最新简易电阻、电容、电感测量仪

合集下载

电容电阻电感测量仪设计报告

电容电阻电感测量仪设计报告

简易数字式电阻、电感和电容测量仪摘要本系统主控制部分采用TI公司的16位超低功耗单片机MSP430F149。

以自制电源作为LRC测量模块和各个主要控制芯片的输入电源,测量原理是通过测量电阻、电容或者电感和标准电阻各自的引起的频率变化,利用频率与电阻、电容、电感的函数关系推算出电阻值、电容值或者电感值。

测量的原理是LM311组成的LC震荡器的震荡回路的频率由单片机采样,然后再依据震荡频率计算出对应的电容或电感值,以及由NE555多谐振荡电路实现对电阻的测量。

软件设计部分使用C语言编程编写了包括控制测量程、按键处理、电阻电感电容计算、液晶显示程序。

利用MSP430F149单片机控制测量和计算结果,测量结果采用12864液晶模块实时显示。

关键词: MSP430F149、NE555芯片、LRC测量、12864液晶目录1 系统总体方案设计 (1)1.1系统方案选择 (1)1.2系统软硬件总体设计 (1)1.2.1硬件部分 (1)1.2.2软件部分 (2)2系统模块设计 (3)2.1硬件模块设计 (3)2.1.1电感电容测量模块 (3)2.1.2电阻测量模块 (4)2.1.3主控制模块 (5)2.1.4 AD采样模块 (5)2.1.5 液晶显示模块 (5)2.2软件模块设计 (5)2.2.1 控制测量程序模块 (5)2.2.2按键处理程序模块 (6)2.2.3电阻电感电容计算程序 (7)2.2.4液晶显示程序模块 (7)3系统测试 (8)3.1测试原理 (8)3.2测试方法 (8)3.3测试结果 (8)3.4测试分析 (9)4系统总结 (9)参考文献: (10)1 系统总体方案设计1.1系统方案选择方案一.基于模拟电路的测量仪利用模拟电路,电阻可用比例运算器法和积分运算器法,电容可用恒流法和比较法,电感可用时间常数法和同步分离法等,虽然避免了编程的麻烦,但电路复杂,所用器件较多,灵活性差,测量精度低,现在已较少使用。

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。

本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。

利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。

测量结果采用12864液晶模块实时显示。

实验测试结果表明,本系统性能稳定,测量精度高。

关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量一、设计内容及功能1.1设计内容设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示:1.2 具体要求1. 测量范围(1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。

2. 测量精度(1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。

(2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。

3. 利用128*64液晶显示器,显示测量数值、类型和单位。

4. 自制电源5. 使用按键来设置测量的种类和单位1.3系统功能1. 基本完成以上具体要求2. 使用三个按键分别控制R、C、L的测试3. 采用液晶显示器显示测量结果二、系统方案设计与选择电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。

电阻电容电感测量仪

电阻电容电感测量仪

总体原理方框图
• 如图一所示:
被测 电阻
RC振荡 器 单 片 机 msp
430g 2553
三路通道 选择开关
被测 电容
RC 振 荡 器
模 拟 开 关
AD4052
被测 电感
电容三点 式震荡器
数 字 显 示
图一
模块调试分析及数据分析
VCC
电阻电容模块:
利用RC和555定时器组成的多谐振 荡电路,通过测量输出振荡频率的大 小即可求得电阻电容的大小,利用公 1 f 式 ,如果固定电 (ln 2 ) C ( R 2 R ) 阻值,则可测得电容值,固定电容值, 电阻也利用同样的原理测得。该方案 硬件电路实现简单,能测出较宽的电 容电阻范围,完全满足题目的要求。 同时输出波形为TTL电平的方波信号 所以不需要再对信号做电平变换。即 可直接输入单片机处理。测量数据也 满足误差在5%左右,经调试电路改进 误差达到更低。
RST DIS THR TRI CON GND 1
LM555CM
单片机模块:
在系统设计中,以MSP430G225 3单片机为核心的电阻、电容、电感 测试仪,将电阻,电容,电感,使用 对应的振荡电路转化为频率实现各个 参数的测量。由AD4052控制电 阻电容电感的换档测试。通过定时并 且计数可以计算出被测频率,再通过 该频率计算出被测参数。使用C语言 编程编写了系统应用软件;包括主程 序模块、显示模块、电阻测试模块、 电容测试模块和电感测试模块、键盘 模块、整形模块、模拟开关模块。在 测试时将被测参数通过本系统测量出 来的示值与参数的标称值进行对比, 进而可以知道系统的测试精度较高。
VCC L1 100mH R1 100kΩ Q1 C3 100nF C5 2N2222 C1 100nF R2 1.0kΩ 100nF R3 1.0kΩ C6 0.1µF 10nF C4 Q2 R5 100kΩ VCC 5V

电阻\电容和电感简易测量方法

电阻\电容和电感简易测量方法

电阻\电容和电感简易测量方法一、系统原理与结构系统框图结构如图1所示。

由单片机选择通道,向模拟开关送两位地址信号,取得振荡频率,然后根据所测频率判断是否转换量程,或是把数据进行处理后,送数码管显示相应的参数值。

二、测量Rx的Rc的振荡电路如图2所示,它是一个由555电路构成的我谐振荡器电路。

其振荡周期为:T=T1+T2=(In2)(R4+2Rx)C8,故此:Rx=1/[(21n2)C8f]-R4/2为使振荡频率保持在10Hz~100kHz频段(单片机计数的高精度范围),需选择合适的C8和R4值,同时要求电阻功耗不能太大。

