最新1目的基因分离克隆汇总

合集下载

第讲 目的基因的克隆与分离

第讲 目的基因的克隆与分离

第讲目的基因的克隆与分离引言目的基因是指在一项研究中,具有研究意义或实际应用价值的基因。

目的基因克隆和分离是分子生物学研究的重要环节,它们为后续研究提供了基础和保障。

本文将介绍目的基因克隆和分离的方法和技术。

一、目的基因的克隆1. PCR扩增PCR是聚合酶链反应的简称,是一种利用DNA聚合酶酶作用、在体外增加DNA序列数量的技术。

PCR扩增可以在保证目的基因序列一致性的前提下,扩增出足够的DNA量,用于后续实验。

PCR扩增的步骤一般包括模板DNA的选择、引物的设计和勘误、PCR反应体系的搭建等。

2. 基因文库筛选基因文库指的是将一个或多个组织的基因在体外克隆并构建而成的基因库。

基因文库筛选是一种在文库中选取目的基因的方法。

其中最常用的是基于杆菌的蛋白表达文库、细胞质体DNA文库和DNA合成文库。

基因文库筛选的步骤一般包括构建文库、传统筛选和高通量筛选。

3. 限制性内切酶切割限制性内切酶切割是指利用特定的酶切位点将DNA分割成碎片,然后选取目标DNA寻找需要的限制酶切片段的方法。

这种方法可以快速而准确地寻找目的基因,并进行克隆。

限制酶切割的步骤一般包括DNA提取、DNA质量检测、选取限制酶和体外反应等。

二、目的基因的分离1. 分子杂交分子杂交是指在体外或体内使某一脱氧核糖核酸(DNA)与另一种DNA或核酸杂交而形成方法的过程。

它的作用是寻找与目的基因DNA互补的DNA序列,并在该序列中分离目的基因。

分子杂交的步骤主要包括细胞培养和DNA序列的寻找和筛选等。

2. 化学合成化学合成是指通过化学方法合成目的基因的方法。

这种方法可以直接合成目的基因,只要知道目的基因的序列就可以了,不需要进行PCR扩增、克隆等操作。

化学合成的步骤主要包括碱基合成、链延伸、中间产物合成和连接、滤液等。

3. 通量基因测序通量基因测序也称为高通量测序,是一种快速且准确测定DNA或RNA序列的方法。

通过对目的基因进行测序,可以快速分离目的基因。

同源序列法克隆目的基因

同源序列法克隆目的基因

同源序列法克隆目的基因同源序列法克隆是一种常用的基因克隆方法,用于获取目的基因的DNA序列。

同源序列法克隆的主要步骤如下:1. 设计引物:根据已知目的基因的序列,设计一对引物(即寡核苷酸片段),其中一个引物具有与目的基因的5'端相互匹配,另一个引物具有与目的基因的3'端相互匹配。

2. 提取模板DNA:从包含目的基因的源生物体中提取总DNA 或特定组织/细胞中的DNA作为模板。

3. 聚合酶链反应(PCR)扩增:在PCR反应中使用设计的引物和模板DNA来扩增目的基因的DNA序列。

PCR反应通过多次循环加热和冷却来产生大量DNA复制品。

4. 凝胶电泳分析:将PCR扩增产物与分子量标记物一起加载在琼脂糖凝胶上进行电泳分离。

通过比较扩增产物与标记物在凝胶上的迁移距离,可以确定是否成功扩增了目的基因。

5. 纯化目的基因:从PCR反应中纯化目的基因的扩增产物,一般使用凝胶切片、DNA纯化试剂盒等方法。

6. 连接到载体:将纯化的目的基因DNA与适当的载体(如质粒)进行连接。

这通常涉及酶切目的基因和载体的DNA,然后使用连接酶将它们连接在一起。

7. 转化宿主细胞:将连接的DNA导入宿主细胞中,使其自行复制和表达。

这可以通过转染、电穿孔或热激冲等方法实现。

8. 筛选与鉴定:通过对转化后的细胞进行选择性培养或检测,筛选出带有目的基因的克隆。

常用的筛选方法包括抗生素筛选、荧光筛选等。

9. 验证目的基因:最终需要验证克隆中是否成功插入了目的基因。

这可以通过DNA测序、限制性酶切、PCR等方法来进行。

同源序列法克隆是一种有效的基因克隆技术,可用于获得感兴趣的基因序列并进一步研究其功能、表达和调控机制等。

基因工程知识点总结归纳(更新版)

