(完整word)高中数学必修四第一章测试题
【优质文档】高一数学必修4第一章测试题及答案
sin ( sin ) ( cot )
=-tan
------------10
由 sin
3
= 可知
5
是第三象限或者第四象限角。
所以 tan = 3 或 3 44
3
即所求式子的值为
4
-------------14
19.(本小题 15 分)
分 分
解:令 t=cosx, 则 t [ 1,1]
-------------2
3
21. 用图像解不等式。 (16 分 )
① sin x 1 2
② cos 2x 3 2
4
参考答案
一、选择题(每小题 5 分,共 60 分)
1----6 、 BBDCBA 7----12 、 CCDCAB
二、填空题(每小题 6 分,共 30 分)
13. |
2
16.
13
n ,n Z 2
17. 2
14. -660
,2k 5 , k Z ----------8
分
6
6
( 2)、图略
-------------11
分
由图可知:不等式的解集为 k
, k 11 , k Z ---------16
分
12
12
《试卷编写说明》 本试卷三角函数的大框架下,主要借助正弦函数和余弦函数这两种模型,从函数的定义域、值
6
域、单调性、奇偶性,特别是新学习内容 ----- 周期性出发,以这五个方面为主要内容而命制。
二、填空题(每小题 6 分,共 30 分)
13. 终边在坐标轴上的角的集合为 _________.
14. 时针走过 1 小时 50 分钟,则分钟转过的角度是 ______.
人教版数学必修四第一章自我检测(完整版)资料
人教版数学必修四第一章自我检测(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)第一章 三角函数一、选择题 1.已知 为第三象限角,则2α所在的象限是( ).A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限3.sin 3π4cos 6π5tan ⎪⎭⎫⎝⎛3π4-=( ).A .-433B .433C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ).A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ).A .-43B .-34C .43D .346.已知sin >sin ,那么下列命题成立的是( ). A .若,是第一象限角,则cos >cosB .若,是第二象限角,则tan>tanC .若,是第三象限角,则cos >cosD .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C ={γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ).A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos(+)=1,sin=31,则sin的值是( ).A .31B .-31C .322D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,π B .⎪⎭⎫⎝⎛π ,4π C .⎪⎭⎫⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ).A .y =sin ⎪⎭⎫⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin =552,2π≤≤π,则tan= .13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 .16.关于函数f (x )=4sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称;④函数y =f (x )的图象关于直线x =-6π对称.其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xa x sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z . 2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433.4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin+cos =±2.5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53.又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D 解析:若,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵ cos(+)=1,∴ +=2k π,k ∈Z .∴=2k π-.∴ sin =sin(2k π-)=sin(-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C(第6题`)解析:第一步得到函数y =sin ⎪⎭⎫⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415.解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan3π=415.12.-2. 解析:由sin =552,2π≤≤πcos =-55,所以tan=-2.13.53.解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴ sin ⎪⎭⎫ ⎝⎛α - 2π=cos=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21.15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sin sin cos ≥sincos 即 f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫⎝⎛+-6π2x=4cos ⎪⎭⎫⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π,∴ 函数f (x )关于点⎪⎭⎫⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾.∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }.解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2① >0 sin x x(第15题)(第17题)先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线.由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }.18.(1)-1;(2) ±αcos 2.解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sink k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ).解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z , ∴ 令2x -6π=k π,得x =2πk +12π.∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π,∴ 令2x -6π=k π+2π,得x =2πk +3π.∴ 所求的对称轴方程为x =2πk +3π (k ∈Z ).20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=xa x sin sin +=1+xasin ,由0<x <π,得0<sin x≤1,又a>0,所以当sin x=1时,f(x)取最小值1+a;此函数没有最大值.(2)∵-1≤cos x≤1,k<0,∴k(cos x-1)≥0,又sin2x≥0,必修1第一章集合与函数基础知识点整理第1讲 §¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}na a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(notbelong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x xx --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=;用列举法表示为{0,1,3}-. (2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B . 