89数学函数与方程思想讲座PPT课件

合集下载

人教课标版《函数与方程》ppt完美课件1

人教课标版《函数与方程》ppt完美课件1

12
1
(2)a5,数列 a的通项公式为
12
n
a a (n 1)1 n 7.
n
1
2
b 1 1 1 1 .
n
a n
n7
2
函数f
(x)
1
x
1
7
在(,
7)和(7 ,)上是单调函数,
22
2
b b b 1;当n 4时,1 b b .
3
2
1
n
4
(3)由b 1 1,得b 1 1 .
n
a
n
na 1
n
的等差数列,它的前n项和为Sn,S42S24,bn (1)求公差d的值;
1an. an
(2)若 a 1 值;
5, 2
求数列{bn}中的最大项和最小项的
(3)若对任意的n∈N*,都有bn≤b8成立,求a1的取 值范围.
解 (1)∵S4=2S2+4,
4 a 4 3 d 2 (2 a d ) 4 .解 d 得 1 .
依题意,O为AB中点,所以 PAPB2PO,
( P P A ) • P B 2 C P • P O C 2 x ( 1 x )0 (x 1 ). 问题转化为求函数t=2x2-2x,x∈[0,1]的最小值 问题. t2x22x2(x1)21.
22
当x1时,t有最小值 1.为
2
2
故(PAPB )•PC 的最小值 1. 为
【例1】(2009·江苏调研)已知命题“在等差数列
{an}中,若3a3+a9+a( )=30,则S13=78”为真命题, 由于印刷问题,括号内的数模糊不清,可以推得
其中的数为 17 . 分析 由S13=78,可得关于a1与d的方程,设括号内 数为x,可得关于a1,d的方程,联立可解得x=17. 解析 设等差数列{an}公差为d,首项为a1,括号内 为x,依题意有:

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

高考一轮总复习•数学
第25页
对点练 1(1)(2024·山西临汾模拟)函数 f(x)=log8x-31x的零点所在的区间是(
)
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
(2)已知函数 f(x)=logax+x-b(a>0,且 a≠1).当 2<a<3<b<4 时,函数 f(x)的零点 x0
A.(0,1)
B.(1,2)
C.(2,3)(2)设函数 f(x)=13x-ln x,则函数 y=f(x)( ) A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1(1,e)内均无零点 C.在区间1e,1内有零点,在区间(1,e)内无零点 D.在区间1e,1内无零点,在区间(1,e)内有零点
Δ<0
__无__交__点____ ____无______
第10页
高考一轮总复习•数学
第11页
常/用/结/论 1.有关函数零点的结论 (1)若连续不断的函数 f(x)在定义域上是单调函数,则 f(x)至多有一个零点; (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号; (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.对于函数来说, 零点有与 x 轴相切的零点. 2.f(a)f(b)<0 是 y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 函数零点 1.定义:对于函数 y=f(x)(x∈D),把满足___f(_x_)=__0___的实数 x 叫做函数 y=f(x)(x∈D) 的零点.

函数与方程_PPT课件

函数与方程_PPT课件
对于在[a,b]上连续不断,且 f(a)·f(b)<0 的函数 y=f(x),通 过不断地把函数 f(x)的 零点 所在的区间 一分为二 ,使区间的两 端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
课前自助餐
授人以渔
自助餐
5.用二分法求函数 f(x)零点近似值 (1)确定区间[a,b],验证 f(a)·f(b)<0 ,给定精确度 ε; (2)求区间(a,b)的中点 x1; (3)计算 f(x1); ①若 f(x1)=0 ,则 x1 就是函数的零点; ②若 f(a)·f(x1)<0 ,则令 b=x1,(此时零点 x0∈(a,x1)); ③若 f(x1)·f(b)<0 ,则令 a=x1,(此时零点 x0∈(x1,b)). (4)判断是否达到精确度 ε:即若|a-b|<ε,则得到零点近似值 a(或 b);否则重复(2)-(4).
答案 C
课前自助餐
授人以渔
自助餐
课前自助餐
授人以渔
自助餐
3.函数 f(x)=ex+3x 的零点个数是( )
A.0
B.1
C.2
D.3
答案 B
解析 由已知得 f′(x)=ex+3>0,所以 f(x)在 R 上单调递增, 又 f(-1)=e-1-3<0,f(1)=e+3>0,因此 f(x)的零点个数是 1, 故选 B.
课前自助餐
授人以渔
自助餐
4.二次函数 f(x)=ax2+bx+c 中,a·c<0,则函数的零点个数 是________.
答案 2 解析 ∵c=f(0),∴a·c=af(0)<0,即 a 和 f(0)异号. ∴a>0, f0<0 或a<0, f0>0.

