110kv变电所防雷设计说明

合集下载

110kV变电站的防雷保护措施探讨

110kV变电站的防雷保护措施探讨

110kV变电站的防雷保护措施探讨随着电力系统的不断发展,变电站的重要性日益凸显。

而变电站的运行稳定与否直接关系到电网的安全运行和电力设备的可靠性。

在变电站运行中,雷击是一个不可忽视的危险因素。

一旦发生雷击,将会对变电站设备和运行产生严重影响,甚至导致事故发生。

对于110kV变电站的防雷保护措施的探讨是十分必要的。

110kV变电站的防雷保护措施主要包括设备的防雷设计、接地系统的设置、避雷针的安装、雷电监测系统的建设等方面。

下面将对这些方面逐一进行探讨。

一、设备的防雷设计110kV变电站中的各种设备,如变压器、开关设备、避雷器等,都需要进行防雷设计。

其目的是在雷暴天气中,尽可能减小雷电对设备产生损害的可能性,确保设备的安全运行。

防雷设计的主要措施包括采用耐雷电水平高的材料和结构设计、增强设备本身的绝缘水平、设置避雷器等。

避雷器是110kV变电站中最为重要的防雷设备之一,它能够在雷电冲击时将电流分流到地下,有效保护设备的安全。

二、接地系统的设置110kV变电站的接地系统起着非常重要的作用,它不仅是电气设备的安全设施,还是防雷的关键措施之一。

合理的接地系统能够有效地消除雷电对设备的影响,确保设备的安全运行。

接地系统的设置主要包括接地电阻的设计、接地网的布设、接地极的选择等方面。

通过合理的接地系统设置,可以有效降低雷电冲击对设备的损害。

三、避雷针的安装110kV变电站的避雷针是其防雷保护措施中不可或缺的部分。

避雷针能够将大气中的电击置于地下,降低雷击发生的概率,从而保护变电站设备的安全。

避雷针的高度和数量的设置应根据变电站的实际情况以及当地的气象条件来确定,以保证其防雷效果。

四、雷电监测系统的建设110kV变电站的雷电监测系统是对雷电天气进行监测和预警的重要手段,它可以实时监测大气中雷电的频率、强度等信息,及时发出预警信号,提醒变电站工作人员采取相应的防雷措施,为设备的安全运行提供保障。

雷电监测系统的建设应尽可能覆盖变电站周围的范围,并具备足够的灵敏度和准确性,确保其能够及时、准确地进行雷电监测与预警。

浅谈110kV输电线路的防雷设计

浅谈110kV输电线路的防雷设计

幅减少 ;还能起到降低 电力线对通信线的干扰屏蔽功能 。结合避雷线的 不同用途 ,可以以两种模式进行避雷线悬挂:一是在线路杆塔上直接悬
挂避雷线 ,二是在避雷线与线路杆塔之间加设绝缘子。考虑到各相导线 与避雷线 之间的距离往往不等 ,其间所产生 的互感值不一定相 同,所 以,及时正常条件下三相导线上存在平衡 的负荷电流 ,避雷线上依然可 能存在一个纵电动势。假如此时将避雷线在每基杆塔均接地的话 ,就容 易增加了线路的电能损失 。结合公式可以得出 ,与线路长度和负荷 电流 的平方成正比。对于本文所涉及的l0 V 0 0 m 电线路 ,线路的 1k 长3 ~5 k  ̄ 电能损失有可能超过 l万度。所 以,在设计10 V 电线路时 , 0 1k 输 一般来 讲 ,推荐使用绝缘避雷线避 免过多的电能损耗。此外还应强调的是 , 虽 然避雷线是绝缘 的,在雷击发生时 ,由于在雷电先期放 电阶段,避雷线 的绝缘就已被击穿而呈现接地状态 ,因此其防雷效果不会受到影响。 23 加强输 电线路的绝缘水平 . 对于10 V 电线路来讲 ,其耐雷水平与绝缘水平之间为正比关系。 1k 输 因此 ,确保 10V 电线路有合适的绝缘强度 ,强化零值绝缘子的检测, k输 1 能够在很大程度上提高线路耐雷水平。在进行 10V输电线路的设计时, 1k 应结合各类绝缘子的实际陛能,对其防雷参数与特征进行分析。其中,玻 璃绝缘子不易老化 、 耐电弧 , 零值 自 爆,自 洁性能 良 , 好 再加上玻璃物质 属于质地均匀的熔融体 , 及时被高温烧伤 , 表面仍是光滑的玻璃体 , 可以 继续发挥绝缘性能,因此 ,设 计线路时应首选玻璃绝缘子。 24 进行 合理 的接地设计 . 对于穿越山区的10 V 1k 线路来讲 ,很多海拔的土壤 电阻均大 于10 00 欧・ ,需要设计 为放射形接地装置来使杆塔的接地 电阻满足相关规定 米 值 ,而射线的辐射范围往往在几十米 。在坡度大 、地形复杂的地区 ,也 可以使用降阻剂来使接地 电阻下降 ,此时射线 的辐射范围可以稍微降低 些。根据使用经验 ,降阻剂 的效果是 比较显著的。首先 ,它可以与金属 接地体紧密接触 ,从而大 幅度减少 了接触电阻;其次,由于降阻剂可以 向周 围土壤渗透 ,在接地体周围形成一个低电阻区域,从而降低周围土 壤 电阻率。

110kv变电站二次系统的防雷保护措施

110kv变电站二次系统的防雷保护措施

110kV变电站二次系统的防雷保护措施姬慧(扬州供电公司,江苏扬州225000)cI{奄要】变电站二次系统防雷这个课题的探讨和实践,对馓高变电站内.0惫设备的运行安全巨和可靠性是有重要意叉的。

【关键词】1l O kV变电站;二次系统;过电压;防雷保护1变电站二次设备过电压防雷保护的必要性随着大规模集成电路的使用,电子元器件的性能大大提高。

但其抗电磁干扰、抗过电压和雷击的能力却变得十分脆弱。

例如,电磁型继电器的摧毁能量为0.1J,而现在普遍使用的微机保护摧毁能量仅为O.001J。

随着变电站综合自动化和继电保护微机化改造,微电子设备的应用越来越广泛,如果不采取有效的防护措施,这些脆弱的控制自动化设备就无法正常工作,甚至成为电力系统的安全隐患。