在第一个量程选择:R4=200Ω,C8=0.22μF;第二个量程选择:R4=20Ω,C8=1000pF。

这样在第一量程中,Rx=100Ω时(下限)f=16.4kHz。

因为RC振荡的稳定度可达10-3,而单牌机频率最多误差一个脉中,所以由单片机测量频率值引起的误差在1%以睛。

量程转换原理为:单片机在第一个频率的记录中发现频率过小,即通过继电器转换量程。

再测频率,计算出Rx值。

在电路中采用了稳定性良好的独石电容,所以被测电阻的精度可达1%。

三、测量Cx的RC振荡电路测量Cx的RC振荡电路与测量Rx的振荡电路完全一样,若将图2中的R4的Rx换成R1、R2。

C8换成Cx,且R1=R2,则f=1/[3(1n2)R1Cx]。

两量程中的取值分别为:第一量程R1=R2=510Ω;第二量程:且R1=R2=10Ω。

这样取值使电容挡的测量范围很宽。

在电路中采用精密的金属膜电阻,其值的变化能够满足1%左右的精度,使得电容的精度也可以做得较高。

四、测量Lx的电容三点式振荡电路如图3所示,在电容三点式振荡器中,C1、C2分别采用1000pF和2200pF 的独石电容,其电容值远远大于晶体管极间电容,所以极间电容可以忽略。

根据振荡频率公式,对于10μH的电厂其频率约等于1.92MHz。

由于单片机采用6MHZ 晶振,最快只能计几百kHz的频率,因为在测电感这一挡时,只能用分频器分频后送单片计数。

AI-6600电容电感检测仪原理简介及现场试验

AI-6600电容电感检测仪原理简介及现场试验
汇流排电压,又经过测试线引入到仪器内部的电压检 测电路上。经过A/D转换器变为数字信号后,通过隔离器 件,将信号送到CPU。
待测电容Cx的电流,经过钳型CT取样和程控放大后, 通过A/D转换器变为数字信号,送到CPU。
CPU将收到的数字信号进行处理,并取得电压U和电 容电流I c , 然后按:
计算电容量, f 为频率。
AI-6600电容电感检测仪及测试钳
AI-6600电容电感检测仪面板
1、主要特点
AI-6600电容电感检测仪,是不拆线检测补偿电容器的专用仪器。
AI-6600也是一台多功能阻抗测量仪器,能够自动识别并检测各种电容、电 感或电阻型试品仪器,也可以单独用于电流检测。
仪器采用进口高精度钳型CT,68mm大钳口,检测电容电流达20A,试品容
三、现场接线
现场接线示意图
红黑夹子夹到汇流排上红黑夹子夹到汇流排上源自用电流钳子逐个进行采样测量
AI-6000主机进行测量
现场打印的测量数据
测量电抗器

量最大可到3300μF。
仪器采用数字隔离的电压测试电路技术,测量精度高,抗干扰能力强,可以 在现场强电干扰环境中使用。 仪器采用背光大屏幕液晶显示器,白天夜间均能清晰观察。
使用中文菜单,自动换算量程,操作非常简单。
仪器可以存储128组测量数据,并自带嵌入式热敏打印机打印测量数据。
2、主要技术指标
1、电容测量范围及准确度 电容量测量范围: 0.1uF~3300uF 准确度: ±(读数×1%+0.005uF) 分辨率: 0.001uF(4位数字显示)
AI-6600电容电感检测仪 原理简介及现场试验
一、补偿电容器及电抗器
补偿电容器组
集合式补偿电容器

电容电感测试仪使用方法

电容电感测试仪使用方法

电容电感测试仪使用方法电容电感测试仪是一种用于测量电容和电感值的仪器。

它广泛应用于电子工程、通信工程、电力工程等领域。

本文将介绍电容电感测试仪的使用方法。

一、电容测试1. 连接电路:将被测电容器的两端分别连接到测试仪的电容测试接口上。

2. 设置测量范围:根据被测电容器的额定值,选择合适的测量范围。

一般来说,选择最接近被测电容值的测量范围可以提高测量的准确性。

3. 开始测量:按下测试仪的测量按钮,仪器将开始对被测电容进行测量。

在测量过程中,测试仪会显示被测电容的值,并根据需要提供其他相关数据,如等效串联电阻等。

4. 记录测量结果:在测量完成后,将测量结果记录下来,可以通过测试仪上的显示屏或者连接到计算机上进行数据记录。

二、电感测试1. 连接电路:将被测电感器的两端分别连接到测试仪的电感测试接口上。

2. 设置测量范围:根据被测电感器的额定值,选择合适的测量范围。

与电容测试类似,选择最接近被测电感值的测量范围可以提高测量的准确性。

3. 开始测量:按下测试仪的测量按钮,仪器将开始对被测电感进行测量。

在测量过程中,测试仪会显示被测电感的值,并根据需要提供其他相关数据,如等效串联电阻等。

4. 记录测量结果:在测量完成后,将测量结果记录下来,可以通过测试仪上的显示屏或者连接到计算机上进行数据记录。

三、注意事项1. 在进行电容电感测试时,应确保测试仪的正负极连接正确,避免短路或其他错误操作导致的测量失败或仪器损坏。

2. 在进行测量时,应注意避免外界干扰。

尽量选择无电磁干扰的环境,并保持测试仪与其他电源设备的距离。

3. 在进行电感测试时,应注意被测电感器的自感影响。

为了减小自感影响,可以采用串联电阻或其他补偿方法。

4. 在进行电容测试时,应注意被测电容器的电压等级。

如果被测电容器的电压等级较高,应选择相应的测试仪器和测量范围,以确保测量的准确性和安全性。

5. 在进行电容电感测试时,应根据具体要求选择合适的测试方法和参数,以获得准确的测量结果。

简易电阻、电容和电感测试仪报告

简易电阻、电容和电感测试仪报告

简易电阻、电容和电感测试仪1.1 基本设计要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)测量精度:±5% 。