函数与方程思想PPT课件

函数与方程思想PPT课件

cos2x+a(1+cos x)-cos x-3=2cos2x+cos x-1,
a(1+cos x)=(cos x+1)2+1,
∵x∈(0,π),∴0<1+cos x<2,
∴a=1+cos x+1+c1os x≥2.
当且仅当
cos
x=1+1cos
,即 x
cos
x=0
时“=”成立.
∴当 a≥2 时,y=f(x)与 y=g(x)所组成的方程组在(0,π)
Δ=(t-3)2-4t≥0
t≤1或t≥9
从而有a+b=t-3>0
,即t>3

ab=t>0
t>0
解得 t≥9,即 ab≥9.∴ab 的取值范围是[9,+∞).
题型二 函数与方程思想在方程问题中的应用 例2 如果方程 cos2x-sin x+a=0 在(0,π2]上有解,
求 a 的取值范围.
思维启迪 可分离变量为 a=-cos2x+sin x,转化为确
即-1-1-a≥a0<0 ,∴-1<a≤1.故 a 的取值范围是(-1,1].
探究提高 研究此类含参数的三角、指数、对数等复杂 方程解的问题,通常有两种处理思路:一是分离参数构 建函数,将方程有解转化为求函数的值域;二是换元, 将复杂方程问题转化为熟悉的二次方程,进而利用二次 方程解的分布情况构建不等式或构造函数加以解决.
内有解,即 y=f(x)与 y=g(x)的图象至少有一个公共点.
题型三 函数与方程思想在不等式问题中的应用
例3 已知 f(t)=log2t,t∈[ 2,8],对于 f(t)值域内的
所有的实数 m,不等式 x2+mx+4>2m+4x 恒成立,求 x
的取值范围.

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

函数与方程 ppt课件

函数与方程 ppt课件

1
0.5
课 时

0.25



0.125
[1.375,1.4375]
0.0625
菜单
一轮复习·B ·数学(理)[安徽专用]
利用二分法函求方数程与实方数解程的过程


主 落
选定初始区间


实 ·
1.初始区间是一个两端
固 函数值符号相反的区间

取区间的中点
验 · 明 考

2.“M”的意思是

取新区间,其中 一个端点是原区
落 实
Δ>0
Δ=0
Δ<0
体 验
·
·



二次函数


y=ax2+bx+c

(a>0)的图像

与x轴的交点 (x1,0),(x2,0)
(x1,0)
无交点
例 探
零点的个数
2
1
0



·







菜单
一轮复习·B ·数学(理)[安徽专用]
{ 自
主 落 实
变式 2A3.3若..定 .函(函2没数0义 数1有零1R y·零= 点 在 陕上 点存 f西(x的 在)高在性考闭奇 定)区函理f间 函 (数x[a)数 f,,(xb当 )]=上x的B≥x.0图-时 有像c,o且是sf(x仅连x在有)续=[一 0曲,l1线个o-+g,|12x零(∞并 -x3点+)|且,1内x)∈ 在,x(∈ [区1,[+间0∞,1))端),,
高 考 体 验
· 固 基 础