2变电站二次系统防雷保护原则现时变电站所采用的外部防雷措施是有效的,它们保护一次设备免受直接雷击。

但是单凭这些外部避雷设施,还远不足以消除间接雷电或一次设备事故、操作对二次设备及微电子设备的危险影响,因此,变电站必须有—个完整的—、二次防雷防电磁冲击的保护网。

2.1=次设备防雷保护的设计思想根据这一原则,为变电站内二次设备和电子设备创造一个良好的电磁环境,同时也是对变电站运行人员人身安全的保护。

通过安装在低压配电线路和信号线路上的电涌保护器,把能量较大的雷电流在纳秒级的时间内泄放入大地,使自动化系统通信和配电设备免受;中击。

I E C61312《雷电电磁脉;中的防护'及G B5。

571994健筑物防雷设计规;蛰分别提出和规定了系统防护的概念和方法。

要求在建筑物内外建立均压等电位系统,如图1所示;指出现代意义的防雷工作应从以建筑物为保护重点,发展到以电子信息系统为保护核心:强调综合治理、整体防御、分级泄流、层层设防的思路,把防雷看成—个系统工程。

图l建筑物舫雷系统框图建筑物防雷系统框图,对于任何一个系统的防雷工程而言,只有全面、正确、有效地实施图1所示各项环节,才能构成完整的防雷体系。

110kV变电站的防雷保护措施简述

110kV变电站的防雷保护措施简述

110kV变电站的防雷保护措施简述摘要:随着中国经济的飞速发展和人民生活水平的提高,人们日常生活中的电力发挥着非常重要的作用。

无论是在办公室还是在日常生活中,我们都离不开电。

为确保电力正常使用,110kV变电站必须保证安全可靠的运行。

110kV变电站是电力系统的枢纽,是交流中心,是电源电压和电流的集中和分配,自然现象的雷电可能导致110kV变电站设备受到很大破坏。

所以在工程设计过程中,加强110kV变电站基础控制措施,有效保证电力系统的正常运行,对于日常生活和工作有着非常重要的作用。

关键词:110kV变电站;防雷保护;措施1 雷电的危害天气状况中,雷电是经常发生的现象,而当它的等级加大,危害也会随之而来。

雷电是带电荷的雷云引起的放电现象,当它作用于变电站的电子设备时,会瞬间施加很大电流,超过电子设备的电阻所承受的范围,从而造成供电线路断开、跳闸等故障。

这些故障一旦发生,造成大面积停电,给工农业生产和人们的日常生活带来严重损失和重大影响。

变电站多数分布在偏远地区,且分布较广,遭受雷击的可能性极大。

一旦遭受雷击,变电站所供电的区域马上会停电,工业生产会中断,对其机器也会造成一定损伤,对居民的生活会造成较大不便,人们的出行也会有一定影响,交通信号灯的失灵会引起交通瘫痪。

科技的进一步发展使得在变电站中有更多的电子设备的投放,这使得其遭受雷击危害几率大大增加。

其危害不言而喻,而究其根源,是变电站防雷技术不过关造成的,遭受雷击后,雷电波会沿着供电线路传播,影响范围很大,对变电站的调度、载波、通信、监控设备都有一定程度损坏,如果不能够及早采取措施,更容易引发安全事故。

2 110kV变电站防雷接地设计的原则110kV变电站防雷原则就是要尽可能的降低雷击造成损失。

一切从实际出发,根据不同区域的不同情况,在防雷措施方面也同样采取不同的方法,并结合当地自然环境、生态环境、地理地质条件环境、以及线路周边环境等要素,经过实地考察后,设计出安全可靠又符合实际的防雷措施,以此达到110kV变电站的防雷目的。

有关110kV变电站的防雷接地设计的研究

有关110kV变电站的防雷接地设计的研究

有关110kV变电站的防雷接地设计的研究110kV变电站是电力系统中重要的组成部分,而防雷接地设计是变电站建设中必不可少的一部分。

因为变电站的设备和线路都极容易受到雷击,因此需要对变电站进行防雷接地设计,以防止雷击对变电站设备和线路造成损坏。

本文将对110kV变电站的防雷接地设计进行研究探讨,以保证变电站的安全运行。

防雷接地设计是指通过合理的接地系统,将雷电流迅速引入大地,避免雷电流对设备和线路的损害。

对于110kV变电站,其防雷接地设计需要考虑以下几个方面:1. 接地系统的选择:110kV变电站的接地系统通常包括平衡接地和非平衡接地两种形式。

平衡接地适用于特高压变电站,而非平衡接地适用于中压变电站。

需要根据110kV变电站的具体情况选择合适的接地系统。

2. 接地电阻的计算:接地电阻是衡量接地系统性能的重要指标,接地电阻越小,接地效果越好。

对于110kV变电站的防雷接地设计,需要通过合理的计算方法,确保接地电阻满足规定的要求。

3. 接地材料的选择:接地材料的选择直接影响接地系统的性能,要根据110kV变电站的具体情况选择合适的接地材料,以保证其接地效果。

4. 接地系统的布置:接地系统的布置应考虑变电站的整体布局、设备配置和线路走向等因素,以确保接地系统能够有效地引导雷电流,避免对设备和线路的损害。

二、110kV变电站的防雷接地设计方法1. 平衡接地的设计方法对于特高压变电站,一般采用平衡接地系统,其设计方法主要包括以下几个步骤:(1)确定接地网的布置:接地网的布置应根据变电站的整体布局和设备配置确定,一般采用网状或者环状布置方式。

(2)计算接地电阻:采用传统的公式或者有限元分析方法,对接地网的接地电阻进行计算,以确保满足规定的要求。

(3)接地材料的选择:一般采用优质的接地材料,如裸铜线或者镀铜扁钢等,以确保接地材料的导电性能。

三、110kV变电站防雷接地设计的技术要求和实际应用1. 技术要求(1)接地电阻:110kV变电站的接地电阻应满足规定的要求,一般不大于1Ω。

110kV高压电网输电线路防雷技术措施

110kV高压电网输电线路防雷技术措施

110kV高压电网输电线路防雷技术措施摘要:由于高压电网处于架空环境中,遭受雷击的概率较其他系统高,雷击输电线路事故给国民经济带来极大的损失,为减少此类事故的发生,本文对110kV架空输电线路雷害原因进行了分析,并提出了相关防雷技术措施,以供参考。

关键词:高压电网;雷击原因;防雷措施随着社会经济快速发展,对输电线路供电安全要求越来越严格,对于架空高压输电线路而言,影响最大的因素就是雷击,由于雷击导致的跳闸、停电的事故发生率高,给国民经济带来了极大的影响。