(3)制作4位数码管显示器,显示测量数值。

示意框图1.2 设计要求发挥部分(1)扩大测量范围;(2)提高测量精度;(3)测量量程自动转化。

摘要:本系统是依赖单片机MSP430建立的的,本系统利用555多谐振荡电路将电阻,电容参数转化为频率,而电感则是根据电容三点式振荡转化为频率,这样就能够把模拟量近似的转换为数字量,而频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。

系统扩展、系统配置灵活。

容易构成何种规模的应用系统,且应用系统较高的软、硬件利用系数。

单片机具有可编程性,硬件的功能描述可完全在软件上实现,而且设计时间短,成本低,可靠性高。

综上所述,利用振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。

所以,本次设计选定以单片机为核心来进行。

关键词:430单片机,555多谐振荡电路,,电容三点式振荡一、系统方案电阻测量方案:555RC多谐振荡。

利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率范围,再交由单片机处理。

综合比较,本设计采用方案三,采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。

电容测量方案:555RC多谐振荡同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容范围,能够较好满足题目的要求。

采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。

电感测量方案:电容三点式采用LC配合三极管组成三点式震荡振荡电路,通过测输出频率大小的方法来实现对电感值测量。

简易电阻、电容、电感测量仪 ppt课件

简易电阻、电容、电感测量仪 ppt课件

555定时器构成多谐振荡器
▪ 根据555定时器构成多谐振荡器,产生脉冲波形,通过单 片机读取高低电平得出频率,通过公式换算得到电阻阻值。 由
得到公式:
f=1/ [(R1+2R2)*C*In2]
R2=1/2*[1/ (f*c*Ln2)-R1]
▪ 上述四种方案从对测量精度要求而言,方案一的测量精度 极差,方案二电阻测量范围较窄,方案三需要测量的电阻 值多,而且测量调节麻烦,不易操作与数字化,相比较而 言,方案四还是比较符合要求的,由于是通过单片机读取 转化,精确度会明显的提高。故本设计选择了方案四。
这些因素导致电阻测量范围较窄。
▪ 方案三:直流单臂电桥
在《电工基础课》中已经讲到,根据电路平衡原理, 不断调节电位器,使得电表指针指向正中间,1 有以下关系 式成立:
R2
RX=
×R4
R3
Rx R4
R2 R3
D
E
S
图 直流单臂电桥原理图
R1
R3
◆优点:万用表操作简单但精度不高,直流单臂电桥的测
量精度较高;
禁止端 模拟信号接地端 数字信号接地端
电源+
CD4052接口电路
▪ CD4052真值表
▪ CD4052是一个双4选一的多路模拟选择开关,其使用真值 表如
引脚号 1245 11 12 14 15
9 10 3 13 6 7 8 16
CD4052各引脚分布图
CD4052引脚功能说明 符号
IN/N
INH VEE Vss VDD
CD4052引脚功能说明表
功能 Y 通道输入/输出端 X 通道输入/输出端
地址端 Y 公共输出/输入端 X 公共输出/输入端

简易数字电容测量仪

简易数字电容测量仪

电子技术课程设计报告——简易数字电容测量仪的设计设计题目:简易数字电容测量仪班级学号:学生姓名:目录一、预备知识.................... 错误!未定义书签。

二、课程设计题目:简易数字电容测量仪的设计错误!未定义书签。

三、课程设计目的及基本要求...... 错误!未定义书签。

四、设计内容提要及说明.......... 错误!未定义书签。

4.1设计内容........................................ 错误!未定义书签。

4.2设计说明........................................ 错误!未定义书签。

五、原理图及原理说明 ........................ 错误!未定义书签。

5.1功能模块电路原理图..................... 错误!未定义书签。

5.2模块工作原理说明 ........................ 错误!未定义书签。

六、调试...........................................................................错误!未定义书签。

七、设计中涉及的实验仪器和工具.... 错误!未定义书签。

八、课程设计心得体会 ........................ 错误!未定义书签。

九、参考文献 ........................................ 错误!未定义书签。

一、预备知识关于数字式简易数字电容测试仪的设计,我们提出了三种设计方法和思路。

在具体操作中,经过对资料的收集、分析,研究与对比,最终选择了简单易懂,而且精度较高的方法,即门控法。

本方法的基本理论是单稳态触发器电路的输出脉宽wt与电容C成正比,再通过一系列的控制,计数,锁存,显示电路实现了对电容的一般测试与数字显示。

在本次数电课程设计的同时,对于中大规模集成电路从认识到分析、再到整体框图设计、单元模块设计、最终到电路的模拟和实际电路的成形有了一定的认识,同时使我们在电子设计方面有了一定的实际动手能力,也为这次数电课程设计打下了坚实的基础。

简单电阻,电容和电感检验测试仪设计

简单电阻,电容和电感检验测试仪设计

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的主要任务:1、测量范围:电阻100Ω-1MΩ;电容100pF-10000pF;电感100μH-10mH。

2、测量精度:5%。

3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (4)ABSTRACT (5)1、绪论 (7)2、电路方案的比较与论证 (7)2.1电阻测量方案 (7)2.2电容测量方案 (9)2.3电感测量方案 (11)3、核心元器件介绍 (12)3.1LM317的介绍 (12)3.2LM337的介绍 (13)3.3NE555的介绍 (14)3.4NE5532的介绍 (17)3.5STC89C52的介绍 (18)3.6TLC549的介绍 (20)3.7ICL7660的介绍 (23)3.81602液晶的介绍 (24)4、单元电路设计 (26)4.1直流稳压电源电路的设计 (27)4.2电源显示电路的设计 (28)4.3电阻测量电路的设计 (29)4.4电容测量电路的设计 (30)4.5电感测量电路的设计 (31)4.6电阻、电容、电感显示电路的设计 (32)5、程序设计 (33)5.1中断程序流程图 (33)5.2主程序流程图 (34)6、仿真结果 (34)6.1电阻测量电路仿真 (34)6.2电容测量电路仿真 (35)6.3电感测量电路仿真 (36)7、调试过程 (37)7.1电阻、电容和电感测量电路调试 (37)7.2液晶显示电路调试 (38)8、实验数据记录 (38)心得体会 (40)参考文献 (41)附件 (42)附件1:电路图 (42)附件2:元件清单 (43)附件3:程序代码 (45)附件4:实物图 (64)摘要近几年来,电子行业的发展速度相当快,电子行业的公司企业数目也不断增多。