基因工程知识点总结归纳(更新版)

基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。

作动词:基因的分离和重组的过程。

2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。

供体、受体和载体是基因工程的三大要素。

3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。

以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。

三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。

2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。

5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。

6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。

7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。

8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。

9、S1核酸酶:特异性降解单链DNA或RNA。

10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。

基因的克隆方法大全

基因的克隆方法大全
14
1.2.3 差异显示PCR〔DD RT-PCR〕
最先由Liang等于1992年报道,目前已广 泛在实验室使用.
主要LY〔A〕结构,在其3`端设计象5`-
T11GA样引物,该引物可与mRNA总数的
十二分之一结合,从而使这部分基因得到
逆转录,同时结合5`端的随机引物〔20条
染色体 T-DNA
染色体 目的基因野生株构建基因组 基因苗构建基因组文 库基因苗
阳性克隆
获得阳性克隆 目的基因
基因序列分析2,4 确定为基因
转座子标签法
转座子又称转座因子或者跳跃因 子,实际上也是DNA片段,它可以在生 物的染色体组中移动,从染色体的一个 位点跳到另一个位点,或从一条染色体 跳到另一条染色体上,引起基因功能的 改变.
8
已发展的相应基因克隆方法:
差减杂交〔SH〕 抑制性差减杂交〔SSH〕 差异显示PCR〔DD RT-PCR〕 DNA代表性差异分析〔DNA RDA〕 扩增限制性片段长度多样性〔AFLP〕 cDNA微阵列
9
差减杂交〔SH〕
最早由Lamar和Palmer于1984年提 出并用于雄鼠Y染色体的DNA研究.
10-mer〕,可m以RN使A不同长度的基因得到扩
增5. `
RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
15
mRNA
5` RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
AATTTTTTTT
ACTTTTTTTT
AGTTTTTTTT
TATTTTTTTT
TCTTTTTTTT
41

目的基因的分离方法

目的基因的分离方法

目的基因的分离方法摘要:介绍了基因工程中分离所需目的基因的主要策略和最新进展。

总结了基因分离中的各种方法,主要有:直接酶切分离法,化学合成法,序列克隆法,功能克隆法,作图克隆法,表型差异克隆法,计算机辅助分离法等,并对其特点和适用范围进行了简单评述。

关键词:目的基因分离方法基因的分离方法都是根据基因的基本特性创建的,包括基因核苷酸顺序的特异性、基因在染色体上的位置特异性、基因编码的mRNA的特性和基因的差异表达等。

每种方法运用这些特性的一种或者多种,产生了各种各样的分离方法。

这些方法又相互之间组合,从而产生了可以在不同条件下有效分离目的基因的分离策略。

1 直接提取纯化此法只适用于分离多拷贝基因,而不适用于单拷贝基因。

并且所得到的目的基因纯度较低。

但是操作简单,对设备的依赖性很低,即使在很简陋的实验室里也能完成操作。

2 在体外用化学合成或酶促合成的方法取得目的基因通过对表达产物的分析和测序,可以预测目的基因的核苷酸序列,然后按照DNA碱基序列顺序,先合成DNA短片段,再通过DNA连接酶作用,将这些短片段依次连接成一个完整的基因。

人工合成基因的最大优点是能够根据需要合成突变基因,而且,所合成的是单基因,无其它有害基因,比较完整;缺点是只适用于较短的基因,操作比较难,费用也比较大。

目前这种方法主要用于PCR引物的合成,一些突变基因的合成等。

3 序列克隆——根据已知基因的序列克隆基因3.1 PCR扩增克隆当已知目的基因的序列时,通常采用PCR的方法来克隆基因。

基本原理和方法是:利用已知目的基因的序列,设计并合成一对寡核苷酸引物,提取所要从中分离基因的染色体DNA(RNA需要在逆转录酶的作用下合成cDNA的第1条链),然后通过PCR反应来扩增特定的DNA片段。