因此,为了确保电力系统的安全稳定运行,采取有效的防雷保护措施,对110kV架空电力线路的防雷保护和接地进行分析和研究,找出雷害事故频发的原因,寻求改进和完善的措施是非常有必要的。

1 雷害发生的成因及主要形式1.1 雷害发生的成因雷电是一种雷云放电的自然现象。

雷云放电的大部分是在云间或云内进行,只有小部分是对地发生的。

当雷云较低、周围又没有带异性电荷的云层,就会对地面突出物如架空线路铁塔或导线放电,产生很大的雷电流,可达几十甚至几百千安。

雷电流能在几个μs内达到最大值,然后在几十μs内衰减下去,它为2.6/40μs的冲击波。

表征雷电流的参数主要是雷电流幅值和雷电流波头的陡度(即雷电流变化的速度)。

雷云对地放电时,不但会在受雷电直击的线路上产生直击雷过电压,也会在雷击点附近未受雷击的线路上形成感应雷过电压。

当雷击过电压高于线路绝缘50%冲击耐受电压U50%时,线路绝缘击穿发生跳闸事故,严重时会发生电网大面积停电事故,威胁电网安全。

1.2 雷害发生的主要形式110kV架空线路发生雷害的主要形式是雷电的反击和绕击。

感应雷对110kV架空线路没有危害,但会对35kV及以下架空线路造成损害。

(1)雷电击中架空地线或杆塔顶时,雷电流下泄中会引起塔头电位升高,其电位大于绝缘子串U50%时,雷电流沿绝缘子串对导线放电,造成架空线路雷电反击闪络跳闸。

若遭受雷击架空线某杆塔高度h为24m,雷电强度I为40kA,杆塔接地电阻R为10Ω。

110kv降压变电所电气一次部分及防雷保护设计

110kv降压变电所电气一次部分及防雷保护设计

1 设计说明110KV降压变电所电气一次部分及防雷保护设计1 设计说明1.1 环境条件⑴变电站地处坡地⑵土壤电阻率ρ=1.79*10000Ω/cm2⑶温度最高平均气温+33℃,年最高气温40℃,土壤温度+15℃⑷海拔1500m⑸污染程度:轻级⑹年雷暴日数:40日/年1.2 电力系统情况⑴系统供电到110kv母线上,35,10kv侧无电源,系统阻抗归算到110kv侧母线上U B=Uav SB=110MV A系统110kv侧参数X110max=0.0765 X110min=0.162⑵110kv最终两回进线四回出线,每回负荷为45MVA,本期工程两回进线,两回出线。

⑶35kv侧最终四回出线,全部本期完成,其中两回为双回路供杆输电Tmax=4500h,负荷同时率为0.85⑷10kv出线最终10回,本期8回Tmax=4500 h,负荷同时率0.85,最小负荷为最大负荷的70%,备用回路3 MW,6 MW,cosφ=0.85计算电压等级回路名称近期最大负荷(MW)功率因数cosφ回路数线路长度(km)供电方式35KV 1# 12 0.85 1 25 双回共杆2# 10 0.85 1 25 双回共杆3# 20 0.85 1 23 单回架空4# 10 0.85 1 19 单回架空10KV 1# 3 0.85 1 5 架空2# 4 0.85 1 4 架空3# 2 0.80 1 6 架空4# 3 0.80 1 5 电缆110KV降压变电所电气一次部分及防雷保护设计⑸负荷增长率为2%1.3设计任务⑴变电站电气主接线的设计⑵主变压器的选择⑶短路电流计算⑷主要电气设备选择⑸主变保护配置⑹防雷保护和接地装置⑺无功补偿装置的形式及容量确定⑻变电站综合自动化2电气主接线的设计2.1电气主接线概述发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。

它把各电源送来的电能汇集起来,并分给各用户。

它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。

110kV变电站工程防雷接地施工方案

110kV变电站工程防雷接地施工方案

目录一、编制依据 0二、工程概况 0三、作业工期 (1)四、作业前应做的准备 (2)五、作业程序、方法和要求 (2)六、作业过程中见证点(W)和停工待检点(H)的设定 (6)七、作业结果的检查、验收和质量标准 (6)八、安全、文明施工措施 (6)九、危险源辩识、风险评价、控制措施(见下表) (7)十、质量通病预防与强制性条文执行措施 (8)一、编制依据1.XX 110kV变电站新建工程全站防雷接地施工图(南供设计院)。

2.《电气装置安装工程接地装置施工及验收规范》(GB50169-2006)3.《电气装置安装工程电气设备交接试验标准》(GB50150-2006)4.《电气装置安装工程质量检验及评定规程》(DL/T5161.1-5161.17-2002)5.公司三整合体系文件和本工程施工组织设计6.关于印发《国家电网公司十八项电网重大反事故措施》(修订版)的通知(国家电网生技〔2012〕352号)7.《国家电网公司输变电工程标准工艺(一)施工工艺手册》《国家电网公司输变电工程标准工艺(二)施工工艺示范光盘》《国家电网公司输变电工程标准工艺(三)工艺标准库》《国家电网公司输变电工程标准工艺(四)典型施工方案》8.关于印发《国家电网公司输变电工程达标投产考核办法》的通知(国家电网基建〔2011〕146号)9.关于印发《国家电网公司输变电优质工程评选办法》的通知(国家电网基建〔2011〕148号)二、工程概况本工程的接地装置按设计图纸的要求如下:以上接地装置用的钢材均要热镀锌处理,地下焊点要涂以KV导电防腐涂料。