简易电阻、电容和电感测试仪设计.(DOC)

简易电阻、电容和电感测试仪设计.(DOC)

元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。

2.(基本要求)电阻阻值测量,范围:100欧~1M欧;3.(基本要求)电容容值测量,范围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。

也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。

然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。

所以制作一个简单易用的电抗元器件测量仪是很有必要的。

现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。

该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。

2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案V CC GNDR x R0图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。

R、L、C测量仪

R、L、C测量仪

R、L、C测量仪概述R、L、C测量仪是一种用于测试电阻(Resistance)、电感(Inductance)、电容(Capacitance)等元件参数的仪器。

它广泛应用于电子、通讯、航空、机械、医疗等领域的元器件测试。

测试原理R、L、C测量仪实际上是一个简化的LCR桥电路。

LCR电桥(或简称LCR桥)是一种测量电阻、电感和电容的电路。

在LCR电桥中,通过调节电桥的四个电阻(其中三个为已知值),可以使电桥平衡,测量未知元件的参数。

R、L、C测量仪通过内置的LCR桥电路,结合微处理器和LCD显示屏,实现了对元器件参数的高精度测量。

使用方法使用R、L、C测量仪时,应首先将元件连接到测试接口上,选择相应类型和范围,并按下测试键开始测量。

测试结果将显示在LCD显示屏上。

下面是具体的使用步骤:1.连接被测试元件:将待测元件的两个端即正负极分别插到测试接口的两个插槽中。

一些R、L、C测量仪可能包含多个测试接口,应注意正确选择接口和插槽。

一般情况下,测试接口的插槽分别标有L/C/R等字母,需要根据被测试元件的类型选择相应的插槽。

2.选择参数类型:根据被测试元件的类型选择相应的测试参数类型。

一些常见的测试类型包括电阻、电感、电容、品质因数(Q值)、损耗因数(D 值)等。

不同的R、L、C测量仪可能具有不同的测试类型和测试范围,应根据实际需求进行选择。

3.设定测试范围:根据被测试元件的参数,设定相应的测试范围。

一般情况下,测试范围越小,测试精度越高。

一些R、L、C测量仪可能具有自动范围选择功能,可以根据被测试元件的参数自动选择测试范围。

4.开始测试:按下测试键(通常为“test”或“measure”),开始进行测试。

测试时间一般为几秒钟到几分钟不等,具体时间根据被测试元件的大小和测试类型而定。

5.查看测试结果:测试结果将在LCD显示屏上显示。

不同的R、L、C测量仪可能在显示方式和数据格式上存在差异,应根据使用手册或说明书进行查看和分析。

电感测量方法

电感测量方法

电感测量方法电感是电路中常见的被动元件,用于存储和释放能量。

在电路设计和测试中,对电感的测量是非常重要的。

本文将介绍几种常见的电感测量方法,以及它们的优缺点。

首先,最简单的电感测量方法是使用LCR表。

LCR表是一种专门用于测量电感、电容和电阻的仪器。

通过连接被测电感到LCR表上,可以直接读取电感的数值。

这种方法简单直接,适用于对电感精度要求不高的场合。

然而,对于一些特殊的电感,比如大电流电感或高频电感,使用LCR表可能会出现测量误差。

其次,另一种常见的电感测量方法是使用示波器和信号发生器。

通过将信号发生器连接到被测电感上,可以向电感中注入一个信号。

然后使用示波器观察电感中的响应信号,从而间接地得到电感的数值。

这种方法适用于对电感频率特性和动态响应特性感兴趣的场合。

但是,这种方法需要较复杂的仪器和操作,且对操作者的技术要求较高。

另外,还有一种电感测量方法是使用网络分析仪。

网络分析仪是一种高级的仪器,可以测量电路中各种元件的参数,并且可以分析电路的传输特性和频率响应。

通过连接被测电感到网络分析仪上,可以得到电感的频率特性曲线和阻抗参数。

这种方法适用于对电感频率特性和阻抗特性有较高要求的场合,比如射频电路设计和天线匹配。

然而,网络分析仪是一种较昂贵的仪器,一般只在专业实验室或工程部门中使用。

综上所述,电感的测量方法有多种多样,可以根据具体的需求选择合适的方法。

在实际应用中,需要根据电感的特性、测量精度要求和实验条件来选择合适的测量方法。

同时,需要注意测量过程中的误差和干扰,以保证测量结果的准确性和可靠性。

希望本文介绍的电感测量方法对您有所帮助。

简易电容电感测量仪的制作

简易电容电感测量仪的制作