解:由3217k +=,解得5k Z =∈,所以17A ∈; 由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13A 组题4)(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x=-的函数值组成的集合;(3)反比例函数2y x=的自变量的值组成的集合.解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y xy y =-=≥-.(3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是由 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为,而另一解不是x =代入得a =时另一解1x =⑶方程有一解为x =代入得a时另一解为1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲§¤知识要点:1. 一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作A B⊆(或B A⊇),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(A B⊆),且集合B是集合A的子集(B A⊇),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作A B=.3. 如果集合A B⊆,但存在元素x B∈,且x A∉,则称集合A是集合B 的真子集(proper subset),记作A≠⊂B(或B≠⊃A).4. 不含任何元素的集合叫作空集(empty set),记作∅,并规定空集是任何集合的子集.5. 性质:A A⊆;若A B⊆,B C⊆,则A C⊆;若A B A=,则A B⊆;若A B A=,则B A⊆.¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形};{等腰三角形} {等边三角形}.(2)∅2∈+=;0 {0};∅{0};Nx R x{|20}{0}.解:(1),;A BBA AB A BA .B .C .D . (2)=, ∈, ,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M⊆,求实数a 的值.解:由26023xx x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a=. 若N M ⊆,满足1123aa==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-.经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.B (读作“B B (读作“B UA (读作“{|AB x ={|AB x ={|UA x =图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()UU R A x x B x x AB AB ==-≤≤=<<求.解:在数轴上表示出集合A 、B ,如右图所示: {|35}AB x x =<≤,(){|1,9}U C AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A BC ; (2)()AABC .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0AC B C =------.∴()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()UCAB ,UA-2 4 m xB AABB A()U C AB ,()()U UC A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}A B =,则(){1,2,3,4,6,7,9}U C AB =由{1,3,6,7,9}UC A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U CA CB =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()UU U CA CBC AB =,()()()U U U C A C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()UU U CA CBC AB =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()UU U CAB C A C B =,()()()U U U C AB C A C B =. 2. 集合元素个数公式:()()()()n A B n A n B n AB =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9AB =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去;当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}AB =,{4}AB =; 当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,AB =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240xx +=}, B ={x |222(1)10xa x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-;(ii )若0∈B ,代入得2a1-=0⇒a =1或a =1-,当a =1时,B =A ,符合题意; 当a =1-时,B ={0}⊆A ,也符合题意. (iii )若-4∈B ,代入得2870aa -+=⇒a =7或a =1,当a =1时,已经讨论,符合题意; 当a =7时,B ={-12,-4},不符合题意.综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -=. (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}UC A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U AC B .第5讲 §¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y .解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y xx =-++.解:(1)要使函数有意义,则540x -≠,解得54x ≠.所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y xx x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x xx++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞,∴ f (0)=32.又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示. 点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12xx <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201xx <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >. 所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x axbx c a =++<的单调区间及单调性.解:设任意12,x xR ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122bxx a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2b a-+∞上单调递减.