本站接地电阻要求值应符合R≤0.5Ω。

由于接触电势大,本工程要按设计要求采取均压措施,如设立帽檐式均压带,在操作区铺设鹅卵石及沥青混合物等。

参加作业的人员组织分项负责人:安全负责人:技术负责人:接地装置施工设负责人1人,电焊工3人,普工6人。

分项负责人应具有一定文化水平,能看懂图纸,领会设计意图,具有一定的施工经验,电焊工应经过专业培训并经考试合格,具有上岗证的人员担任。

110kV变电站的防雷保护措施探讨

110kV变电站的防雷保护措施探讨

110kV变电站的防雷保护措施探讨110kV变电站作为电力系统重要的枢纽,承担着电能输送和分配的重要任务。

在电力系统中,变电站是非常重要的一环,其正常运行对系统的安全稳定具有重要意义。

随着天气变化和环境条件的改变,雷击对变电站产生的危害也是不可忽视的。

变电站的防雷保护措施显得尤为重要。

本文将探讨110kV变电站的防雷保护措施,以期提高变电站的安全性和可靠性。

一、对110kV变电站的防雷重要性110kV变电站在输电过程中,需要承受外界环境因素的影响,其中雷击是最为常见和具有破坏性的一种。

雷击会对变电站的设备和系统造成直接损害,甚至引发火灾、爆炸等重大事故,对电力系统的运行安全造成严重威胁。

对110kV变电站进行科学有效的防雷保护措施具有十分重要的意义。

1. 雷电传导路径的设置110kV变电站的建筑物、设备等构件都应设有雷电传导路径。

通过合理设置的导体,将雷电流引导到地面,减少雷电对设备和结构的影响。

在建筑物上可以设置避雷针、接地线等,导体应连接到地下的深埋良好的接地装置上,以确保雷电的安全释放。

2. 接地系统的建设110kV变电站的接地系统是防雷保护的核心部分。

接地系统应具备良好的导电性和散流能力,能够及时将雷电流引入地下。

接地系统的建设需要严格按照相关规范和标准进行,确保接地电阻的合格性,以及接地网的合理性和可靠性。

3. 避雷装置的设置110kV变电站的设备和建筑物上,应适当设置避雷装置,以吸收或抑制雷电,减小雷击对设备的危害。

避雷装置可以采用金属避雷带、避雷网等方式,对建筑物和设备进行有效保护。

4. 防雷检测与监控系统110kV变电站还应配备完善的防雷检测与监控系统,用于实时监测雷电活动和变电站周围的雷电情况。

通过信息采集和处理,及时掌握雷电活动的情况,为变电站的安全运行提供重要依据。

5. 人员培训和应急预案110kV变电站的工作人员需要接受相关的防雷知识培训,了解防雷设施的使用方法和维护保养,提高对雷电的防范意识。

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术发布时间:2021-06-25T10:36:41.827Z 来源:《中国电业》2021年3月第7期作者:吴承俊[导读] 110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行吴承俊桂林丰源电力勘察设计有限责任公司广西桂林 541001摘要:110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行。

而雷电灾害是影响变电站运行的主要外部因素,一旦发生雷电故障,将导致严重的后果。

因此,本文主要分析110kV220kV变电站防雷接地技术的应用。

关键词:变电站;防雷接地技术;应用1.110kV220kV变电站出现雷击现象的主要因素由于110kV220kV变电站具有相对特殊的功能和特性,其一般位于相对空旷的区域,户外电气设备基本为金属设备,因此发生雷击的可能性非常高,一旦变电站发生雷击,可能导致严重事故,如停电将对社会的生产生活造成较大影响,也可能导致设备损坏造成严重的经济损失。

为了保护电气设备不受雷电的影响,有必要对变电站的防雷接地技术进行深入研究,一般来说,在变电站正常运行期间,电网电气设备以额定电压运行,但是在雷雨天气中,雷击导致输配电系统中的某些线路出现过电压,进而影响到变电站,根据不同的雷击方式,变电站的雷击过电压主要有以下几种[4]。

1.1雷直击设备过电压雷电直接击中电气设备后,会在电气设备中产生大的雷电流和超高压,同时还会释放出大量的热量,出现的热量将直接影响电气设备的正常运行,容易造成电气设备损坏,影响变电站的正常运行。

1.2雷直击线路及感应雷过电压当雷场移至架空线上时,在静电感应的影响下,会导致架空线上更多的异常束缚电积累,雷云一旦释放地面,将在架空输电线路上造成极高的感应过电压,此外,雷直击中输电线路时,在线路上形成雷电波,雷电波沿着输电线路侵入变电站,从而导致变电站电气设备过电压,这些过电压的出现会对变电站造成严重损害。

110kV输电线路防雷设计

110kV输电线路防雷设计

浅析110kV输电线路防雷设计摘要:本文结合输电线路防雷设计相关工作的开展,分析了110 kv 输电线路遭雷击作用力的产生机理,防雷设计的必然性及措施。

关键词:110kv 输电线路防雷设计中图分类号:s611 文献标识码:a 文章编号:前言雷电是自然界一种极为常见的现象。

对于我国而言,在电力建设发展速度持续提升的背景作用之下,输电线路,特别是110kv输电线路的覆盖面正呈现出极为显著的发展趋势,由此也导致雷击作用力影响下110 kv输电线路运行事故有所加大,经济效益及社会效益的发挥受到了一定程度上的阻碍。

根据相关统计资料数据显示:在2010—2012年间所发生的110 kv输电线路跳闸事故当中,有仅70%比例作用的原因来自于110 kv输电线路所遭受到的雷击事故。

针对110 kv输电线路进行合理且有效的防雷设计处理,其重要意义是可想而知的。

1 110 kv输电线路的防雷设计的必然性作为区域性电能输送与转化作业的核心,110 kv输电线路在实践运用过程中的输配电性能稳定性及可靠性程度备受各方工作人员的特别关注与重视。

各种可能会对110 kv输电线路运行稳定性产生不利影响的因素均应当得到及时且有效的排除。

相关统计资料数据显示:110 kv输电线路遭受雷击并出现跳闸反应的危害程度同多个方面因素均存在较为密切的关系。

在当前技术条件支持下,110 kv输电线路多地处空旷山区或是野地地区,恶劣的自然环境条件使得110 kv输电线路所处运行空间的性能发挥存在受各类型客观因素影响与制约的目的。

与此同时,在较大线路距离处于雷击事故高发地带的情况下,雷击现象的产生将极有可能导致110 kv输电线路绝缘子串闪络部件出现损坏或是烧毁问题,由此也可能引发整个110 kv输电线路的瞬时性跳闸停电动作。

2 110 kv输电线路遭雷击产生机理在认识到雷击作用力对110 kv输电线路的危害基础之上,相关工作人员还需要针对雷击作用力作用于110 kv输电线路过程当中对其发生影响的机理,在此基础之上明确与之相对应的防雷设计思路。

