】由题意b c ===,从而2a ==,所以椭圆方程为22142x y +=,离心率为2e =;【小问2详解】直线AB 斜率不为0,否则直线AB与椭圆无交点,矛盾,从而设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++-=,由题意()()()222222Δ1682128420k t k t k t=-+-=+->,即,k t 应满足22420kt +->,所以2121222424,1221kt t x x x x k k --+==++,若直线BD 斜率为0,由椭圆的对称性可设()22,D x y -,所以()121112:y y AD y x x y x x -=-++,在直线AD 方程中令0x =,得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t-++++++====+==+++-,所以2t =,此时k 应满足222424200k t k k ⎧+-=->⎨≠⎩,即k 应满足22k <-或22k >,综上所述,2t =满足题意,此时22k <-或22k >.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)【答案】(1)单调递减区间为(1,0)-,单调递增区间为(0,)+∞.(2)证明见解析(3)2【解析】【分析】(1)直接代入1k =-,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入再设新函数()ln(1)1tF t t t=+-+,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S = 得到13ln(1)21501tt t t+--=+,再设新函数15()13ln(1)2(0)1th t t t t t=+-->+研究其零点即可.【小问1详解】1()ln(1),()1(1)11x f x x x f x x x x'=-+=-=>-++,当()1,0x ∈-时,′<0;当∈0,+∞,′>0;()f x ∴在(1,0)-上单调递减,在(0,)+∞上单调递增.则()f x 的单调递减区间为(1,0)-,单调递增区间为(0,)+∞.【小问2详解】()11k f x x '=++,切线l 的斜率为11k t++,则切线方程为()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入则()1,()111k k f t t f t t t t ⎛⎫⎛⎫-=-+=+ ⎪ ⎪++⎝⎭⎝⎭,即ln(1)1k t k t t tt ++=++,则ln(1)1t t t +=+,ln(1)01tt t +-=+,令()ln(1)1tF t t t=+-+,假设l 过(0,0),则()F t 在(0,)t ∈+∞存在零点.2211()01(1)(1)t t t F t t t t +-'=-=>+++,()F t ∴在(0,)+∞上单调递增,()(0)0F t F >=,()F t ∴在(0,)+∞无零点,∴与假设矛盾,故直线l 不过(0,0).【小问3详解】1k =时,12()ln(1),()1011x f x x x f x x x+'=++=+=>++.1()2ACO S tf t = ,设l 与y 轴交点B 为(0,)q ,0t >时,若0q <,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q ≠.所以0q >,则切线l 的方程为()()1ln 111y t t x t t ⎛⎫--+=+- ⎪+⎝⎭,令0x =,则ln(1)1t y q y t t ===+-+.215ACO ABO S S = ,则2()15ln(1)1t tf t t t t ⎡⎤=+-⎢⎥+⎣⎦,13ln(1)21501t t t t ∴+--=+,记15()13ln(1)2(0)1th t t t t t=+-->+,∴满足条件的A 有几个即()h t 有几个零点.()()()()()()()()2222221313221152141315294211111t t t t t t t h t t t t t t +-++--+--+-=--=++'==+++,当10,2t ⎛⎫∈ ⎪⎝⎭时,()0h t '<,此时()h t 单调递减;当1,42t ⎛⎫∈⎪⎝⎭时,()0h t '>,此时()h t 单调递增;当()4,t ∞∈+时,()0h t '<,此时()h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h ⎛⎫==-⨯-=> ⎪⎝⎭,15247272(24)13ln 254826ln 548261.614820.5402555h ⨯=--=--<⨯--=-<,所以由零点存在性定理及()h t 的单调性,()h t 在1,42⎛⎫⎪⎝⎭上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S =的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.21.已知集合()}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.【答案】(1)():3,4,4,5,8,4,3,10A Ω(2)不存在符合条件的Ω,理由见解析(3)证明见解析【解析】【分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义分析证明即可.【小问1详解】因为数列:1,3,2,4,6,3,1,9A ,由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ;由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ;由序列()31,3,5,7T 可得(321:3,4,4,5,8,4,3,10T T T A ;所以()Ω:3,4,4,5,8,4,3,10A .【小问2详解】解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++,则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立,故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4,假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅,因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验可知:当2,3n =时,上式不成立,即假设不成立,所以不存在符合条件的Ω.【小问3详解】解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18nn aa n =≤≤.必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+.根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证.充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++.同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数.下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2-1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2-2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤.假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs na A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果,且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的,(ⅰ)若12345678a a a a a a a a +=+=+=+,不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥,①当1357a a a a ===,则8642a a a a ===,分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意;②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==,即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得122712212272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,即173a a +为偶数,可知17,a a 的奇偶性相同,则*712a a -∈N ,分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8,可得72172172172172172172173232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a+-+-+-+-+-+-+-+,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a ,分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为13571572a a a a a a a +++=++为偶数,可知57,a a 的奇偶性相同,则()()()()1515151715743a a a a a a a a a a a +++++++=++为偶数,且15151517a a a a a a a a +=+=+<+,即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a ,分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,则()()()()()()131315371313572a a a a a a a a a a a a a a +++++++=+++++为偶数,且13131537a a a a a a a a +=+<+<+,即转为④,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列;(ⅱ)若存在序列Ω,使得()ΩA 为常数列,因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立,若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+,所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.。