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y xx =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.第8讲 §¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y axbx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.¤例题精讲: 【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y xx x =-+-=--+. 当14x =时,max360y=.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数,所以当1x =时,min2112y =+-=,函数的最小值为2.点评:形如y ax b cx d=+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t-=,则t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值: (1)25332,[,]22y x x x =--∈-;(2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2b x a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max4y =; 当32x =时,min94y=-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x xx =-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数.(2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x xx f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .解:∵ ()f x 是奇函数,()g x 是偶函数,∴()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.教学过程。
数学必修四第一章试卷(含答案).
必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。
人教A版数学必修四第一章综合检测题.docx
高中数学学习材料马鸣风萧萧*整理制作第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析]α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是()A.2 B.sin2C.2sin1D.2sin1[答案] C[解析] 由题设,圆弧的半径r =1sin1,∴圆心角所对的弧长l =2r =2sin1.3.(2013·宁波模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) [答案] A[解析] 设P (x ,y ),由三角函数定义知sin θ=y ,cos θ=x ,故P 点坐标为(cos θ,sin θ).4.(2013·昆明模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43 B.34 C .-34 D .-43[答案] D[解析] x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x 2=9,∴x =-3,∴tan α=-43.5.如果sin α-2cos α3sin α+5cos α=-5,那么tan α的值为( )A .-2B .2 C.2316 D .-2316[答案] D[解析] ∵sin α-2cos α=-5(3sin α+5cos α), ∴16sin α=-23cos α,∴tan =-2316.6.如果sin α+cos α=34,那么|sin 3α-cos 3α|的值为( ) A.2512823B .-2512823 C.2512823或-2512823 D .以上全错[答案] C[解析] 由已知,两边平方得sin αcos α=-732.∴|sin 3α-cos 3α|=|(sin α-cos α)(sin 2α+cos 2α+sin αcos α)|=1-2sin αcos α·|1+sin αcos α|=2523128.∴sin 3α-cos 3α=±2523128. 7.(2013·普宁模拟)若sin θ+cos θsin θ-cos θ=2,则sin θcos 3θ+cos θsin 3θ的值为( )A .-81727 B.81727 C.82027D .-82027[解析] ∵sin θ+cos θsin θ-cos θ=2,∴sin θ=3cos θ∴sin θcos 3θ+cos θsin 3θ=3cos 2θ+127cos 2θ=8227cos 2θ由⎩⎪⎨⎪⎧sin θ=3cos θsin 2θ+cos 2θ=1得cos 2θ=110 ∴sin θcos 3θ+cos θsin 3θ=82027.8.若sin α是5x 2-7x -6=0的根, 则sin (-α-3π2)sin (3π2-α)tan 2(2π-α)cos (π2-α)cos (π2+α)sin (π+α)=( ) A.35 B.53 C.45 D.54[答案] B[解析] 方程5x 2-7x -6=0的两根为x 1=-35, x 2=2.则sin α=-35原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53.9.函数y =sin ⎝⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝⎛⎭⎪⎫-π2,π2 D.⎝⎛⎭⎪⎫π2,2π3[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.10.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12x B .y =sin(12x -π2) C .y =sin(12x -π6) D .y =sin(2x -π6)[答案] B [解析]11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ),∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数.∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 12.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据: t /时 0 3 6 9 12 15 18 21 24 y /米2321322320.99322则最能近似地表示表中数据间对应关系的函数是( ) A .y =12cos π6t +1 B .y =12cos π6t +32 C .y =2cos π6t +32 D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6. 又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32, ∴y =12cos π6t +32.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若cos(75°+α)=13,其中α为第三象限角,则cos(105°-α)+sin(α-105°)=________.[答案]22-13[解析] cos(105°-α)+sin(α-105°)=-cos(75°+α)-sin(α+75°).∵180°<α<270°,∴255°<α+75°<345°.又∵cos(α+75°)=13,∴sin(α+75°)=-23 2.∴原式=-13+232=22-13.14.函数y =lg(sin x )+16-x 2的定义域为________________. [答案] [-4,-π)∪(0,π)[解析] 由已知,得⎩⎪⎨⎪⎧sin x >0,16-x 2≥0.解得 ⎩⎪⎨⎪⎧2k π<x <2k π+π,-4≤x ≤4,即x ∈[-4,-π)∪(0,π). 15.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.[答案] 2sin ⎝ ⎛⎭⎪⎫π4x -π4+6[解析] 由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4.∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1,取φ=-π4. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6. 16.关于函数f (x )=4sin(2x +π3)(x ∈R ),有下列命题: ①函数y =f (x )的表达式可改写为y =4cos(2x -π6); ②函数y =f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-π6,0)对称; ④函数y =f (x )的图象关于直线x =-π6对称.其中,正确的是________.(填上你认为正确命题的序号) [答案] ①③[解析] ①f (x )=4sin(2x +π3)=4cos(π2-2x -π3)=4cos(-2x +π6)=4cos(2x -π6).②T =2π2=π,最小正周期为π.③∵2x +π3=k π,当k =0时,x =-π6,函数f (x )关于点(-π6,0)对称.④2x +π3=π2+k π,当x =-π6时,k =-12,与k ∈Z 矛盾.∴①③正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为,求2sin α+cos α的值.[解析] (1)∵r =x 2+y 2=5,∴sin α=y r =-35,cos α=x r =45,∴2sin α+cos α=-65+45=-25.(2)∵r =x 2+y 2=5|a |,∴当a >0时,r =5a ,∴sin α=-3a 5a =-35,cos α=45,∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=-3a -5a =35,cos α=-45,∴2sin α+cos α=25.(3)当点P 在第一象限时,sin α=35,cos α=45, 2sin α+cos α=2;当点P 在第二象限时,sin α=35,cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35,cos α=-45,2sin α+cos α=-2;当点P 在第四象限时,sin α=-35,cos α=45,2sin α+cos α=-25. 18.(本题满分12分)已知tan α、1tan α是关于x 的方程x 2-kx +k 2-3=0的两实根,且3π<α<72π,求cos(3π+α)-sin(π+α)的值.[解析] 由题意,根据韦达定理,得tan α1tan α=k 2-3=1,∴k =±2.又∵3π<α<72π,∴tan α>0,1tan α>0,∴tan α+1tan α=k >0,即k =2,而k =-2舍去,∴tan α=1tan α=1,∴sin α=cos α=-22,∴cos(3π+α)-sin(π+α)=sin α-cos α=0.19.(本题满分12分)已知x ∈[-π3,2π3], (1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12. ∴y =cos x 的值域为[-12,1]. (2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154]. 20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R .求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12x +π4=2k π-π2,解得x =4k π-3π2(k ∈Z ),即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z .(2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝⎛⎭⎪⎫12x +π4的图象;④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象.21.(本题满分12分)如图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP .试求A 、ω的值和M 、P 两点间的距离.[解析] ∵函数y =A sin ωx (A >0,ω>0)图象的最高点为S (3,23), ∴A =2 3.由图象,得T4=3,∴T =12. 又T =2πω,∴ω=π6,即y =23sin π6x . 当x =4时,y =23sin 2π3=3. ∴M (4,3).又P (8,0). ∴|MP |=42+32=5, 即MP 的长是5.22.(本题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:x -π6 π3 5π6 4π3 11π6 7π3 17π6 y-1131-113(1)根据表格提供的数据求函数f (x )的一个解析式;(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围.[解析] (1)设f (x )的最小正周期为T ,则T =11π6-(-π6)=2π,由T =2πω,得ω=1,又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1,令ω·5π6+φ=π2,即5π6+φ=π2, 解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3,令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3],如图,sin t =s 在[-π3,2π3]上有两个不同的解,则s ∈[32,1],∴方程 f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3],即实数m 的取值范围是[3+1,3].。
人教版高中数学必修四第一章单元测试(一)及参考答案
2018-2019学年必修四第一章训练卷三角函数(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)( )A. B.23C. D.21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A.4πB.43π C.45π D.47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A.45±B.45 C.45-D.354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( ) A.17 B.17-C.7-D.75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A.2π B.4π-C.4π D.43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( ) A.35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭B.5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭C.353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D.3,,244ππ3π⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )8.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度 D.向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( ) 此卷只装订不密封班级 姓名 准考证号 考场号座位号A.5A -B.5AC.D.10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A.2ω=,2θπ= B.12ω=,2θπ= C.12ω=,4θπ=D.2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D.312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A.6πB.4π C.3π D.2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______.14.