函数与方程思想ppt2 人教课标版

函数与方程思想ppt2 人教课标版

a3 4 f (a) ab a a 1 5 9 , a 1 a 1 当且仅当 a 1 2 时取等号. 所以 ab 的最小值是 9.
例 1. 若 a , b 为正数, 且满足 ab a b 3 ,ab 的最小 值是____________.
g ( x) 4 ,
所以, m 4 .
4. 证明不等式
例 7. 设 x 1, 证明: ln x x 1 .
解:设 f ( x) ln x x 1, x 1.
1 f '( x) 1 0 , x
f ( x) f (1) 0 ,
所以, ln x x 1 .
2. 不等式恒成立
2
8
例 5. 当 x (1, 2) 时,不等式 x mx 4 0 恒成立,则
6
m 的取值范围是_______________
解法一: 设 f ( x) x mx 4 .
2
4
4 2
结合图像分析得到:
-15 -10 -5
f (1) 0 ,解之得 m 5 . f (2) 0
例 8. (2008 江苏高考第 17 题改编)
2
求函数 y x 2 x 20 x 200 0 x 10 的最小值.
解:显然 y x ,函数式可以化为
( y x)2 (2 x2 20 x 200)2 ,
整理得 3x2 (2 y 80) x 800 y 2 0 ,
10
4
2
-5
0
-2
1
5
当 k 1 或 k 3 时,两解; 当 k (1,3) 时,三解.

函数与方程课件

函数与方程课件

06
函数与方程的未来发展
函数与方程在其他学科中的应用
数学建模
函数与方程在数学建模中扮演着 重要的角色,通过建立数学模型 ,可以描述现实世界中的各种现 象,如物理、化学、生物等学科
中的问题。
计算机科学
在计算机科学中,函数与方程被 广泛应用于算法设计、数据结构 、离散概率论等领域,为计算机 科学的发展提供了重要的理论支
函数与方程ppt课件
• 函数的概念与性质 • 方程的种类与解法 • 函数与方程的关系 • 函数的应用 • 方程的应用 • 函数与方程的未来发展
01
函数的概念与性质
函数的定义
函数是数学上的一个概念,它描述了两个集合之间的对应关系。具体来说,对于 给定的集合X中的每一个元素x,按照某种规则,总有集合Y中的唯一一个元素y与 之对应。这种关系通常用符号f表示,即f: X→Y。
03
函数与方程的关系
函数图像与方程解的关系
函数图像是方程解在坐标系中的 表现形式,通过观察函数图像可 以直观地了解方程的解的情况。
函数图像的交点表示方程的根, 函数图像的极值点也可能对应方
程的根。
通过函数图像的变化可以推测方 程解的变化趋势。
函数的最值与方程根的关系
函数的最值点可能是方程的根,因为函数在极值点附近的导数会发生变化,导致函 数值发生突变。
如果函数在某区间内单调递增或递减,那么该区间内函数的最大值或最小值可能对 应方程的一元一次根。
对于多元函数,最值问题可能转化为方程组问题,需要利用方程组的解来判断最值 的存在性和性质。
函数图像的变换与方程解的变换
函数图像的平移、伸缩、旋转 等变换会影响函数的值,从而 影响方程的解。
通过对方程进行变量替换或参 数调整,可以改变方程的形式 和结构,从而影响方程的解。

第八节 函数与方程 课件(共31张PPT)

第八节 函数与方程 课件(共31张PPT)

答案:C
2.函数 f(x)=4cos2 x2·cosπ2-x-2sin x-|ln(x+1)| 的零点个数为________.
解析:f(x)=2(1+cos x)sin x- 2sin x-|ln(x+1)|=sin 2x-|ln(x+ 1)|,x>-1,函数 f(x)的零点个数即为 函数 y1=sin 2x(x>-1)与 y2=|ln(x+1)|(x>-1)的图象的 交点个数.分别作出两个函数的图象如图所示,可知有两 个交点,则 f(x)有两个零点.
x2-2x,x≤0, 1.已知函数 f(x)=1+1x,x>0, 则函数 y=f(x)+
3x 的零点个数是( )
A.0 B.1
C.2 D.3
解析:令 f(x)+3x=0,
则xx≤2-02,x+3x=0或x1>+01x,+3x=0,
解得 x=0 或 x=-1,
所以函数 y=f(x)+3x 的零点个数是 2.
的取值范围是( )
A.a<-1
B.a>1
C.-1<a<1 D.0≤a<1 解析:令 f(x)=2ax2-x-1, ①当 a=0 时,-x-1=0,x=-1 不合适. ②a≠0 时,f(0)·f(1)<0,a>1.验证若 f(0)=0,此式不成立; 当 f(1)=0 时,2a-1-1=0.
a=1,方程另一根为-12(不合题意),故 a>1,选 B. 答案:B
考点 2 判断函数零点个数
[例 1] (1)函数 f(x)=x-2+1+x-ln2x,,xx≤>00,的零点个数
为( )
A.3
B.2
C.7
D.0
(2)已知函数 y=f(x)是周期为 2 的周期函数,且当 x∈