2017高考全国卷1数学试题及答案解析(理科)

2017高考全国卷1数学试题及答案解析(理科)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .AB =RC .{}1=>A B x xD .A B =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题,则正确的是()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p , 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x的取值范围是() A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<<D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 二、 填空题:本题共4小题,每小题5分,共20分。

(江苏卷)2018年数学一题多解(含17年试题)

(江苏卷)2018年数学一题多解(含17年试题)

(江苏卷)2018年高考数学一题多解(含17年高考试题)2017年江苏卷第5题:若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α=【答案】75【知识点】两角和与差的正切公式【试题分析】本题主要考查了两角和与差的正切公式,属于基础题。

解法一:直接法 由61)4tan(=-πα,得61tan 4tan 14tan tan =+-αππα,故可知57tan =α 解析二:整体代换11tan()tan 7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---. 解法三:换元法令t =-4πα,则61tan =t ,t +=4πα.所以57tan 11tan )4tan(tan =-+=+=t t t πα2017年江苏卷第9题(5分)等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=,S 6=,则a 8= .法二:654361447463a a a s s ++==-=- 847143321654===++++q a a a a a a S 3=,∴,得a 1=,则a 8==32. 法三:91332165432136=+=+++++++=q a a a a a a a a a s s∴q=2∴,得a 1=,则a 8==32.2017年江苏卷第15题.(14分)如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .法二:在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.法三:在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,BC⊥BD,∴FG⊥BD,又 平面ABD⊥平面BCD,∴FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,∴AD⊥平面EFG,又 FG∥BC,则EG∥AC,∴平面EFG//平面ABC ∴AD⊥平面ABC,又 AC⊂平面ABC,∴AD⊥AC.攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑一、选择题1.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——数学(浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C U A)∩B=( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}3.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.【来源】2019年高考真题——理科数学(天津卷)设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.【来源】2019年高考真题——理科数学(天津卷)设集合A={-1,1,2,3,5},B={2,3,4},{|13}C x x =∈≤<R ,则()A C B =A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4} 6.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面7.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B= A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)8.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B= A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}9.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知集合}242{60{}M x x N x x x =-<<=--<,,则M∩N=A .}{43x x -<<B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<10.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知集合A={x|x -1≥0},B={0,1,2},则A∩B= A .{0}B .{1}C.{1,2}D .{0,1,2}11.【来源】2018年高考真题——理科数学(北京卷)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a<0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 12.【来源】2018年高考真题——理科数学(北京卷)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件13.【来源】2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|<2},B={–2,0,1,2},则A∩B = (A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}14.【来源】2018年高考真题——理科数学(天津卷)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件15.【来源】2018年高考真题——理科数学(天津卷)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C){12}x x ≤<(D){02}x x <<16.【来源】2018年高考真题——理科数学(全国卷II )已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .417.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知集合A={x|x 2-x -2>0},则C R A= A.{ x|-1<x <2} B. { x|-1≤x≤2}C. { x| x <-1}∪{ x|x >2}D. { x| x≤-1}∪{ x|x≥2} 18.