方程1sin 4x x π=的解的个数是________.15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y 轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当0y =0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.2018-2019学年必修四第一章训练卷三角函数(一)答案一、选择题1.【答案】Bsin120=︒=故选B.2.【答案】D【解析】点33sin,cos44P⎛⎫ππ⎪⎝⎭即P⎝⎭;它落在角θ的终边上,且[)0,2θ∈π,∴4θ=7π,故选D.3.【答案】C【解析】∵3tan4α=,3,2α⎛⎫∈ππ⎪⎝⎭,∴cos45α=-,故选C.4.【答案】A【解析】4sin2sin()5αα=-π-=,∴sin45α=-.又32α⎛⎫∈π,2π⎪⎝⎭,∴cos35α=.∴sin cos1sin cos7αααα+=-,故选A.5.【答案】C【解析】检验sin84fϕππ⎛⎫=⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C.6.【答案】B【解析】sin cos0αα->且tan0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π⎪⎝⎭.故选B.7.【答案】D【解析】当0a=时()1f x=,C符合,当01a<<时2T>π,且最小值为正数,A符合,当1a>时2T<π,B符合.排除A、B、C,故选D.8.【答案】B【解析】sin2cos2cos2cos2cos2626333y x x x x xπ⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=-⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B.9.【答案】A【解析】由图象知10A=,4112300300100T=-=,∴150T=,∴2100Tωπ==π.∴()10sinI tϕ=100π+.∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin6I tπ⎛⎫=100π+⎪⎝⎭,当1100t=秒时, 5 AI=-,故选A.10.【答案】A【解析】∵()2siny xωθ=+为偶函数,∴2θπ=.∵图象与直线2y=的某两个交点横坐标为1x、2x,21minx x-=π,即minT=π,∴2ωπ=π,2ω=,故选A.11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍.又0ω>,∴243kωπ⋅=π,∴()32k kω=∈Z,∴min32ω=.故选C.12.【答案】A【解析】∵(3cos2)y xϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z . ∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+ 【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3T ω2π==.∴(32sin )y x ϕ+=,将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知, 若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =.三、解答题 17.【答案】见解析.【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭.∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-;当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦,∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭.当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +,∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+,∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-. 19.【答案】(1)6π,2;(2)023x π=或43π.因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=. 20.【答案】(1)cos α;(2);(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅.(2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭,又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-.又α是第三象限角, ∴cos α==, ∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-.由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π, ∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫⎝+⨯=-⎪⎭, 即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z ,∴()1126k k ϕπ=π-∈Z . 又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=,故()sin 226f x x π⎛⎫+ ⎝=⎪⎭.(2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦,当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭.【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭.方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭,∴3k ϕπ-+=π,k ∈Z .∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=,∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭.(2)方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫⎪⎝⎭上有两个交点,在图中作y a =的图象, 如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x =当53x π=时,()0f x =, 由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭.。
(word完整版)高一数学必修四第一章测试题
宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。
人教版高中数学必修四第一章单元测试(一)及参考答案
人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。
2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。
3.考试结束后,请将试题卷和答题卡一并上交。
一、选择题1.sin²120°等于( )A。
±33B。
2C。
±3/2D。
1/22.已知点P的坐标为(sin(3π/4)。
cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。
π/4B。
3π/4C。
5π/4D。
7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。
±4/5B。
±3/5C。
±5/4D。
±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。
1/7B。
-1/7C。
-7D。
75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。
π/2.3π/2B。
-π/4C。
4πD。
4π/36.若点P(sinα-cosα。
tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。