110kV 输电线路并联间隙防雷装置的设计与运行

110kV 输电线路并联间隙防雷装置的设计与运行
张翠 霞 ,王献 丽 ,贺 子 呜 . 1 1 O k V输 电 线 路 并 联 间 隙防雷 装 置的设 计 与运 行 … .
电力 建 设 , 2 0 1 1 , 3 2 ( 6 ) : 5 7 - 6 1
环形 的好处是能够获取 明显 的均压作用,并且 能够很 好的保护绝缘子 。棒形 则能改 良端头的
在实 际使用 中受 多方因素的影 响,弧运动 的方 向整体 呈向 电流平衡的移动的趋势 。在弧 根处于静止状 态时,弧根喷出的等离子流具有
充 沛 的 时 间 来对 绝 缘 材 料 进 行 烘 烤 。 因此 ,现
输出工频电弧,减少事故发生的机 率。
在实际 1 l O k V线 路 中安装 复合 绝缘 子并
并联间隙作为 1 1 0 k V输 电线 路 的 防雷 保护 装 置,是 对 现有 的 防 雷措 施 进行 补 充加 强 ,具有 广 阔的发 展 前景 。通 过介 绍 并联 间 隙防 雷装 置 的设 计 ,确 定 并联 捡 起 的 电 气参数 及 其外 形尺 寸 ,通 过 现场 测 试 实验 ,确定 其 可靠 性 和效 果。为今后 的设 计提 供参考 , 也为线路 防雷做 出贡献。
象 ,此 时 并 联 间 隙 发 挥 出其 作 用 ,绝 缘 子 的保
可 以直接使 用开 口型的高低压招弧 电极 ,在达 子的作用。在进行并联间隙安装后 ,线路 的水
存较完好 ,没有遭受破坏 ,达到 了保护绝缘子
的 要 求 和 目的 。 而 对 同塔 双 回线 路 ,合 理 的 间 隙 设 计 能 够 在 一 定 程 度 上 减 少 因雷 击 而 导 致 的
免受灼烧和损耗 。此种并联间隙的防雷装置 的 设计和 投入运 行,能够 对现有的设施 的不足进

110kV输电线路防雷及防鸟害设计

110kV输电线路防雷及防鸟害设计

110kV输电线路防雷及防鸟害设计110kV输电线路容易遭受雷电反击、雷电绕击等雷击破坏,并产生故障,特别是在山区、高原、旷野地带。

而随着生态环境的改善,110kV输电线路的安全稳定也受到了大量的鸟类威胁。

鸟类对110kV输电线路造成破坏的主要方式是鸟粪闪络、鸟巢短路。

因此,110kV输电线路有必要设计防雷、防鸟害的装置。

为了防雷,110kV输电线路上可以架设避雷线、地线,降低输电线路杆塔接地电阻,安装侧向避雷针等避雷设备,安装自动化重合闸设备(防雷保护间隙),等等;为了防鸟害,110kV输电线路上可以安装防鸟挡板、防鸟刺,以及驱鸟器,等等。

标签:110kV;输电线路;防雷;防鸟害前言:110kV输电线路在我国分布广泛,输送了大量的电力,但是由于大多分布在山区、丘陵、高原、旷野等地,很容易遭受雷击,导致110kV输电线路瘫痪。

而随着我国生态环境的改善,鸟类也经常因为在110kV输电线路上筑巢、落脚、排泄,而危害到110kV输电线路的安全。

因此,110kV输电线路需要防雷、防鸟害。

1 110RV输电线路设计防雷及防鸟害的必要性1.1 110kV输电线路设计防雷的必要性110kV输电线路大多架设在山区、高原、旷野,施工上有很大困难,接地条件有限,因此110kV输电线路很容易遭受雷电反击现象的破坏,也就是雷电击中输电线路杆塔,导致杆塔顶端的电压过高,击穿绝缘子,而放电的现象。

即使安装了雷电规避、保护装置,如避雷线,雷电还是可能绕过这些装置,导致避雷保护失效,这种现象叫做雷电绕击。

国家电网公司曾有统计,雷击导致了52%至63%的输电线路故障,特别是山区、高原、旷野地带的架空输电线路,由于雷电活动频繁等地理气候因素,更容易因雷击而跳闸。

雷电绕击的概率,与输电线路杆塔高度、导线保护角度有关;雷电反击导致跳闸的概率,与输电线路杆塔高度有关。

1.2 110kV输电线路设计防鸟害的必要性据新疆电力公司2012至2014年数据,输电线路涉鸟害的故障仅次于外力破坏、风害,给输电线路安全带来了重大威胁。

110kV输电线路雷击故障原因分析及防范措施

110kV输电线路雷击故障原因分析及防范措施

110kV输电线路雷击故障原因分析及防范措施电力系统中输电线路遭受雷击的现象越来越多,雷击成为引起线路跳闸故障的主要原因之一,严重影响到输电线路的运行安全。

本文针对一起110kV输电线路雷击故障后进行了详细分析,并对雷击故障做了详细的理论计算,最后结合运行实践经验提出了针对性预防措施,为电力运行单位提高输电线路运行可靠性和防雷管理工作提供了借鉴与指导。

标签:输电线路;雷击跳闸;原因分析;防雷措施一、引言浙江桐庐电网35千伏及以上输电线路多分布在山顶或山脊,山势陡峭,线路所经地区起伏变化较大,气象条件十分复杂。

虽然该地区全线都架设双避雷线保护,但由于输电线路距离长、跨度大、高杆塔较多,极易遭受雷击。

近几年的故障跳闸统计资料表明,雷击引起的高压输电线路跳闸次數占总跳闸次数的93%,因此雷击已成为当前输电线路故障跳闸的主要原因,不仅影响线路、设备的正常运行,而且极大地影响了日常的生产、生活。

同时输电线路故障跳闸直接影响功率的输送,也对电网的安全、稳定运行构成了严重威胁,采取有针对性的防范措施,尽最大可能降低输电线路跳闸率,是线路运行单位追求的目标,也是构建“坚强智能电网”的前提和根本。

二、具体故障描述2012年8月5日20:21时,桐庐电网发生了乔方1052线A相故障,距离Ⅱ段,零序Ⅱ段保护动作,重合成功,乔林变测距29.2km(约73#塔左右);根据该局SCADA系统历史事项显示,在这个时间点乔方1052线RTUSOE保护信号8个。