方程与函数课件ppt课件ppt课件

方程与函数课件ppt课件ppt课件

方程与函数在数学竞赛中的应用
方程与函数是数学竞赛中常见的考点,涉及的知识点包括 一元一次方程、一元二次方程、分式方程、三角函数、指 数函数、对数函数等。通过解决这些方程与函数的题目, 可以锻炼学生的逻辑思维、推理能力和数学运算能力。
例如,在数学竞赛中,经常出现一些涉及方程与函数的题 目,要求考生利用方程与函数的知识点来求解未知数或者 判断函数的单调性、奇偶性等性质。
方程与函数在实际生活中有着广泛的应用,例如在金融、经 济、工程、科技等领域。通过建立数学模型,将实际问题转 化为数学问题,利用方程与函数来求解,可以得到更精确的 解决方案。
例如,在金融领域,投资者可以通过建立股票价格的函数模 型,利用方程求解出股票的买入和卖出价格;在经济领域, 政府可以通过建立税收的方程模型,利用函数求解出最优的 税收方案。
函数的周期性
总结词
周期性对函数性质的影响。
详细描述
周期性对函数的性质有一定的影响。例如,周期函数的最大值和最小值出现的次 数是有限的,且相邻最大值或最小值之间的距离为周期。此外,周期函数的图像 还可以通过平移得到其他形式的周期函数图像。
函数的图像绘制
总结词
绘制函数图像是理解函数性质的重要手段。
详细描述
函数的定义与性质
函数的定义
函数是数学中表示两个变量之间关系 的一种方法,它描述了一个输入值对 应一个输出值的关系。
函数的性质
函数的性质包括函数的定义域、值域 、单调性、奇偶性、周期性等。
方程与函数的关系
方程可以看作是函数的一种特殊情况 ,即函数值为0的情况。
方程和函数在数学和实际问题中都有 广泛的应用,它们是相互联系和相互 转化的。
三角函数的应用
三角函数在解决几何问题、振动和波动等现象中有着广 泛的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则 BFE B , 在 BEF 中 根 据 正 弦 定 理 得
EF BF sin B sin
sin
BE
B
,解得
BE
EF
sin
B
,
BF
EF
sin
sin B
sin B
.代入
BE BF 10

EF
2
sin
10sin 2 B
sin B
3sin
2
36 4 cos 2
4
5 sin
36
2
4
4





sin 2 1 , 即 2 , 2 , 由 sin 4 , 得
2
2
5
sin 2 cos 2 4 , sin 3 ,此时 BE BF 10 .
2
5
10
6
函数与方程思想----1.显化函数关系
方法二:由题意知,
S BEF
1 2
BE
BF
sin
3
函数与方程思想----1.显化函数关系
例 已 知 实 数 a,b 分 别 满 足 a3 3a2 5a 1,b3 3b2 5b 5 , 则 a b 的 值 为 _______.
解析:设 f x x3 3x2 5x, f x 3x2 6x 5 3x 12 2 ,故 f x 的对称中心
故 f x 为奇函数且单增, f a f b f b,所以 a b a b 0 .
4
函数与方程思想----1.显化函数关系
[2014 年浙江卷]如图,某人在垂直于水平地面 ABC 的墙面前的点 A 处进行射击 训练.已知点 A 到墙面的距离为 AB ,某目标点 P 沿墙面的射击线 CM 移动,此人
例 如图,在 RtABC 中, C 90, AC 3, BC 4 ,一条直线 l 与边 BC、BA 分别交于点 E, F ,且分 ABC 的面积为相等的两部分,则 EF 长的最小值为_______.
方法一:由题意知, SBEF
1 2
BE BF
sin
B
3 ,即 BE
BF
10
.设 BEF
,
为若1f,3x,且a f fxa0 ,x故,则f fxx,afafa f xb 62b,,即因a此 bfx2.关于 a,b中心对称.
例 实数 a,b 满足 a a2 1 b b2 1 1,则 a b 的最大值为________. 解 析 : 两 边 取 以 10 为 底 的 对 数 得 lg a a2 1 lg b b2 1 0 , 即 lg a a2 1 lg b b2 1 ,设 f x lg x x2 1 ,因为 f x f x 0 ,
故 x y ,即 x y 0 .