扩增的片段经过纯化后,连接到合适的载体上,用酶切分析和序列分析测定所得到的重组子,并与已知基因的序列进行比较,来进行鉴定。

鉴定之后的DNA可以用于基因的表达。

目的基因的克隆

目的基因的克隆

如果先将细胞固定在低融点凝
A
A
胶中,然后置入含有SDS、蛋 白酶K、RNase的缓冲液中浸泡,可获得1000 kb大小的DNA片段基因的构建程序基因组DNA的切割
用于基因组构建的DNA片段的切割一般采用超声波处理和 限制性内切酶部分酶切两种方法,其目的是:
第一,保证DNA片段之间存在部分重叠区 第二,保证DNA片段大小均一 超声波处理后的DNA片段呈平头末端,需加装人工接头 部分酶切法一般选用四对碱基识别序列的限制性内切酶,如: Sau3AI或MboI等,这样DNA酶解片段的大小可控 连接前,上述处理的DNA片段必须根据载体的装载量进行分级 分离,以杜绝不相干的DNA片段随机连为一体!
5 ‘
5 5‘
‘ 聚合
5
‘ 5 退火
‘ 5 ‘
5 ‘
变性
5 ‘ 5
‘ 聚合
5 ‘ 5 ‘
5
5‘
底物 ‘
5
‘ 5
引物 ‘
5 ‘
5
加热

5
5

底物 ‘
5 ‘ 5
2. PCR克隆目的基因的基本程序
由Taq DNA聚合酶扩增的PCR产物中,其3’末端总是会带 有一个非模板依赖型的突出碱基,而且这个碱基几乎总是A,因 为Taq DNA聚合酶对dATP具有优先聚合活性。由于该突出碱基 的存在,克隆时即可以采取TdT末端加同聚尾的方法与载体拼接 ,也可以使用专门的T载体克隆
5’ A
A PCR扩增产物 5’
T7 lacZ MCS ori 5’
T
Apr T T 载体 5’
3. PCR盒式引物扩增法
5‘ 端不含磷酸基 团
变性 引物退火
Sau3A部分酶切 加装盒式接头片段

生物分子类实验室常用实验技术原理汇总

生物分子类实验室常用实验技术原理汇总

一、GST pull-down实验基本原理:将靶蛋白-GST融合蛋白亲和固化在谷胱甘肽亲和树脂上,作为与目的蛋白亲和的支撑物,充当一种“诱饵蛋白”,目的蛋白溶液过柱,可从中捕获与之相互作用的“捕获蛋白”(目的蛋白),洗脱结合物后通过SDS-PAGE电泳分析,从而证实两种蛋白间的相互作用或筛选相应的目的蛋白,“诱饵蛋白”和“捕获蛋白”均可通过细胞裂解物、纯化的蛋白、表达系统以及体外转录翻译系统等方法获得。

此方法简单易行,操作方便。

注:GST即谷胱甘肽巯基转移酶(glutathione S-transferase)二、足印法(Footprinting)足印法(Footprinting)是一种用来测定DNA-蛋白质专一性结合的方法,用于检测目的DNA 序列与特定蛋白质的结合,也可展示蛋白质因子同特定DNA片段之间的结合。

其原理为:DNA 和蛋白质结合后,DNA与蛋白的结合区域不能被DNase(脱氧核糖核酸酶)分解,在对目的DNA序列进行检测时便出现了一段无DNA序列的空白区(即蛋白质结合区),从而了解与蛋白质结合部位的核苷酸数目及其核苷酸序列。

三、染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)是研究体内蛋白质与DNA 相互作用的有力工具,利用该技术不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰以及转录因子与基因表达的关系。

染色质免疫沉淀技术的原理是:在生理状态下把细胞内的DNA与蛋白质交联在一起,通过超声或酶处理将染色质切为小片段后,利用抗原抗体的特异性识别反应,将与目的蛋白相结合的DNA片段沉淀下来。

染色质免疫沉淀技术一般包括细胞固定,染色质断裂,染色质免疫沉淀,交联反应的逆转,DNA的纯化及鉴定。

四、基因芯片(又称 DNA 芯片、生物芯片)技术基因芯片指将大量探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