浙江省雷电定位系统线路雷电查询结果显示,8月5日20:20-20:21乔方1052线附近共计落雷点4个,数据如下:表1 浙江省雷电定位系统线路雷电查询结果序号时间经度纬度电流(kA)回击站数最近距离(m)最近杆塔1 20:20:08.958 119:31:11 29:55:54 -13.5 0 14 322.4 72~742 20:20:08.492 119:31:7 29:55:56 -13.8 0 14 250.8 72~743 20:20:08.933 119:31:7 29:55:58 -14.9 0 14 202.0 72~744 20:20:14.098 119:26:56 29:56:14 22.8 1 18 545.1 95,96经现场查找,发现乔方1052线73#塔A相瓷瓶串1片瓷瓶(上至下第2片)雷击破碎,4片瓷瓶有雷击痕迹,导线上有不同程度的雷击痕迹。

110kV变电站的接地网与防雷设计

110kV变电站的接地网与防雷设计

绪论随着近年来电力行业的不断发展,电力系统的供电安全成为一个很重要的问题,然而变电站在电力系统中占有重要位置,故变电站的安全可靠运行的工作就显得十分重要。

变电站接地系统的合理性是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计也越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

雷电是影响变电站安全运行的重要因素,变电站发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活,因此变电所防雷措接地施必须十分可靠。

变电站对直击雷的防护方法是装设避雷针,将变电站的进线杆塔和室外电气设备全部置于避雷针的保护范围之内。

为了防止在避雷针上落雷时对被保护物产生“反击”过电压,避雷针与被保护物之间应保持一定的距离。

变电站内安装使用着各种类型的高、低压变、配电设备,这些设备均直接和供电系统的线路相连,而线路上发生雷电过电压的机会较多,因此更要注意防雷。

变电站中防雷的主要装置是避雷器,避雷器是一种防雷设备,它对保护电气设备、尤其是变压器起了很大的作用。

一旦出现雷击过电压,避雷器就很快对地导通,将雷电流泄入大地;在雷电流通过后,又很快恢复对地不通状态。

变电站进线段的防护变电站的进线段杆塔上装设一段避雷线,使感应过电压产生在规定的距离以外,侵入的冲击波沿导线走过这一段路程后,波幅值和陡度均将下降,使雷电流能限制在5kV,这对变电站的防雷保护有极大的好处。

对于本次设计,一方面汲取了指导老师的宝贵意见,一方面查阅了相关的文献,并经过自己学习、研究和大量的计算将其完整的做出,但限于设计者的专业水平有限,难免会出现错误和不足之处,热诚希望老师批评指正。

110KV变电站的电气设计与防雷保护

110KV变电站的电气设计与防雷保护

110KV变电站的电气设计与防雷保护摘要:随着我国社会经济的不断发展,110KV变电站的应用越来越广泛。

为了满足日益增长的用电用户需求,110KV变电站的使用环境更加复杂多样,这就导致110KV在实际应用中出现很多问题,无法保证供电系统的平稳正常运行。

基于此,本篇文章对110KV变电站的电气设计与防雷保护进行研究,以供参考。

关键词:110KV变电站;电气设计;防雷保护引言在电网运行中,雷电是导致电网故障主要自然因素,而且输电线路有着较长里程,作为电力空中运输通道,更易因雷击而触发保护跳闸,严重破坏供电可靠性,同时110KV变电站内设备也会受到雷电的损害,因此,供电企业应意识到防雷防护的重要性,有效降低雷电对输变电设备运行安全的影响。

1110KV变电站的电气设计原则和基本要求电气主接线设计方案直接影响110KV变电站的建设规模,变电站的规模则直接影响电气设备的规模、继电保护装置的规格、配电装置的规格。

这些配置分工协作、平稳正常运行,在一定程度上会对电力系统的安全性和稳定性提供动力支撑。

工作人员要确保人们日常工作的用电正常,在用电质量达到标准的前提下,减少设计时不必要的材料损耗,最大限度控制变电站的经济成本。

2110KV变电站的电气设计2.1电气主接线电气主接线是110KV变电站电气设计时最关键的部分。

电气主接线不仅能帮助电器设备在既定功率下稳定连接,也能确保电气设备间电力的有效传送。

电气主接线也是电力系统的重要组成部分,通过电气主接线可以准确有效地连接两个线路的接口,在此基础上建立电源的进线及引线,在电力系统间设置母线,形成完全闭合的电力系统,保证正常的供用电传输。

2.2主接线设计就目前而言,我国通用的主流变电站电气主接线设计方案有四类,主要分别为单母线接线、单母线分段接线、双母线接线和双母线分段接线。

根据按照《35kV~110kV变电所设计规范》(GB50059-1992)中第3.2.3条和第3.2.5条中的相关规则,最终选择110kV侧采用双母线接线,35kV侧采用单母线分段接线,10kV侧采用单母线分段接线方式。

110kV避雷安装说明书

110kV避雷安装说明书

110kV交流输电线路用复合外套金属氧化物避雷器使用说明书科大创新股份有限公司科聚分公司110kV交流输电线路用复合外套金属氧化物避雷器使用说明书交流输电线路用复合外套金属氧化物避雷器是用于交流输电线路防雷的保护电器。

在雷电活动频繁,土壤电阻率较大,巡线困难的山区,由于耐雷水平比较低,线路在遭受雷击后容易造成反击从而使绝缘子闪络,导致线路跳闸,如果绝缘子损坏,开关重合不成功则将造成线路跳闸停电事故。

交流输电线路用复合外套金属氧化物避雷器的使用,将极大地提高线路的耐雷水平,它与线路绝缘子并联,在雷击杆塔时,由于其放电电压比绝缘子闪络电压低,可以保证绝缘子不再闪络,避免线路跳闸停电。

一、避雷器型号及含义二、运行条件:1.环境温度不高于40℃,不低于-40℃;2.太阳光的辐射;3.海拔高度不超过2000米;4.电源频率不小于48Hz,不大于62Hz;5.地震裂度7度及以下地区;6.最大风速不超过35m/s;7.覆冰厚度不大于2cm。

8.避雷器允许悬挂及摆动(根据塔型,考虑悬挂方式)。

三、主要特点1.集氧化锌避雷器和复合绝缘子于一体,体积小、重量轻,方便现场安装;2.串联间隙放电稳定,有效地防止氧化锌电阻片老化;3.无间隙避雷器带有脱离器,是一种免维护的保护电器;4.密封性能良好、耐污能力强、耐电蚀、抗老化,是理想的线路防雷保护电器。