(π/2.π)B。
(0.π/2)C。
(π/3.π/2)D。
(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。
一条直线B。
一段正弦曲线C。
一段余弦曲线D。
一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。
2x+π/12B。
2x-π/12C。
2(x+π/12)D。
2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。
B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。
高中数学人教A版必修4 第一章 三角函数 单元测试2 Word版含解析
(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算sin(-960°)的值为( )A .-12 B.12C.32 D .-32 解析:选C.sin(-960°)=sin(-360°×3+120°)=sin 120°=sin(180°-60°)=sin 60°=32.2.角α终边经过点(1,-1),则cos α=( ) A .1 B .-1C.22 D .-22解析:选C.角α终边经过点(1,-1),所以cos α=112+(-1)2=22,故选C.3.以下函数为奇函数的是( ) A .y =tan(x +π) B .y =sin|x | C .y =cos|x | D .y =|tan x | 解析:选A.∵y =tan(x +π)=tan x . ∴y =tan(x +π)为奇函数.4.一扇形的圆心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .4 D .8解析:选C.因为θ=2,l =4,所以R =l θ=42=2,则扇形的面积S =12lR =12×4×2=4.5.把函数f (x )=sin 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g (x )的图象,则g (x )的最小正周期为( )A .2πB .π C.π2 D.π4解析:选A.由题意知g (x )=sin(2×12x )+1=sin x +1.故T =2π.6.将函数f (x )=sin(2x +θ)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象的对称轴重合,则φ的值可以是( )A.π4B.3π4C.π2D.π6解析:选C.函数f (x )=sin(2x +θ)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )=sin(2x +θ-2φ),若f (x ),g (x )的图象的对称轴重合,则-2φ=k π(k ∈Z ),即φ=-k π2(k ∈Z ),当k =-1得φ=π2,故选C.7.设f (n )=cos(n π2+π4),则f (1)+f (2)+f (3)+…+f (2 015)等于( )A. 2 B .-22C .0D.22解析:选B.f (n )=cos(n π2+π4)的周期T =4;且f (1)=cos(π2+π4)=cos 3π4=-22,f (2)=cos(π+π4)=-22,f (3)=cos(3π2+π4)=22,f (4)=cos(2π+π4)=22.∴f (1)+f (2)+f (3)+f (4)=0,∴f (1)+f (2)+…+f (2 015)=f (2 013)+f (2 014)+f (2 015)=f (1)+f (2)+f (3)=-22. 8.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[1,3]时,f (x )=2-|x -2|,则( )A .f ⎝⎛⎭⎫sin π3>f ⎝⎛⎭⎫sin π6B .f ⎝⎛⎭⎫sin 2π3<f ⎝⎛⎭⎫cos 2π3 C .f ⎝⎛⎭⎫cos π3<f ⎝⎛⎭⎫cos π4 D .f ⎝⎛⎭⎫tan π6<f ⎝⎛⎭⎫tan π4 解析:选B.x ∈[-1,1]时,x +2∈[1,3], f (x )=f (x +2)=2-|x |,所以f (x )在(0,1)上为减函数.由1>sin π3>sin π6>0,知f ⎝⎛⎭⎫sin π3<f ⎝⎛⎭⎫sin π6, 0<cos π3<cos π4<1,所以f ⎝⎛⎭⎫cos π3>f ⎝⎛⎭⎫cos π4, 0<tan π6<tan π4=1,所以f ⎝⎛⎭⎫tan π6>f ⎝⎛⎭⎫tan π4. 由于f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,所以f ⎝⎛⎭⎫sin 2π3<f ⎝⎛⎭⎫cos 2π3.故选B. 9.函数y =2sin(3x +φ)(|φ|<π2)的一条对称轴为x =π12,则φ=( )A.π6B.π3C.π4 D .-π4解析:选C.由y =sin x 的对称轴为x =k π+π2(k ∈Z ),可得3×π12+φ=k π+π2(k ∈Z ),则φ=k π+π4(k ∈Z ),又|φ|<π2,∴k =0,故φ=π4.10.关于f (x )=3sin(2x +π4)有以下命题,其中正确的个数为( )①若f (x 1)=f (x 2)=0,则x 1-x 2=k π(k ∈Z );②f (x )图象与g (x )=3cos(2x -π4)图象相同;③f (x )在区间[-7π8,-3π8]上是减函数;④f (x )图象关于点(-π8,0)对称.A .0B .1C .2D .3解析:选D.对①,因为f (x )=3sin(2x +π4),f (x 1)=f (x 2)=0,所以x 1-x 2=k π2(k ∈Z ),所以①错误;对②,因为3cos(2x -π4)=3sin[(2x -π4)+π2]=3sin(2x +π4),所以②正确;对③,当x ∈[-7π8,-3π8]时,2x +π4∈[-3π2,-π2],所以f (x )在区间[-7π8,-3π8]上是减函数,③正确;对④,当x =-π8时,2x +π4=0,所以f (-π8)=0,所以④正确.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f (5π3)的值为________. 解析:f (5π3)=f (-5π3)=f (2π-5π3)=f (π3)=sin π3=32.答案:3212.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 解析:因为点P (tan α,cos α)在第三象限,所以tan α<0,cos α<0,则α是第二象限角. 答案:二13.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则a ,b ,c 的大小关系为________(按由小至大顺序排列)解析:a =sin 5π7=sin(π-5π7)=sin 2π7,b =cos 2π7=sin(π2-2π7)=sin 3π14,因为0<3π14<2π7<π2,y =sin x 在(0,π2)上为增函数,所以b <a ;又因为0<π4<2π7<π2,y=tan x 在(0,π2)上为增函数,所以c =tan 2π7>tan π4=1,所以b <a <c .答案:b <a <c 14.有下列说法:①函数y =-cos 2x 的最小正周期是π;②终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=k π2,k ∈Z ;③把函数y =3sin(2x +π3)的图象向右平移π6个单位长度得到函数y =3sin 2x 的图象;④函数y =sin(x -π2)在[0,π]上是减函数.其中,正确的说法是________.解析:对于①,y =-cos 2x 的最小正周期T =2π2=π,故①对;对于②,因为k =0时,α=0,角α的终边在x 轴上,故②错;对于③,y =3sin(2x +π3)的图象向右平移π6个单位长度后,得y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=3sin 2x ,故③对;对于④,y =sin(x -π2)=-cos x ,在[0,π]上为增函数,故④错.答案:①③15.计算3sin (-20π3)tan 113π-cos 13π4·tan(-374π)=________.解析:原式=3sin (-2π3-6π)tan (3π+2π3)-cos(5π4+2π)·tan(-9π-14π)=-3sin2π3tan2π3+cos 5π4tan π4=-3sinπ3-tanπ3+(-cos π4)·tan π4=3×323+⎝⎛⎭⎫-22×1=32-22.