第6章目的基因的分离克隆(植物基因工程)课件

第6章目的基因的分离克隆(植物基因工程)课件
一条互补DNA,即第一条 DNA链 , 形 成 RNA- DNA 杂合双链。然后合成第2 条链。
12
13
14(2) 如何从cDNA中找到所需要的基因?15转录水平上的基因克隆方法
l 差别杂交筛选 l 扣除杂交 l 代表性差别分析 l 差异显示 l cDNA阵列杂交 l 基因表达系列分析 l 抑制差减杂交
筛选目的基因(核酸探针法、免疫结合法)因库应当能包括全部的基因组序 列。如果每一个克隆包括的DNA片段大,则总 克隆数目少,常选择能接受较大片段的载体。 令检测是否包括一个完整的基因组序列的公式:
令例:人类基因组3.0x106kb, 以λEMBL作载体, 插入片段的平均长度为17kb ,p为99%时, 基因 库应有8.1x105 个 重组噬菌体。
21
22
n基于EST信息的基因克隆
EST
23
由杨树EST库获得基因序列
PCNA
24
克隆的核酸酶
25
26
2、基因组水平上的克隆
将ry) :将某种生物的基因组DNA切割成 一定大小的片段,并与合适的载体重组后导入宿主细胞,进 行克隆。这些存在于所有重组
➢差别杂交筛选
含有表达 目的基因
不含有表 达目的基因cDNA 铺平板转膜 转膜提取分离 mRNA
cDNA 探针
提取分离 mRNA
cDNA 探针
比较 分析
用对照样品cDNA作探 针杂交的X光片中没有 而在检测样品cDNA作 探针杂交的X光片中有 的印斑,可对照X光片 从原平板挑出菌落进行 鉴定是否含有目的基因
31
菌落杂交技术寻找目标DNA克隆
32
文 库 的 抗 体 筛 选
33
(2) T-DNA标签克隆基因

目的基因的克隆与分离鉴定ppt完美版

目的基因的克隆与分离鉴定ppt完美版
以人的基因组为例,如果载体承受外源DNA片段 的能力为1-3kb;那么,人类基因组DNA需被切割成 几十万个大小不等的片段;
每个片段都分别插入到一个载体分子上,这样就 会形成由几十万个不同的重组分子组成的克隆群体;
要想从如此巨大的克隆群体中筛选带有目的基因 的克隆,显然是非常费事的。
(二) 鸟枪法操作的改进
(一) cDNA法克隆目的基因的基本战略
1.cDNA第一链的合成
G 5‘ppp’G 5
mRNA
引物 退火
G 5‘ppp’G 5
逆转录酶
dNTPs
G 5‘ppp’G 5
cDNA第一链
AAAAAAAAAAAAAAOH3’
AAAAAAAAAAAAAAOH3’ TTTTTTTTTTTTTTp5’
AAAAAAAAAAAAAAOH3’ TTTTTTTTTTTTTTp5’
序从众多克隆中分离出含有目的基因的目的重组子, 5‘ pGGGGGGG
全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控; 可利用此接头序列设计两条接头引物Q1和Q2。 作为重组DNA连接等的构件
进而获得目的基因。 化学合成DNA的实质是按照序列要求将脱氧核苷酸单体一个
3‘ HOCCCCCCC 使对任何一种表型相关的基因的定位成为可能。 DMT:
(二) cDNA法克隆目的基因的局限性
并非所有的mRNA分子都具有polyA结构 细菌或原核生物的mRNA半衰期很短 mRNA在细胞中含量少,对酶和碱极为敏感, 分离纯化困难 仅限于克隆蛋白质编码基因
三 PCR法
(一)PCR法定向扩增目的基因的基本原理
PCR(Polymerase Chain Reaction)法,又称为聚合酶 链反应或PCR扩增技术,是一种高效快速的体外DNA聚合 程序。 使用PCR法克隆目的基因的前提条件是:已知待扩增目 的基因或DNA片段两侧的序列,根据该序列化学合成聚合 反应必需的双引物。