【来源】2016年高考真题——理科数学(天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q<0”是“对任意的正整数n ,a 2n−1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 19.【来源】2016年高考真题——理科数学(天津卷)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1}(B ){4}(C ){1,3}(D ){1,4}20.【来源】2017年高考真题——理科数学(北京卷)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件21.【来源】2017年高考真题——理科数学(北京卷)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}22.【来源】2017年高考真题——数学(浙江卷)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.【来源】2017年高考真题——数学(浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=A. (-1,2) B. (0,1) C. (-1,0) D.(1,2)二、填空题24.【来源】2019年高考真题——数学(江苏卷)已知集合A={-1,0,1,6},{}|0,B x x x R =>∈,则A∩B=_____. 25.【来源】2018年高考真题——理科数学(北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.26.【来源】2018年高考真题——数学(江苏卷)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .27.【来源】2018年高考真题——数学(江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B = ▲ . 28.【来源】2017年高考真题——理科数学(北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 29.【来源】2017年高考真题——数学(江苏卷)已知集合A={1,2},B={a ,a 2+3},若A∩B={1},则实数a 的值为________ 三、解答题(本题共1道小题,第1题0分,共0分) 30.【来源】2018年高考真题——理科数学(北京卷)(本小题14分)设n 为正整数,集合A=12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n=3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.试卷答案1.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 2. A【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 3. C【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C. 4. B化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B. 5.因为{1,2}A C =, 所以(){1,2,3,4}A C B =.6. B根据面面平行的判定定理易得答案.选B. 7. A{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A .8. A}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .9. C由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C .10. C详解:由集合A 得 ,所以故答案选C. 11. D分析:求出 及 所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则 ,此命题的逆否命题为:若 ,则有,故选D.12. C分析:先对模平方,将 等价转化为0,再根据向量垂直时数量积为零得充要关系. 详解:,因为a ,b 均为单位向量,所以a ⊥b ,即“”是“a⊥b”的充分必要条件.选C.A分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集. 详解:因此A∩B= ,选A.14. A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件.本题选择A 选项. 15. B分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项. 16. A 详解: ,当 时, ; 当 时, ; 当时,;所以共有9个,选A. 17. B 解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.18. C试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 19.D试题分析:{1,4,7,10},A B {1,4}.B ==选D. 20. A若0λ∃<,使m n λ=,即两向量反向,夹角是180°,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 21. A{}21A B x x =-<<-,故选A.22.C试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 +S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件. 23.A试题分析:利用数轴,取P 、Q 所有元素,得P ∪Q=(-1,2)【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24. {1,6} 【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.【点睛】本题主要考查交集的运算,属于基础题. 25.y=sinx (答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数. 又如,令f (x )=sinx ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.26.27分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 详解:设 ,则由得 所以只需研究是否有满足条件的解, 此时 , ,m 为等差数列项数,且. 由得满足条件的n 最小值为27.27.{1,8} 分析:根据交集定义求结果. 详解:由题设和交集的定义可知:.28.1,2,3---(答案不唯一) 123,1(2)3->->--+-=-29.1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为130.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x 2,…,x n)|( x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x 2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x 2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。

2017年北京市高考数学试卷(文科)(解析版)

2017年北京市高考数学试卷(文科)(解析版)

绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2B .C .D .4.(5分)若x,y 满足,则x+2y的最大值为()A.1B.3C.5D.95.(5分)已知函数f(x)=3x ﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x ﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【考点】A1:虚数单位i、复数.【专题】35:转化思想;59:不等式的解法及应用;5N:数系的扩充和复数.【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i 在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.C.D .【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y 满足,则x+2y的最大值为()A.1B.3C.5D.9【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y 满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A 时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x ﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【考点】3N:奇偶性与单调性的综合.【专题】2A:探究型;4O:定义法;51:函数的性质及应用.【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x 为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.10【考点】L!:由三视图求面积、体积.【专题】31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;5A:平面向量及应用;5L:简易逻辑.【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【考点】4G:指数式与对数式的互化.【专题】11:计算题.【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线的离心率,列出方程求和求解m即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1].【考点】3V:二次函数的性质与图象.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f ()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O 为原点,则•的最大值为6.【考点】9O:平面向量数量积的性质及其运算.【专题】35:转化思想;56:三角函数的求值;5A:平面向量及应用;5B:直线与圆.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【考点】FC:反证法.【专题】11:计算题;35:转化思想;4O:定义法;5L:简易逻辑.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【考点】7C:简单线性规划.【专题】11:计算题;5L:简易逻辑;5M:推理和证明.【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z ,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n﹣1}是等比数列,公比为3,首项为1.b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x ﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【考点】GA:三角函数线;GL:三角函数中的恒等变换应用;H1:三角函数的周期性.【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值;57:三角函数的图像与性质.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin(2x +),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x ﹣)﹣2sinxcosx,=(co2x +sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x +),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x +∈[﹣,],∴﹣≤sin(2x +)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】11:计算题;27:图表型;5I:概率与统计.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直;LY:平面与平面垂直.【专题】35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC =××2×2=1,则三棱锥E﹣BCD 的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【考点】K3:椭圆的标准方程;KL:直线与椭圆的综合.【专题】31:数形结合;44:数形结合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x 轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C 的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N 在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM ==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN =,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。

全国III卷18届高考数学一题多解含17年高考试题

全国III卷18届高考数学一题多解含17年高考试题

(全国III 卷)2018年高考数学一题多解(含17年高考试题)1、【2017年高考数学全国三卷理11】11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 解法三:对称性)(2)(112+--++-=x x e e a x x x f 可得()1121)2(1222)()2(2)2()2(+--+----++-=++---=-x x x x eea x x e e a x x x f)()2(x f x f =-,即1=x 为方程的对称轴. )(x f 有唯一零点,)(x f 的零点为1=x ,即01=)(f ,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【思路分析】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.2、【2017年高考数学全国三卷理12】12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3B .22C .5D .2【答案】A 【解析】 方法一:特殊值法5521,2+==y x 2255212>+=+=+y x μλ,故选A 方法二:解析法如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤,即21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A.如图:由等和线相关知识可知,当P 点在如图所示位置时,μλ+最大,且此时若AD y AB x AG +=,则由y x +=+μλ,由三角形全等可以得2===FG DF AD ,知0,3==y x ,所以选A【考点】平面向量的坐标运算;平面向量基本定理【思路解析】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.3、【2017年高考数学全国三卷理15】15.设函数10()20xx xf xx+≤⎧=⎨>⎩,,,则满足1()()12f x f x+->的x的取值范围是_________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】写成分段函数的形式:()()()132,021112,02221222,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩,函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增,且()01111,201,222142g -⎛⎫-=++>+⨯> ⎪⎝⎭,可知x 的取值范围是1,4⎛⎫-+∞ ⎪⎝⎭.解法二:图象变换法:函数)21(),(-==x f y x f y 在R 上都是增函数.)(x f y =向右平移21个单位得⎪⎭⎫ ⎝⎛-=21x f y 的图象。

2017年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)

2017年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)

2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2017年北京市高考数学试卷(文科)(解析版)

2017年北京市高考数学试卷(文科)(解析版)