收稿日期:2005—09—10作者简介:纪丽凤(1971-),女,辽宁营口市人,工程师,主要从事电子技术教学研究.【学术研究】简易电容电感测量仪的制作纪丽凤1,张廷辉2(11辽宁信息职业技术学院,辽宁辽阳111000;21辽河油田,辽宁盘锦124000) 摘 要:介绍一种简易电容电感测量仪的原理、制作与使用注意事项.关键词:交流电桥法;信号源;平衡指示器;振荡器中图分类号:T M938 文献标识码:A 文章编号:1008-5688(2005)04-0017-01电容和电感都是构成电路的最基本元件,测量电容和电感可以用伏安计法、电桥法、谐振法等多种方法.本文中设计的电容电感测量仪采用交流电桥法,具有测量范围较宽、精度较高、工作稳定、使用方便的特点,而且制作调试简单容易.1 电容电感测量仪电路组成 电容电感测量仪既可以测量电容,又可以测量电感,由一个测量选择开关决定.电容测量范围为:5pF ~100μF ,共分7档量程;电感测量范围为:5μH ~100H ,共分7档量程;可通过量程开关选择.各档位测量范围见表1.图1为电容电感测量仪电路原理图.电路中使用了4个集成运算放大器,分别构成信号源和平衡指示器.电阻R 10~R 17、电位器R P 、电容器C 5以及被测电容或电感等构成测量电桥.S 1是量程开关,S 2是测量选择开关.构成电桥桥臂的阻容元件阻值或容量必须准确,以保证测量精度. 表1S 1档位测C 测L 1100μF 011mH 210μF 1mH 31μF 10mH 31μF 10mH 4011μF 100mH 50101μF 1mH 61000pF 10H 7100pF 100H 2 测量原理分析211 测量原理测量原理如图2所示.被测元件阻抗Z X 与已知元件阻抗Z A 、Z B 、Z C 构成电桥的4个臂,电桥的一组对角线A 、B 间接交流信号源,另一组对角线C 、D 间接平衡指示器.当Z X Z C =Z A Z B 时,电桥平衡,C 、D 间电(下转75页)第7卷第4期2005年10月 辽宁师专学报Journal of Liaoning T eachers College V ol 17N o 14Oct 12005明:实验组台阶指数成绩高于对照组.说明登山运动处方在实施过程中主要是走、跑交替的耐力性运动,它可以有效提高实验对象的耐力素质.增强学生的心肺功能.31113 登山运动处方对身体素质指标的影响实验前后,实验组在50m 、800m 、腰、腹和下肢各关节灵活性、坐位体前屈几方面素质上有显著提高.其中在耐力和灵活性上呈非常显著性差异,这说明了学生平时参加运动的机会很少,尤其在速度、耐力和灵敏素质方面的锻炼较少.这样一旦运动起来很容易表现出显著性.同时,由于高职学生的专业特点,更加约束了他们参加运动的时间和效果.因此,以灵活多样的运动形式和内容,适时地增加学生参加运动的时间和机会,能够全面发展学生的身体素质.312 登山运动处方对人文知识掌握的影响本实验目的之一是通过本地域登山运动处方的实施,提高学生人文素质.从实验前后28名学生试卷成绩分析来看,说明了对人文知识的掌握还须有一个认识与强化的过程,通过实验组和对照组的成绩提高的差值来看,所施加学生当导游员的因素(导游员准备、导游等过程),也使学生的综合能力得到了充分地培养与提高.比如:语言表达能力,收集和处理材料的能力、随机应变的能力等.同时,在人文知识掌握的全过程中,注重学生智商和情商的有机融合,而同学们人文素质的积累就是情商的本质表现,这个智,的确达到了本次实验的目的.4 结论(1)本论文所设计的登山运动处方可改善高职学生身体状况,减少腹部、腰部皮褶厚度;可明显提高台阶指数,增强心肺功能;学生的耐力、灵活性和下肢爆发力得到明显改善.(2)在登山运动处方实验中,学生当导游员,可以强化学生对本地域人文知识的掌握.提高高职学生热爱家乡,为本地区经济建设服务的意识.(责任编辑 刘国忠,朱成杰)(上接17页)位差为零.由于Z A 、Z B 、Z C 已知,所以可测出Z X .212 电容的测量测量电容采用惠斯顿电桥,见图3.C X 为被测电容,C 0为标准电容,R A 、R B 为标准电阻,U 是交流信号源,P 是做平衡指示用的电流表.电桥平衡条件为C X R A =C 0R B ,当电桥平衡时,C X =(C 0R B )/R A .213 电感的测量测量电感采用马克斯韦电桥,如图4所示.L X 为被测电感,C 0为标准电容,R A 、R B 为标准电阻.电桥平衡条件为L X /C 0=R A R B ,当电桥平衡时,L X =C 0R A R B .为了简化电路、方便使用,本测量仪忽略了电容电感的损耗问题,完全可以满足业余测量对精度的要求.214 信号源和平衡指示器原理集成运放IC l -1等构成文氏桥振荡器,产生116kH z的正弦波作为测量电桥的信号源(见图5).IC i -2为缓冲放大器,以隔离电桥电路对振荡器的影响.IC 2-1和IC 2-2构成两级放大器,将电桥C 、D 间检测到的信号进行放大,总增益68dB (2500倍),使测量仪具有很高的检测灵敏度,易于调节电桥平衡,提高测量精度.放大器的输出接压电蜂鸣器B ,作为电桥平衡指示.电桥完全平衡时,蜂鸣器无声.信号源输出经变压器T 1耦合至电桥AB 间,电桥CD间的检测信号经变压器T 2耦合至平衡指示器,这样信号源与平衡指示器便可以有公共接地点,以便用一组直流电源供电,示意图如图6所示.(责任编辑 王立俊,王 巍)李雪松,等高职学生登山运动处方实践研究75 。