四、主要规格及技术参数110kV交流输电线路用复合外套金属氧化物避雷器有串联间隙和无间隙两种结构,其技术参数见表1、外形尺寸见表2。

表1 110kV交流输电线路用复合外套金属氧化物避雷器技术参数表表2 110kV交流输电线路用复合外套金属氧化物避雷器外形尺寸五、结构原理无间隙线路型金属氧化物避雷器有避雷器本体和脱离装置两部分组成,避雷器通过脱离器和导线相连,在正常避雷器动作情况下脱离器不动作,而在避雷器故障损坏后,脱离器能可靠动作,使避雷器自动与导线脱离,从而保证电力系统不间断供电。

110kV榕江变电站二次系统防雷设计

110kV榕江变电站二次系统防雷设计

器在 主控室 电源 配 电箱 处作 防护 。 防护措施: 在主控室给监控系统设备提供 2 3 2V交流
电系统 电力 线路 进人 机房 , 损坏弱 电设 备 ; ( ) 筑物 内部其 它大 型设备 ( 2建 高压 开关 、 空调
等) 动作所 产 生 的过 电压 、 高压 脉 冲也 可 通 过 电力 线路 侵入 、 损害设 备 ;
中图分 类号 :M 0 . T O 00
文献标 识码 : B
1O V榕 江 变 电 站 二 次 系 统 防 雷 设 计 k l
杨 欢
( 凯里 供 电局 , 州 凯里 贵 56 0 ) 50 0

要 : 合 榕 江 变 电站 因几 起 雷击 引起 综 合 自动 化 装 置 面 板 黑 屏 事 故 , 过 对 事 故 原 因 的 分 析 , 出造 成 装 置 面 结 通 找
霄 云之 间或 雷 云对 地 面 某 一 点 ( 括 建 筑 物 、 包
图 2 感 应 雷 击 示 意 图
构架、 木 、 树 动植物 等 ) 的迅 猛放 电现象 称 之 为 直接
雷击 , l 电效应 、 效 应 、 机 械力 效 应 等 造 成物 它六 J 热 和
2 榕 江 变 电 站 综 合 自动 化 系统 感 应 雷 击 防
pee S. l
K e o ds:i hni g p o e to yw r lg t n r tc in;lgm r g; p i cp e il i n rn il
l 感 应 雷 电 的 防护 原 理
() 1 直接 雷击 : 如 同 1 ( )
图 1 直 接 雷 击 不 恿 图
板 黑屏 的 原 因 。设 计 方案 根 据 本站 二 次 系统 特 点 和 变 电站 综 合 自动 化 新 技 术 防 雷 工 程 的 要 求 , 电 源 防 雷 和 信 号 从 防 雷 等 方 面提 出解 决措 施 关 键 词 : 雷 ; 击 ; 理 防 雷 原
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要根据设计任务书的要求,本次设计为110kV变电所的防雷设计,变电所是电力系统中重要组成部分,而且变电所的电气部分要装设合理的避雷装置和接地装置,因此,它是防雷的重要保护对象。

如果变电所发生雷击事故,将造成大面积的停电,给人民生活和社会生产带来重大不便,还有可能给国家造成大经济损失,这就要求防雷措施必须十分可靠变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护方便,在此前提下,力求经济合理的原则。

本次设计,主要对变电所的主要设备进行选择,重点设计变电所的防雷部分,包括变电所进线段保护、防直击雷、防感应雷以及变电所二次设备的防雷。

通过对各种避雷器的性能对比,结合变电所实际情况,确定变电所的避雷器的选择,并考虑变电所控制系统的防雷,提出防雷方案。

氧化锌避雷器以其优越的性能,越来越受到电力行业的关注。

本次设计,将结合氧化锌避雷器性能的优点,并结合变电所设计的情况,讨论氧化锌避雷器在变电所中的应用前景。

关键词:变电所避雷器防雷保护目录1 引言 (1)1.1 课题背景 (1)1.2 课题研究的意义 (1)2 系统设计方案的研究 (2)2.1雷电对变电所的危害 (2)2.1.1雷的直击和绕击危害 (2)2.1.2雷电反击危害 (2)2.1.3 感应雷危害 (3)2.1.4雷电侵入波危害 (3)2.2变电所简介 (4)2.2.1变电所概述 (4)2.2.2变电所主要任务 (4)2.2.3变电所主接线 (4)2.3变电所防雷措施 (5)2.3.1变电所遭受雷击的来源 (5)2.3.2变电所防雷具体措施 (6)2.3.3变电所对直击雷防护 (6)2.3.4变电所对雷电侵入波的防护 (6)2.3.5变电站的进线防护 (7)2.3.6变压器的防护 (7)2.3.7变电所的防雷接地 (7)3 防雷保护装置 (7)3.1避雷针 (7)3.1.1避雷针原理 (7)3.1.2避雷针设置原则 (8)3.1.3避雷针保护围的计算 (8)3.2避雷器 (14)3.2.1避雷器作用原理 (15)3.2.2氧化锌避雷器的研究与应用 (15)3.2.3氧化锌避雷器的特性 (15)3.2.4氧化锌避雷器的优势 (16)3.2.5氧化锌避雷器在变电所中的发展前景 (17)3.2.6氧化锌避雷器的安装要求 (17)3.3主控室及屋配电装置对直击雷的防雷措施 (18)3.4防雷接地 (18)4 本设计的防雷方案 (19)4.1 电工装置的防雷设计 (19)4.1.1进线段保护 (19)4.1.2 直击雷的保护 (20)4.1.3雷电入侵波的保护 (21)4.1.4 变电所二次设备防雷保护 (23)4.2 接地装置 (24)4.2.1 接地网 (24)4.2.2接地线 (26)4.2.3防雷接地 (26)总结 (27)致 (28)参考文献 (29)1 引言1.1 课题背景变电所是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,它从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备。

随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。

变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。

作为电能传输与控制的枢纽,变电所的防雷保护也越来越得到重视。

本次设计为110kV牵引变电所防雷设计,牵引变电所是指主要向牵引系统供电的变电所。

牵引变电所主要应用于工矿企业电气化运输、城市公共交通、市郊电气化铁路、煤矿井下平巷运输和地面工业广场运输,为运输机车提供可靠的供电电源。

1.2 课题研究的意义随着科学技术的发展,作为现代工业发展的基础和先行官—电力工业,也随之有了很大的发展。

电力需求的大大增加,促使电力技术和电力工业进一步向高电压,大机组,大电网的方向发展。

110kV变电所是电力配送的重要环节,也是电网建设的关键环节。

变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行。

变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

雷电放电落于电气设备上时,如没有特殊保护,雷云放电能产生数百万伏的过电压电波,这种过电压足以使任何额定电压的设备发生绝缘闪络或击穿。

从而会使设备损坏,甚至危及人身安全,造成不可弥补的损失。

电力设备的造价普遍较高,而且建造工期较长,电力设备的损坏,不但会造成发电厂或变电所的巨大损失,更会影响到对用户的供电,造成更大面积、更严重的后果。

雷电一直是危害电力系统安全稳定运行的重要因素之一,如果变电所发生雷击事故,将造成大面积停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。