2017年北京市高考数学试卷(文科)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1] .【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为6.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin(2x+),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC =S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

2017年全国高考数学卷1试题及答案

2017年全国高考数学卷1试题及答案

2017年全国高考数学卷Ⅰ试题及答案文2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为n x x x ,,,21 ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .n x x x ,,,21 的平均数B .n x x x ,,,21 的标准差C .n x x x ,,,21 的最大值D .n x x x ,,,21 的中位数 答案:B .命题意图:本题主要考查样本特征数.解:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B .小结:(1)众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;(2)中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;(3)平均数:反应一组数据的平均水平;(4)方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;(5)标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.理2、文4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π4答案:B .命题意图:本题主要考查几何概型. 解题思路:=P 基本事件所包含的面积总面积. 解:()21212=82r S P S r ππ==,故选B . 小结:(1)对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;(2)另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关;(3)对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .文19.为了监控某种零件的一条生产线的生产过程,检验员每隔min 30从该生产线上随机抽取一个零cm经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()ni ix x y y r --=∑0.09≈. 答案:(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为02.10,09.0. 命题意图:本题主要考查以下几点:(1)相关系数;(2)方差均值计算.解题思路:(1)依公式求r ;(2)(ⅰ)由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ⅱ)剔除第13个数据,则均值的估计值为02.10,方差为09.0.解:(1)由样本数据得(,i x i (1,2i =⋅⋅⋅的相关系数为,由于25.0||<r ,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(ⅰ)由于97.9=x ,212.0≈s ,由样本数据可以看出抽取的第13个零件尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除9.22,这条生产线当天生产的零件尺寸的均值为169.22169.979.2210.021515x -⨯-== ,标准差为0.09s ===. 小结:解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.理19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(Ⅰ)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.99P Z μσμσ-<<+=,9592.09974.016≈0.09≈.命题意图:本题主要考查以下几点:(1)统计与概率;(2)正态分布、二项分布;(3)随机变量的期望、方差及标准差;(4)正态分布曲线的特点及曲线所表示的意义;(5)转化思想.解题思路:(Ⅰ)这是典型的二项分布,利用正态分布的性质计算即可;(Ⅱ)考察正态分布,代入运算即可.解:(Ⅰ)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为9974.0,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0026.0,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=. (Ⅱ)①如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0026.0,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0408.0,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由题意可得9.97,0.21239.334,310.606μσμσμσ==⇒-=+=,故而在()9.334,10.606范围外存在22.9这一个数据,因此需要进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据22.9,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为02.10.162221160.212169.971591.134i i x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据22.9,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,因此σ的估计值为0.09≈. 小结:(1)数学期望是离散型随机变量中重要的数学概念,反应随机变量取值的平均水平;(2)求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望;(3)正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(北京卷)2018年高考数学一题多解(含17年高考试题)