万用表测量电阻电容电感

万用表测量电阻电容电感
= ……………………………………………………………………(3)
待测电感与基准电感的差距越小,测量就越准确,因此对于不同电感值电感,应当采用不同的基准电感。电路的切换仍然用继电器来控制,在此为避免重复,继电器部分不再重述,与切换电阻的方法是完全一样的。为了简化电路,我们采用两个量级的基准电感10mH和10 。电路如图表10
4
在我们的万用表中,各种各样的器件都需要稳定的不同的电源供给,而我们可用的电压只有 ,为了得到这些不同的电压,我们自己搭建了几个稳压电路。
I、5V电压
在实际中应用很广泛的是7805芯片,在此我们选用该芯片提供5V电压。
I I、-5V电压
我们采用7660来提供-5V电压
I I I、12V电压
由于我们可用的电压只有 一种,如果直接从15V稳压到5V,不仅稳压效果不好,而且7805会严重发热,甚至芯片被烧坏。为此,我们采用多级稳压,先将15用7812稳压到12V在将12V电压稳到5V。稳压模块的电路图如图表4
程序框图:
图表15
五、设计效果
经过测试,我们可以测量100 -1M ,误差在%以内;
可以测量1-20 的小电阻,误差在5%以内;
可以测量100
误差分析
本系统误差主要由恒流源、AD真有效值转换、双积分ADC器件等几个方面所带来的误差。AD真有效值转换,在误差允许的范围内可以将所测交流电压转换成对应的真有效值,但不可避免地受到环境温度的影响,造成转换时可能引起误差;由于环境温度的改变,在用恒流法测电阻时,会引起恒流源不为一个定值,导致所测电阻流过恒流源所产生的电压有所偏差,特别是在测小电阻时,插槽与被测小电阻之间的接触电阻会引起测量的较大误差;双积分ADC器件与前端处理电路同样受到温度、电磁场、工频干扰的影响,会引起数据的不稳定。

简易电阻、电容和电感测试仪设计原理

简易电阻、电容和电感测试仪设计原理

简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。

(2)测量精度:±5% 。

)测量精度:±5% 。

(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。

三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。

由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。

的阻值。

E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。

由此得到:,可忽略不计。

由此得到:,可忽略不计。

由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案

简易数字式电阻电容和电感测量仪设计方案设计一个简易的数字式电阻、电容和电感测量仪可以分为以下几个步骤:1.设计测量电路:首先,需要设计一个测量电路,电路可以使用基本的电压和电流测量技术。

电阻测量可以使用恒流法或恒压法,电容测量可以使用充放电法或交流法,电感测量可以使用交流法。

根据选择的测量方法设计合适的电路。

2.选取合适的传感器:为了实现数字化测量,需要选择合适的传感器。

电阻可以使用电阻表,电容可以使用电容计,电感可以使用电感表。

根据需要选择合适的传感器并进行调试和校准。

3.连接传感器与微控制器:将选取的传感器与微控制器进行连接,确保传感器的输出信号可以被微控制器读取。

可以使用模拟输入通道或数字接口来连接传感器和微控制器。

4.编写微控制器程序:根据测量电路和传感器的特性,编写微控制器的程序,实现测量功能。

程序中需要包括对传感器信号的处理、测量结果的计算和存储等功能。

5.设计用户界面:为了方便使用,可以设计一个简单的用户界面。

可以使用液晶显示屏、按键或触摸屏等组件来实现用户界面。

用户界面可以用来选择测量类型、显示测量结果等。

6.调试和测试:将硬件和软件部分进行集成,并进行调试和测试。

确保测量准确性和可靠性,对测量仪进行必要的校准和调整。

总结:设计一个简易的数字式电阻、电容和电感测量仪需要选择合适的测量电路和传感器,采集传感器信号并经过微控制器处理、计算和显示。

同时需要设计合适的用户界面,实现用户操作和结果显示。

最后进行调试和测试,确保测量仪的准确性和可靠性。

全国大学生电子设计竞赛--G题简易电阻测试仪【G题】

全国大学生电子设计竞赛--G题简易电阻测试仪【G题】

题号: G全国大学生电子设计大赛报告题目:简易电阻测试仪【G题】参赛者:冯林评分标准:简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)测量精度:±5% 。

(3)显示测量数值,并分别指示所测元件的类型和单位。

2.发挥部分(1)扩大测量范围。

(2)提高测量精度。

(3)测量量程自动转换。

简易电阻、电容和电感测试仪摘要本设计主要由电阻测试模块、电容测试模块、电感测试模块、分频电路、以及数据选择电路几大功能模块组成。

并通过STC89C52单片机进行频率测量和计算以及对系统的控制,实现对电阻、电容和电感的测试并在LCD1602上显示其测试结果。

系统利用RC震荡原理以及电感的储能原理,配合555定时器组成多谐振荡电路。

由于不同的电容、电阻、电感值的大小对应的谐振频率不同,通过测量振荡电路发出的频率计算出相应的电阻、电容和电感的值。

本系统设计简单,成本低,性能完全超出题目要求指标,测量范围广,在测量范围内测量误差≦1%。

系统操作简单,人机界面友好。

关键词:谐振电路,谐振频率,555定时器Abstract:This design consist of the resistance test module, capacitance test module, inductance test module, points frequency circuit, and data choice circuit several big function module. And through STC89C52 microcontroller undertake frequency measurement and calculation of system control and to realize resistance, capacitance and inductance and displayed on the LCD1602 test results.The system use RC concussion principle and the inductance of the principle, cooperate energy-storage composed resonant circuit 555 timing. Due to the different capacitance and inductance value resistors, the size of the resonance frequency of the corresponding to different, through the test out oscillating circuit to calculate the frequency corresponding resistance, capacitance and inductance value. This system design simple, low cost, performance is beyond the topic request index and wide measurement range in measuring range, measurement error ≦1%. The system operation simple and have a friendly man-machine interface.Keywords: tuned circuit , tuned frequency, 555 timer一、系统方案论证与比较1.系统设计思路根据题目要求的电路示意图可知,本系统需要分别设计三个测试模块分别测试电阻、电容和电感,同时系统只有一个通道将测试信号送入处理器。