PCR技术克隆目的基因全过程

PCR技术克隆目的基因全过程

PCR技术克隆目的基因全过程PCR(聚合酶链式反应)是一种体外的DNA合成技术,可以通过放大目的基因序列来克隆和检测DNA。

以下是PCR技术克隆目的基因全过程的详细解释。

1.设计引物:引物是用于扩增目的基因的短DNA片段。

引物分为前向引物和反向引物,其序列分别与目的基因的5’和3’末端相互匹配。

引物的设计应该尽量避免互相形成二聚体或发生引物间杂交。

一般情况下,前向引物和反向引物的长度约为18-30个碱基。

2.DNA模板的准备:DNA模板是PCR反应中的起始材料,可以是从细胞中提取的基因组DNA、cDNA或合成的DNA片段等。

DNA模板需要经过特定的处理步骤,如酶切或热变性,以解开DNA双链结构,使得引物能够与目的基因序列起始材料结合。

3.PCR反应体系的制备:PCR反应体系通常包含DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)、聚合酶、缓冲液和稀释的镁离子。

这些成分需要以特定的量和浓度配制在一起。

在反应体系中加入适量的聚合酶,可以保证PCR反应能够进行。

4.PCR扩增条件设定:PCR反应需要经历一系列的温度变化,这些温度的设定旨在创造一个适宜扩增引物的环境。

PCR反应通常包含三个主要的步骤:变性、退火和延伸。

变性步骤中,DNA模板的双链结构被加热到95°C,使其变性为两条单链DNA。

退火步骤中,反应体系温度降至碱基互补序列的温度,使引物能够与DNA模板结合。

延伸步骤中,反应体系温度升至适合聚合酶的工作温度,引物被复制形成两条新的双链DNA。

这三个步骤的温度和时间根据目的基因的特性和引物的设计来设定。

5.PCR扩增循环:PCR反应通常包含20-40个循环,每个循环包括变性、退火和延伸三个步骤。

每个循环都会使目的DNA序列扩增一倍。

PCR反应的循环数取决于目的基因的起始材料的丰度和所需扩增的DNA数量。

6.PCR产物检测:PCR扩增产物可以通过凝胶电泳等方法进行检测。

凝胶电泳可以将PCR扩增产物按照大小分离。

克隆基因提取实验报告(3篇)

克隆基因提取实验报告(3篇)

第1篇一、实验目的本实验旨在学习并掌握克隆基因提取的基本原理和操作步骤,通过实验操作,提取目的基因,为后续的基因克隆、表达和功能研究奠定基础。

二、实验原理克隆基因提取主要利用DNA提取技术,通过破碎细胞、释放DNA、去除杂质等步骤,得到高纯度的DNA。

本实验采用碱裂解法提取目的基因,该方法具有操作简单、提取效率高、DNA纯度好等优点。

三、实验材料1. 实验试剂:NaCl溶液、Tris-HCl缓冲液、无水乙醇、异丙醇、二苯胺染液、DNA提取试剂盒等。

2. 实验仪器:高速离心机、电子天平、移液器、PCR仪、凝胶成像系统等。

3. 实验样品:目的基因载体(含目的基因)、细菌菌液等。

四、实验步骤1. 细菌培养:将目的基因载体转化至大肠杆菌,挑取单克隆菌落,接种于含有适量抗生素的LB液体培养基中,37℃、200 r/min培养过夜。

2. 酵母提取物制备:将过夜培养的菌液按1:100比例稀释,加入酵母提取物、葡萄糖等,37℃、200 r/min培养至对数生长期。

3. 细菌裂解:将培养好的菌液按照1:10比例加入裂解液,55℃水浴30 min,期间每隔5 min振荡1次,使菌体充分裂解。

4. DNA沉淀:将裂解液按照1:2比例加入等体积的异丙醇,混匀,4℃、12 000r/min离心10 min,弃上清液。

5. DNA洗涤:将沉淀用70%乙醇洗涤1次,4℃、7 500 r/min离心5 min,弃上清液。

6. DNA溶解:将沉淀用适量TE缓冲液溶解,-20℃保存。

7. DNA纯化:按照DNA提取试剂盒说明书进行操作,得到高纯度的目的基因。

8. 验证:将提取的目的基因进行PCR扩增,观察扩增结果,确认目的基因提取成功。

五、实验结果与分析1. PCR扩增结果:通过PCR扩增,成功获得目的基因,扩增产物大小与预期相符。

2. DNA纯度:利用NanoDrop2000检测提取的目的基因,A260/A280比值在1.8-2.0之间,表明DNA纯度较高。

目的基因克隆[方案]