随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。

变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。

而防雷保护作为变电所设计的一个重要环节,同样会有充分的发展空间。

众所周知,防雷的最有效办法就是架设避雷器。

目前氧化锌避雷器(MOA)在电力系统中作为过电压限制措施的应用越来越广泛,其雷电侵入波的保护能,尤其是对电气设备的保护距离,已成为变电所工程设计、施工和运行亟待解决的问题。

2 系统设计方案的研究2.1雷电对变电所的危害2.1.1雷的直击和绕击危害雷云单体浮在上空,其所带电荷拖着地表相反电荷犹如一个影子随风移动。

如果途经变电所的避雷针或地表其它突出物,地电荷会导致突出物顶端电场畸变集中。

闪电开始之前先是雷云底部的始发先导按间歇分级跃进方式向地表发展,当距地面50~100m时,由避雷针等地表突出物电场畸变集中的地方产生垂直向上的迎面先导。

两者相接,进入直击或绕击的主放电阶段。

通常当地面上突出物的高度为h,雷云正下方的平均电场强度大于和等于580h-0.7kV/m时,则该突出物将容易受到直击雷。

原因是高为h的避雷针可影响雷云单体向下的始发先导发展方向的半径,用公式表述为: R=16.3h0.61m 。

该式还表明,地表安装独立避雷针后,将会在其附近出现大量的散击,甚至对避雷针进行直击,对受避雷针保护围的物体进行绕击。

一次雷击主放电一般为几万安培到十几万安培。

瞬间高热和电动力,会造成混凝土杆炸裂,小截面金属熔化,引起火灾和大爆炸,金属导体连接部分断裂破损,建筑物倒坍,电气设备损坏。

2.1.2雷电反击危害直击雷电流通过地表突出物的电阻入地散流。

假如地电阻为10Ω,一个30kA 的雷电流将会使地网电位上升至300kV。

如果受雷击变电所输电线路来自另一个不同地网的变电所,那么上升的地电位与输电线上的电位将形成巨大反差,导致与输电线路相连的电气设备的损坏。

不仅仅是输电线路、动力电缆,凡是引进变电所的金属管线都会引起雷电反击。

另一种雷电反击,对变电所的电子设备危害也不容忽视。

雷电流沿变电所的接地网散流,支线上的雷电流和各点电位差异很大。

连接在不同等电位地网上的电子设备。

如果其间有电信号联系,那么超过其容许承受能力的地电位差将导致设备损坏。

2.1.3 感应雷危害直击雷放电的能量通过电磁感应和静电感应方式向四周辐射,导致设备过电压放电,则为感应雷。

显然,感应雷危害是大面积的,是电子设备的克星。

有资料计算表明,当雷击电流为30kA斜角波,雷云高度为3公里,导线高度为10m,击中距末端匹配的500m长架空线路中点100m处地面时,线路上感应电压为150kV幅值的振荡波。

此波为电磁感应和静电感应共同作用的结果。

还有计算显示,一栋由工字钢架构且金属部分连接成法拉第笼的10层(60m ×30m×100m,每层高10m)的建筑物,被-2.6/40us,100kA的雷击中楼顶,其各层楼面1m高处的感应电场垂直分量达数kV/m,随楼层降低感应电场强度趋向于均匀,但强度整体上无大的衰减。

事实上,在生产实践中,雷击的静电感应破坏力数倍于电磁感应。

静电感应还可用雷击的二次效应理论来解释。

带电雷云飘浮在地表上空,地表带上与雷云相反的等量电荷。

当雷击过后,雷击点地表变为电荷的相对空穴,周围高电荷区域与地电位相对绝缘的导体上的电荷,将像受突然击发的水波一样冲向雷击点,导致设备打火,绝缘受损和电子设备失效。

特别注意的是电子设备的高阻抗输入回路,信号回路等引线较长,且直接连接的金属体积较大处,虽然已作电磁屏蔽(采用屏蔽电缆且屏蔽层两端接地)仍会遭受厄运。

2.1.4雷电侵入波危害远方落雷,通过直击或电磁感应和静电感应方式从高压输电线路、配电线路、低压电源线路、通信线、电缆线、金属管道等途径侵入变电所,由于管线相对较长,且存在着分布电感和电容,使雷电传播速度减慢,这样一种现象用波传输理论来说明的概念称作雷电波。

雷电波在传输过程过不同参数的连接线段或线路端点时,波阻抗发生变化会产生反射、折射,可导致波阻抗突变处的电压升高许多,加大了对设备的危害。

2.2变电所简介2.2.1变电所概述电力牵引的专用变电所。

牵引变电所把区域电力系统送来的电能,根据电力牵引对电流和电压的不同要求,转变为适用于电力牵引的电能,然后分别送到沿铁路线上空架设的接触网,为电力机车供电,或者送到地下铁道等城市交通所需的供电系统,为地铁电动车辆或电车供电。

一条电气化铁路沿线设有多个牵引变电所,相邻变电所间的距离约为40~50公里。

在长的电气化铁路中,为了把高压输电线分段以缩小故障围,一般每隔200~250公里还设有支柱牵引变电所,它除了完成一般变电所的功能外,还把高压电网送来的电能,通过它的母线和输电线分配给其他中间变电所。

牵引变电所的主要电力设备是单机容量为10000千伏安以上的降压变压器,称主变压器或牵引变压器。

工矿和城市交通大多采用直流电力牵引,故直流牵引变电所里除降压变压器外,还有把交流电变成直流电的半导体整流器。

此外,各类牵引变电所中还有用来接通和开断电力电路的主断路器、为了检修和安全用的隔离开关,以及为了自动、远动控制和保护用的自动控制系统和断电保护系统。

2.2.2变电所主要任务将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。

牵引变电所将电力系统输电线路电压从110kV(或220kV)降到所需要的电压,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。

牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。

牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。

2.2.3变电所主接线电气主接线又称为电气一次接线,变电所主接线是变电所中的重要组成部分,它的连接形式对于防护雷电入侵波有着重要的作用。

相关文档
最新文档