1、【2017年高考数学北京理1】若集合{}–2<1A x x =<,{}–13B x x x =<>或,则A B =I ( ).
A.}12|{-<<-x x
B.{}–2<3x x <
C.{}–1<1x x <
D.
{}1<3x x <
【答案】A
【知识点】集合的交运算
【试题分析】本题考查考生的运算能力.属于基础题.
解析三(特殊值法)从选择支入手,令0=x ,得B A B A ⋂∉∉∈0,0,0则排除B 和C.
再令23-=x ,得:B A B A ⋂∈-∈-∈-2
3,23,23则,排除D ,故选A. 2、【2017年高考数学北京文11】已知0x …,0y …,且1x y +=,则22x y +的取值范围是__________.
【答案】]1,2
1[ 【知识点】直线与圆的综合,不等式的范围问题
【试题分析】本题考查数形结合思想,转化与化归思想的应用,考查考生的运算求解能力.属于中档题.
【解析】
解析一:由已知得:122)1(,,12222222+-=-+=++-=x x x x y x y x x y 得代入
,时,取得最小值,当时,取得最大值或,当2
121110]1,0[,21)21(22===∈+-=x x x x x ].1,2
1[22的取值范围是所以y x + 解析二:
为与两坐标轴的交点分别设直线1=+y x ),0,1(),1,0(B A 上一点,
为线段点AB y x P ),(,到原点的距离为则22111002222=+-+≥
+=y x PO P ,1=≤AO PO 又,所以12222≤+≤y x ].1,21[22的取值范围是所以y x + 解析三:,220,022y x y x xy y x +≤+≤>>时,由基本不等式得:当
,1,2
0,0222=++≤+>>y x y x y x y x 根据条件)(时,可得:当;得:2122≥+y x .
0,时,结果显然成立有一个为当y x .1)(20,022222=+=++≤+≥≥y x xy y x y x y x 时,另一方面,当
].1,21[2
2的取值范围是所以y x + 解法四:θθ22cos ,sin ==y x 则由已知条件得:设,
].1,21[2sin 21-1cos sin 2)cos (sin cos sin 22
22224422∈=-+=+=+θθθθθθθy x ].1,21[22的取值范围是所以y x +
].1,21[],1,22[],1,22[)4sin(2∈∈∈+r r 所以:即:π
θ
].1,21[2
2的取值范围是所以y x + 3、【2017年高考数学北京理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为()1,0,则
AP 的最小值为___________.
【答案】1
【知识点】点与圆的位置关系,圆的极坐标方程
【试题分析】本题主要考查圆的极坐标方程,点与圆的位置关系,意在考查化归与转化、运算求解能力.属于中档题.
【解析】
解析一:将圆的极坐标方程化为直角坐标方程为:,044222=+--+y x y x
.1),2,1(,1)2()1(22==-+-r y x 半径圆心为即:
,12)20()11(),0,1(22>=-+-=d P P 到圆心的距离点的直角坐标为点
.
112min =-=-=r d AP P 点在圆外,所以所以:
.1的最小值为所以AP
解析三:将圆的极坐标方程化为直角坐标方程为:,044222=+--+y x y x
.31,1)2(.1),2,1(,1)2()1(222≤≤≤-==-+-y y r y x 即:可得:半径圆心为即:
].3,1[34)2(1)1(),31)(,(2222∈-=+--=+-=≤≤y y y y x AP y y x A 则:设
.1的最小值为所以AP
4、【2017年高考数学北京理15】在ABC △中,60A ∠=o ,37
c a =. (1)求sin C 的值;
(2)若7a =,求ABC △的面积.
【答案】36)2(14
33)
1(
【知识点】正弦定理,余弦定理
【试题分析】本题主要考查正弦定理、余弦定理及三角形的面积公式.考查考生的运算求解能力与解决问题的能力.属于基础题.
【解析】 (1),7
3,60a c A ABC =︒=∆中,因为在 .14
332373sin sin =⨯==a A c C 由正弦定理得:
(2)解析一:
.3,7==c a 所以因为A bc c b a cos 2222-+=由余弦定理
,72132322
2=⨯⨯-+b b 得: ).(58舍或解得:-==b b
.362
33821sin 21=⨯⨯⨯==∆A bc S ABC 的面积所以 解析二:当7a =时,3c =,
sin C 3=14
<c a 13
cos 14C ∴. △ABC 中
sin =sin[π-(+)]=sin(+)B A C A C
sin cos cos sin ⨯⨯=A C +A C
131=+214214
⨯⨯
=
7
.367343721sin 21=⨯⨯⨯==
∆B ac S ABC 的面积所以 解析三:如图所示: .点,垂足为作过点G AC BG B ⊥
.2
3233==AG BG ,解得:
,2132
2=-=∆BG BC CG BCG Rt 中,在 .8=+==CG AG AC b 即:
.362
33821sin 21=⨯⨯⨯==∆A bc S ABC 的面积所以。

相关文档
最新文档