目的基因克隆[方案]

一、目的基因克隆的策略有哪些?其理论依据什么?如何根据具体条件,如目的性状的特点,已知控制目的性状的基因的信息合理选择基因克隆的方法?1、主要有以下几个克隆的策略:(1)PCR法分离目的基因:从蛋白质的一级序列分析得到核酸序列的相关信息,设计简并引物,通过对mRNA进行反转录得到cDNA,以cDNA为模板,然后将目的基因通过PCR方法扩增,或者直接从基因组DNA扩增的方法。

(2)核酸杂交的方法:通过对蛋白质的氨基酸序列分析,设计简并引物,通过核酸杂交的方法从基因文库中筛选得到目的基因。

(3)免疫学筛选法分离目的基因:利用免疫学原理,通过目的蛋白的特异抗体与目的蛋白的专一结合,从表达文库中分离目的蛋白基因。

2、若控制该性状的目的蛋白质不容易分离纯化,这PCR方法比较适宜,若蛋白质分离纯化容易,且有现成的基因文库,则后两种方法较为简单。

二、蛋白组学方法克隆目的基因的理论依据是什么?有哪些技术环节?要用到哪些技术?1、理论依据:以分离纯化的目的蛋白为研究起点,通过对目的蛋白的一级结构分析,获得起码的氨基酸序列信息后,反推可能的DNA序列,然后设计引物,从cDNA中将目的基因扩增出来,或者设计核酸探针,通过杂交技术将目的基因从基因文库中筛选出来。

或通过抗体抗原免疫反应从表达文库中将该基因分离出来。

2、技术环节是确定并制备出高纯度的蛋白质。

3、所需要的实验技术有:蛋白质的双向电泳技术,由第一向的等电聚焦电泳和第二向的SDS-PAGE电泳组成;蛋白质氨基酸序列分析。

三、基因组学方法克隆基因的策略有哪些?各有什么特点?如何选择恰当的基因组学方法克隆目的基因?1、基因文库筛选方法通过对基因文库的筛选将目的基因分离出来,一般有两种方法:核酸杂交法,原理是分子杂交;PCR筛选法,通过PCR方法将目的基因分离出来,对于以混合形式保存的文库,先将文库分成几份,每份为一个“反应池”进行PCR反应,待选出阳性池后,将阳性池的混合克隆稀释,然后等量分置96孔板中,进行横向池及纵向池的PCR反应,然后将阳性菌落群进行稀释,重复上述工作,直到筛出阳性单克隆。

第四章 目的基因的分离克隆

第四章 目的基因的分离克隆

第四章 目的基因的分离克隆一般认为基因克隆,主要包括以下几个过程:①DNA片段的分离、纯化,即目的基因的制备;②外源DNA片段与载体DNA分子的体外连接;⑧人工构建的重组体向寄主细胞内的转移;④重组克隆的筛选和鉴定。

第一节 化学法合成目的基因这种方法主要适用于已知核苷酸序列的、分子量较小的目的基因的制备。

随着蛋白质和DNA序列测定技术的发展,越来越多的基因结构已被测定出来,重组DNA技术的发展也有力地推动了基因化学合成的研究,特别是各种DNA自动合成仪的问世,大大地改变了化学合成基因的面貌;从最初只能人工合成15bp的寡核苷酸片段,到目前可以利用自动合成程序合成长达200bp的寡核苷酸片段。

利用DNA连接酶的作用,甚至可以合成和组装更长的基因片段。

到目前为止,已经成功地合成了数十种基因。

目前基因合成更多的是由DNA自动合成仪来完成.第二节 PCR技术在基因克隆中的应用聚合酶链式反应(polymerase chain reaction,PCR)是利用单链寡核苷酸引物对特异DNA片段进行体外快速扩增的一种方法。