答案:32-22三、解答题(本大题共5小题,每小题10分,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.解:y =3-4sin x -4cos 2x =4sin 2x -4sin x -1=4⎝⎛⎭⎫sin x -122-2,令t =sin x ,则-1≤t ≤1, ∴y =4⎝⎛⎭⎫t -122-2(-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π(k ∈Z )时,y max =7.17.为了得到函数y =12sin(2x +π6)+54的图象,只要把函数y =sin x 的图象作怎样的变换?解:法一:①把函数y =sin x 的图象向左平移π6个单位长度,得到函数y =sin(x +π6)的图象;②把得到的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数y =sin(2x +π6)的图象;③把得到的图象上各点纵坐标缩短到原来的12(横坐标不变),得到函数y =12sin(2x +π6)的图象;④把得到的图象向上平移54个单位长度,得到函数y =12sin(2x +π6)+54的图象.综上得到函数y =12sin(2x +π6)+54的图象.法二:将函数y =sin x 依次进行如下变换:①把函数y =sin x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得到函数y =sin 2x 的图象;②把得到的图象向左平移π12个单位长度,得到y =sin(2x +π6)的图象;③把得到的图象上各点纵坐标缩短到原来的12(横坐标不变),得到y =12sin(2x +π6)的图象;④把得到的图象向上平移54个单位长度,得到函数y =12sin(2x +π6)+54的图象.综上得到函数y =12sin(2x +π6)+54的图象.18. 如图为一个缆车示意图,缆车半径为4.8 m ,圆上最低点与地面的距离为0.8 m,60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离是h .(1)求h 与θ间的函数关系式;(2)设从OA 开始转动,经过t s 后到达OB ,求h 与t 之间的函数解析式,并求缆车到达最高点时用的最少时间是多少?解:(1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2,故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2).(2)点A 在圆上转动的角速度是π30,故t s 转过的弧度数为πt30.∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m.由sin(π30t -π2)=1,得π30t -π2=π2,∴t =30(s).19.已知函数y =A sin(ωx +φ)(A >0,ω>0,|ω|<π)的一段图象如图所示.(1)求此函数的解析式;(2)求此函数在(-2π,2π)上的递增区间. 解:(1)由图可知,其振幅为A =23,由于T2=6-(-2)=8,∴周期为T =16,∴ω=2πT =2π16=π8,此时解析式为y =23sin(π8x +φ).∵点(2,-23)在函数y =23sin(π8x +φ)的图象上,∴π8×2+φ=2k π-π2(k ∈Z ), ∴φ=2k π-3π4(k ∈Z ).又|φ|<π,∴φ=-3π4.故所求函数的解析式为y =23sin(π8x -3π4).(2)由2k π-π2≤π8x -3π4≤2k π+π2(k ∈Z ),得16k +2≤x ≤16k +10(k ∈Z ),∴函数y =23sin(π8x -3π4)的递增区间是[16k +2,16k +10](k ∈Z ).当k =-1时,有递增区间[-14,-6],当k =0时,有递增区间[2,10],与定义区间求交集得此函数在(-2π,2π)上的递增区间为(-2π,-6]和[2,2π). 20.(2015·周口市高一下期末)已知A (x 1,f (x 1)),B (x 2,f (x 2))是函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<0)图象上的任意两点,且角φ的终边经过点P (1,-3),若|f (x 1)-f (x 2)|=4时,|x 1-x 2|的最小值为π3.(1)求函数f (x )的解析式;(2)求函数f (x )的单调递增区间;(3)当x ∈[0,π6]时,不等式mf (x )+2m ≥f (x )恒成立,求实数m 的取值范围.解:(1)因为角φ的终边经过点P (1,-3),所以tan φ=-3,且-π2<φ<0,得φ=-π3. 函数f (x )的最大值为2,又|f (x 1)-f (x 2)|=4时,|x 1-x 2|的最小值为π3,得周期T =2π3,即2πω=2π3,所以ω=3.所以f (x )=2sin(3x -π3). (2)令-π2+2k π≤3x -π3≤π2+2k π,k ∈Z ,得-π18+2k π3≤x ≤5π18+2k π3,k ∈Z .所以函数f (x )的递增区间为[-π18+2k π3,5π18+2k π3],k ∈Z .(3)当x ∈[0,π6]时,-π3≤3x -π3≤π6,得-3≤f (x )≤1,所以2+f (x )>0,则mf (x )+2m ≥f (x )恒成立等价于m ≥f (x )2+f (x )=1-22+f (x )恒成立.因为2-3≤2+f (x )≤3,所以1-22+f (x )的最大值为13,所以实数m 的取值范围是[13,+∞).。
人教A版数学必修4第一章测试题(一).doc
高中数学学习材料马鸣风萧萧*整理制作云南省昭通市实验中学必修4第一章测试题(一)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列各角中与0330角的终边相同的是 ( )A .0510 B .0150 C . 060- D .0390-2.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限3.扇形的周长是16,圆心角是2rad ,则扇形的面积是 ( ) A .16 B .32 C .π16 D .π324.α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则αs i n 的值为 ( ) A .410 B .46 C .42 D .410- 5.已知0tan .cos <θθ,那么角θ是 ( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限6.若21tan =α,)2,(ππα∈,则αcos 的值等于 ( ) A .553-B .552-C .553D .55-7.化简)cos 1)(tan 1sin 1(ααα-+的结果是 ( ) A .αsin B .αcos C .αsin 1+ D .αcos 1+8.1717cos sin 44ππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭的值是 ( )A .2B .2-C .0D .229.函数)42sin()(π+=x x f 的单调减区间为 ( )A .∈++k k k ],85,8[ππππZ B .∈++k k k ],285,82[ππππZC .∈+-k k k ],8,83[ππππZD .Z k k k ∈+-],82,832[ππππ10.函数)32sin(2)(π+=x x f 的最大值及取最大值时x 的集合为( )A .2,}2|{π=x x B .2,},22|{Z k k x x ∈+=ππC .2,},12|{Z k k x x ∈+=ππD .2-,},125|{Z k k x x ∈+-=ππ11.要得到函数2sin 35y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数2sin3y x =的图象( )A .向左平移5π个单位B .向右平移5π个单位 C .向左平移15π个单位 D .向右平移15π个单位12.函数)||,0,0)(sin(πϕωϕω<>>+=A x A y 的图象如右,则函数的解析式是( )A .)652sin(2π-=x yB .)652sin(2π+=x yC .)62sin(2π-=x yD .)62sin(2π+=x y二、填空题:本大题共4小题,每小题5分,共20分。
必修四第一章测试卷(含答案)