电桥LCR测试仪

电桥LCR测试仪

电桥LCR测试仪什么是电桥LCR测试仪?电桥LCR(电感、电容、电阻)测试仪是一种用于测试电阻、电感、电容等电子元件的仪器。

它使用电桥原理来测量这些元件的参数。

电桥原理是通过测量节点间的电压和电流来确定电子元件的参数。

电桥LCR测试仪包括四个电极和一个变压器,它通过变压器将测试电压加到被测元件上,并通过四个电极将电流注入到被测元件中。

通过测量这些电流和电压,电桥LCR测试仪可以计算出被测元件的电容、电感和电阻。

电桥LCR测试仪的用途电桥LCR测试仪是电子工程师和电路设计师必备的测试仪器之一。

它可以帮助他们测量和分析各种电子元件,包括电感、电容、电阻等。

在电路设计和故障排除过程中,电桥LCR测试仪是一个非常有用的工具。

电桥LCR测试仪的类型根据不同的测试需求,电桥LCR测试仪有多种类型。

其中一些常见的类型包括:1. 桥式电桥LCR测试仪桥式电桥LCR测试仪是一种传统型号的测试仪器,它采用老式的电桥技术,通过调整电路中电子元件的值来调整电桥平衡点,从而实现精确测量。

它通常适用于需要高精度测量的场合。

2. 自动电桥LCR测试仪自动电桥LCR测试仪具有自动化功能,可以根据被测元件的类型和参数自动选择测试程序,自动调整测试参数和数据收集。

它适用于需要进行大量自动化测试的场合。

3. 二极管LCR测试仪二极管LCR测试仪是一种专为测试二极管而设计的测试仪器。

由于二极管的特殊结构,传统的电桥不能正常测试它的参数。

二极管LCR测试仪具有特殊的测试电路,可以测量二极管的额定参数。

4. SMT LCR测试仪SMT LCR测试仪是一种专为测试表面贴装技术(SMT)元件而设计的测试仪器。

SMT技术是一种流行的电子元件封装技术,SMT LCR测试仪具有小型化设计和高精度测量功能,可以很好地适用于测试这些小型化元件。

总结电桥LCR测试仪是一种通用的测试仪器,它可以测量电子元件的参数,包括电感、电容和电阻。

根据不同的测试需求,电桥LCR测试仪有多种不同的类型,涵盖了不同的测试场景和应用需求。

简易数字式电阻、电容和电感测量仪设计方案

简易数字式电阻、电容和电感测量仪设计方案

简易数字式电阻、电容和电感测量仪设计方案简易数字式电阻、电容和电感测量仪设计报告摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。

本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。

利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。

测量结果采用12864液晶模块实时显示。

实验测试结果表明,本系统性能稳定,测量精度高。

关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量一、设计内容及功能1.1设计内容设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示:1.2 具体要求1. 测量范围<1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

<2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。

2. 测量精度<1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。

<2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。

3. 利用128*64液晶显示器,显示测量数值、类型和单位。

4. 自制电源5. 使用按键来设置测量的种类和单位1.3系统功能1. 基本完成以上具体要求2. 使用三个按键分别控制R、C、L的测试3. 采用液晶显示器显示测量结果二、系统方案设计与选择电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC>、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易电阻、电容和电感测试仪的设计一、任务设计并制作一个简易电阻、电容和电感测试仪系统,包括测量、控制与显示三部分。

其中测量电路包括:被测电阻,被测电容,被测电感,其中包括模拟快关、整形、分频等部分;显示电路包括:二极管的显示、数字显示;控制电路括:按键的选择测量电路与单片机的控制部分。

二、要求1、基本要求(1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。

(2)测量精度:±5% 。

(3)制作4位数码管显示器,显示测量数值。

示意框图2.发挥部分(1)扩大测量范围;(2)提高测量精度;(3)测量量程自动转化。

3 评分标准项目得分基本要求设计与总结报告:方案设计与论证、理论50 计算与分析、电路图,测试方法与数据结果分析实际完成情况50发挥部分完成第(1)项9 完成第(2)项9 完成第(3)项12 特色与创新20摘要:本文先对设计功能及要求进行了阐述,然后提出要完成该功能的设计方案,最后综合考虑之后选定方法,再对电阻,电容,电感的测量电路进行设计。

本设计是利用单片机来实现测试的,其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的,从而实现各个参数的测量。

在电阻的测量电路中,我们把它分为两档来进行测量,并用单片机来驱动继电器以实现,这样,一方面测量精度较高,另一方面便于使仪表实现智能、自动化。

关键词:单片机 555多谐振荡电容三点式继电器In this article, the function and the requirement of design were introduced, and then puts forward to want to complete the function, the design of the last comprehensive consideration selection methods, and then a resistor, capacitor, inductor measurement circuit design. This design is to realize the test using single chip computer, of which the resistor and capacitor is used more than 555 resonance swing circuitry, and inductance is produced according to the capacitance SanDianShi, so as to realize the measurement of each parameter. In the resistance and capacitance measurement circuit, we put it into two files to make the measurement, and single chip microcomputer to drive the relay to realize, so that, on the one hand, has high accuracy, on the other hand to make intelligent instrument and automation.Key words: more than 555 single chip microcomputer chip oscillation capacitance SanDianShi relay一、系统方案论证1.1 电阻测试模块电路方案一:电阻分压法。

如下图:电阻分压电路将待测电阻Rx 和基准电阻R 串联在电路中。

由于电阻分压的作用,当串联到电路上的电阻Rx 的值不同时其Rx 上分的压降也不同。

通过测量上Vx 便可求得Rx 。

)(X X X V VCC R V R -=该方案原理简单,理论上只要参考电阻精确,就可以测量任何阻值的电阻,但实际上由于AD 的分辨率有限,当待测电阻的很大或是很小时就很难测出Rx 上的压降Vx ,从而使测量范围缩小,要提高测量范围和精度就需要对电阻分档测试和提高AD 的分辨率。

这无疑会增加系统的复杂性和成本。

方案二:利用RC 充电原理,根据电路原理电容充电的时间常数τ=RC 。

通过选择适当的参考电容,通过测量充电到一个固定电压时所需的时间即可以测量出相应的电阻阻值。

此方案中当电阻值过小时,充电时间很短,普通的微处理器难以测量,同时通过实际测试发现当电阻太大时充电时间和电阻的大小线性度变差,这将导致测量误差增大。

这些因素导致电阻测量范围较窄。

方案三:利用RC 和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率范围,同时输出波形为TTL 电平的方波信号所以不需要再对信号做电平变换。