该反应是一指数式反应,其可在短时间内使目的片段的扩增量达到106倍,可从极微量的DNA乃至单细胞含有的DNA起始,扩增出ug级的PCR产物。

自20世纪80年代中期PCR技术问世以来,迅速渗透到了分子生物学的各个领域,现已在基因克隆、外源基因的整合检测、物种起源、生物进化等方面得到了广泛应用。

本节将对PCR的基本技术及在基因分离克隆中常用的PCR方法加以介绍。

一、PCR基本技术1.PCR原理利用PCR技术对目的片段的快速扩增实际上是一种在模板DNA、引物和4种脱氧核糖核苷酸存在的条件下利用DNA聚合酶的酶促反应,是通过3个温度依赖性步骤完成的反复循环。

反应共分3步进行: (1)变性(denaturation),即双链DNA在94℃下通过热变性使其双链间氢键断裂而解离成单链。

(2)退火(annealling),即当变性温度突然降至引物Tm值以下时,引物与模板DNA互补序列杂交。

克隆模型实验报告总结(3篇)

克隆模型实验报告总结(3篇)

第1篇一、实验背景克隆模型实验是一种重要的生物学研究方法,通过模拟生物体发育过程中的基因表达和细胞命运决定,帮助我们理解生物发育的分子机制。

本实验旨在通过构建克隆模型,探究特定基因在细胞命运决定中的作用,以期为相关疾病的诊断和治疗提供理论依据。

二、实验目的1. 构建克隆模型,模拟生物体发育过程中的基因表达和细胞命运决定;2. 探究特定基因在细胞命运决定中的作用;3. 为相关疾病的诊断和治疗提供理论依据。

三、实验方法1. 构建克隆模型:通过基因编辑技术,将目标基因敲除或过表达,构建克隆模型;2. 分离细胞:将构建好的克隆模型细胞进行分离,得到不同基因表达的细胞群体;3. 观察细胞形态和功能:通过显微镜观察细胞形态变化,检测细胞功能变化;4. 数据分析:对实验数据进行统计分析,得出结论。

四、实验结果1. 成功构建克隆模型:通过基因编辑技术,成功构建了敲除和过表达目标基因的克隆模型;2. 分离细胞:成功分离出不同基因表达的细胞群体;3. 细胞形态变化:与野生型细胞相比,敲除目标基因的细胞形态发生了显著变化,过表达目标基因的细胞形态与野生型细胞相似;4. 细胞功能变化:敲除目标基因的细胞功能受到显著影响,过表达目标基因的细胞功能与野生型细胞相似。

五、实验结论1. 成功构建了克隆模型,模拟了生物体发育过程中的基因表达和细胞命运决定;2. 特定基因在细胞命运决定中起着重要作用,敲除或过表达该基因会导致细胞形态和功能发生显著变化;3. 为相关疾病的诊断和治疗提供了理论依据。

六、实验讨论1. 克隆模型实验为研究基因功能提供了有力手段,有助于揭示生物发育的分子机制;2. 本实验结果表明,特定基因在细胞命运决定中具有重要作用,为相关疾病的诊断和治疗提供了新的思路;3. 未来研究可以进一步探究该基因在不同细胞类型中的作用,以及与其他基因的相互作用。

七、实验展望1. 深入研究该基因在细胞命运决定中的作用机制,揭示其在生物发育过程中的调控网络;2. 探索该基因在相关疾病中的作用,为疾病的诊断和治疗提供新的靶点;3. 将克隆模型实验与其他研究方法相结合,进一步拓展其在生物学研究中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1目的基因分离克隆
二 PCR合成目的基因
• 定义:分离纯化出的目的片段用PCR仪扩增 (详见主要技术)
相似,防错配 引物3’末端:避免为A(易错配) CG含量:40%-60% ※未知序列时:用近缘生物对应片段参考
• RT-PCR间接合成:以mRNA为模板逆转录出 cDNA,再以cDNA为模板 PCR
※cDNA: 定义:以mRNA为模板逆转录合成的无内含子
单链环状DNA 特点:无内含子、单链环状,逆转录酶属于
DNA聚合酶,需引物三 基因分离目的基因 • 基因组的建立:
• cDNA的建立:四 基因图位克隆 • 染色体步移法:
• 染色体登陆:
※本章总结
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
相关文档
最新文档