x,
y
R
,且满足
x y
23 23
2x sin( x 2) 2 2 y sin( y 2) 6
,则
x
y
____________.
解析:设
f
x
x3
2x
sin
x
,则
f f
x 2 y 2
2 2
,即
f
x
2
f
y
2
0
,因为
f x 为奇函数,故 x 2 y 2 0 ,即 x y 4 .
y2 27
1,整理得
4 cos2 r12 18cos r1 81 0 ,即 r12 cos 9r12 cos 9 0 ,解得
r1
9 2 cos
,即
1 r1
2 cos 9
.同理
1 r2
2 cos 2 3 9源自,1r32 cos 4 3 9

方程思想 函数思想
因此
1 FP1
1 FP2
1 FP3
2 9
3
cos
cos
2 3
cos
4 3
2 3
.
8
函数与方程思想----1.显化函数关系
练习:
1.已知
x,
y
4
,
4
,
a
R

且 x3 sin
x 2a 0,4 y3 sin
个不同点 P1, P2 , P3 ,使 P1FP2
P2 FP3
P3 FP1 ,证明 |
1 FP1
|
|
1 FP2
|
|
1 FP3
为 |
定值,并求此定值.
解析:设 xFP1
,于是有 xFP2
2 3
, xFP3
4 3
.设
FP1
r1 ,由题意
知点 P3 r1 cos , r1 sin ,代入
x2 36
为了准确瞄准目标点 P ,需计算由点 A 观察点 P 的仰角 的大小.若
AB 15m, AC 25m, BCM 30 ,则 tan 的最大值为
.
解析:过点 P 作 PO BC 于点 O ,连结 AO ,则 PAO .设 CO x m ,则
OP 3 x m ,在 RtABC 中, AB 15m, AC 25m ,所以 BC 20m , 3
数学学科思想讲座
——函数与方程思想
1
函数与方程思想
函数的思想,是用运动和变化的观点,分析和研究 数学中的数量关系,建立函数关系或构造函数,运用函 数的图象和性质去分析问题、转化问题,从而使问题获 得解决。
方程的思想,就是分析数学问题中变量间的等量关 系,建立方程或方程组,或者构造方程,通过解方程或 方程组,或者运用方程的性质去分析、转化问题,使问 题获得解决。方程思想是动中求静,研究运动中的等量 关系。
cos BCA 4 .因此 AO 625 x2 2 25x 4 x2 40x 625m,所以
5
5
tan
3x
3
x2 40x 625
3
3
1
40 x
625 x2
3
3
,当 25 4 ,即 x 125
25
4
2
9
x5
4
x 5 25
时, tan 取得最大值 5 3 . 9 5
函数与方程思想----1.显化函数关系
B
3 ,即
BE
BF
10
.在 BEF
中根






EF 2 BE2 BF 2 2BE BF cosB BE2 BF 2 16 2BE BF 16 4 ,当 且仅
当 BE BF 10 时,取等号.故 EFmax 2 .
7
函数与方程思想----1.显化函数关系
[2007 年重庆卷]如图,已知椭圆的方程 x2 y 2 1,右焦点 F ,在椭圆上任取三 36 27
2
函数与方程思想----1.显化函数关系
例 已知 3x 3 y 5x 5y 成立,则下列正确的是( )
A. x y 0
B. x y 0
C. x y 0 D. x y 0
解析:原式化为 3x 5x 3 y 5y ,设 f x 3x 5x ,则由 f x f y 且 f x ,
相关文档
最新文档