即可直接供数字电路处理。

综上所述,本设计采用方案三,用低廉的NE555构建RC 多谐振荡电路来设计电路。

1.2 电容测试模块方案一:同电阻测试方案二,利用RC 充电原理,通过测量充电时间来测量电容大小。

此方案下测量大电容较准,但在电容容量较小时,电容在极短的时间内就能充满,即充电时间较短,所以很难测准。

方案二:同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容范围,完全满足题目的要求。

同时输出波形为TTL电平的方波信号所以不需要再对信号做电平变换。

即可直接输入单片机处理。

综上所述,本设计采用方案二,用低廉的NE555构建RC多谐振荡电路。

1.3电感测试模块方案一:采用平衡电桥法测量电感。

将待测电感和已知标准电阻电容组成电桥,通过单片机控制调节电阻参数使电桥平衡,此时,电感的大小由电阻和电桥的本征频率即可求得,该方案测量精准,同时可以测量电容和电阻的大小,但其电路电路复杂,实现起来较为困难。

方案二:采用LC配合三极管组成三点式震荡振荡电路,通过测输出频率大小的方法来实现对电感值测量。

该方案成本最低,但其输出波形为正弦波,需要将其波形整形后才能交给处理器处理,成本稍微高了。

方案三:用555定时器和被测电感利用电感储能以及充放原理构成多谐振荡器,通过测频率值确定被测电感的值。

该方案电路结构简单,输出波形为TTL 电平的方波信号,简单分频后可获得较为理想的测试频率范围,方便单片机精确测量。

综上所述,原本采用方案三设计,由于误差太大,所以我们最终采用了方案二的三点式震荡振荡电路,把输出的正弦波整形后再交给处理器来处理。

1.4 频率测量方案一:直接测频法。

在确定的闸门时间内,利用计数器记录待测信号通过的周期数,从而计算出待测信号的频率。

此方案对低频信号的测量精度很低,较适合于高频信号的测量。

方案二:测周法。

以待测信号为门限,记录在此门限内的高频标准时钟的数量,从而计算出待测信号的频率。

但被测信号频率过高时,由于测量时间不足存在测量精度不够的问题。

此方案适合于低频信号的测量。

方案三:等精度测量法。

其精确门限由被测信号和预控门共同控制。

测量精度与被测信号的频率无关,只与基准信号的频率和稳定度有关,因此可以保证在整个测量频段内测量精度不变。

但此方案的实现需要FPGA 等专门的芯片配合单片机才能实现精确的测量,系统较为复杂,成本较高。

综上所述,本设计采用直接测频法。

1.5 系统方案概述本设计将电阻、电容和电感测量模块产生的不同频率的方波信号经整形和分频电路分别送至通道选择模块,根据测试的元件类型,单片机通过按键的输入选择相应的测试电路,并自动检测出待测元件的值所对应的频率范围,控制通道选择模块选通相应的输入通道,来自动选择分频的倍数,实现对元件测量的自动换挡。

同时单片机通过一定的计算后向液晶发出测量结果并在液晶上显示出测量元图1:系统设计总框图二、 理论分析与计算2.1 电阻和电容测量理论分析本设计中电阻、电容测量是由555定时器和R1、R2、C1组成多谐振荡电路。

电路振荡产生的频率由R1、R2、C1确定。

其公式如下: 电容C1的充电所需的时间,即脉冲维持时间:2ln )(1x 11C R R t +=放电所用时间,即脉冲低电平时间:2ln 12C R t x =所以脉冲周期时间为:)2(2ln 1121z R R C t t t +⨯=+=输出脉冲频率为: )2(2ln 111x R R C f +⨯=R X =1/[2(ln2)C 1F]-1/2R 1所以只要已知R1、R X 、C1中的其中两项的参数再通过单片机测出振荡频率的大小就可以计算出剩下第三项的参数。

本设计中通过固定R1和C1的参数将待测量的电阻作为R2接入电路中的方法来测量电阻,通过固定R1和R2的参数将待测量的电容作为C1接入电路中的方法来测量电容。

电阻测量共分为两档选择合适的C 和R 的值,使震荡频率在10Hz ——50KHz 这一段单片机计数范围内,同时不使电阻功耗不过高,第一量程选RA=1K,C=1uf;第二量程RA=20k,C=10nf 。

这样在第一个量程中:R X =100欧时(下限)F=1/[(ln2)C(R1+2*R X )]=1.443/[1*10-6*(1000+200)]=1202.5hz第二档中R X =10M 时(上限)F=1/[(ln2)C(R1+2*R X )]=1.443/[1*10-8*(20000+10000000)]=14.4 hz经测量第一档选择测量范围为100—20k;第二档测量范围为20K —10M 。

量程自动切换原理:通过单片机显示屏提示,通过按键选择测量电阻档数,在通过测量频率计算出待测电阻值。

2.2电容测量理论分析本设计中电容测量是由555定时器和R1、R2、C X 组成多谐振荡电路。

电路振荡产生的频率由R1、R2、C1确定。

其公式如下:取R1=R2=100K, 震荡频率为1x 2ln 31R C f ⨯=C X =1/ [3ln2FR 1]对于C=100pF 频率为 f=1/[3*ln2*C X *R]=48.1Khz 对于C=100nF 频率为 f=1/[3*ln2*C X *R]=48.1hz频率在单片机可测范围内。

所以可通过单片机显示提醒选择测量电容。

2.3 电感测量理论分析电感的测量是采用电容三点式振荡电路来实现的。

三点式电路是指:LC回路中与发射极相连的两个电抗元件必须是同性质的,另外一个电抗元件必须为异性质的,而与发射极相连的两个电抗元件同为电容时的三点式电路,成为电容三点式电路。

相关文档
最新文档