必修四第一章单元练习一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .1sin 2C .1sin 2D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或B .ππ4745或 C .ππ454或 D .ππ474或5. 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54 B. 54- C. 53 D.53-7. 1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >> B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y 在下列哪个区间为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .π45=x12.已知)2cos()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是 ( ) A.函数)(x g x f y⋅=)(的周期为π2 B.函数)()(x g x f y ⋅=的最大值为1C.将)(x f 的图像向左平移2π单位后得)(x g 的图像D.将)(x f 的图像向右平移2π单位后得)(x g 的图像二、填空题13、函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为__________________. 14、已知21tan -=x ,则1cos sin 3sin 2-+x x x =______. 15、设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若,1)2004(=f 则=)2005(f .16.函数])32,6[)(8cos(πππ∈-=x x y的最小值是必修四第一章单元练习答题卷一、选择题二、填空题13.____________________ 14.____________ 15.______________ 16._________________三、解答题 17、若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.18、已知),0(πθ∈,且137cos sin -=+θθ,求θtan 。
高中人教A版数学必修4:第一章 章末检测 Word版含解析
第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C 解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x ≥0cos x ≥12, 如图,结合三角函数线知:⎩⎪⎨⎪⎧ 2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ),解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1,又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根. (3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。
高中人教A版数学必修4:第一章 章末检测 Word版含解析
第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C 解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x ≥0cos x ≥12, 如图,结合三角函数线知:⎩⎪⎨⎪⎧ 2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ),解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1,又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根. (3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。
高一数学必修4第一章测试题
第一章 三角函数一、选择题1.已知 α 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限C .第一、四象限 D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D 解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2. 5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. 8.B解析:∵ cos (α+β)=1, ∴ α+β=2k π,k ∈Z . ∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. (第6题`)解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos α=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即 f (x )等价于min {sin x ,cos x },如图可知, f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. (第15题)∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,(第17题)∴ k (cos x -1)≥0, 又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.sin 150°的值等于( ).A .21 B .-21C .23D .-23 3.在0到2π范围内,与角-34π终边相同的角是( ).A .6π B .3π C .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21 D .43 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 10.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos xB .y =sin xC .y =tan xD .y =sin (x -3π) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中2π<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值;(2)求cos 2α+sin ⎪⎭⎫ ⎝⎛2π + α的值.21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).(1)当 ω=1时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ω 的值.期末测试题参考答案一、选择题:1.A 解析:sin 150°=sin 30°=21.2.B =0+9=3. 3.C 解析:在直角坐标系中作出-34π由其终边即知. 4.D 解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 7.B 解析:由T =ωπ2=π,得 ω=2.10.B 解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.12.A 解析:画出函数的图象即知A 正确. 二、填空题: 15.53.解析:因为r =5,所以cos α=53. 16.43π.解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=43π. 18.20;y =10sin (8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,所以A =21(30-10)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<ϕ<π,可得 ϕ=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34.(2)cos 2α+sin ⎪⎭⎫⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32πω=0,所以32πω=k π,k ∈Z .即 ω=23k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,ω=23.。
人教版高中数学必修4第一章单元测试(二)- Word版含答案
2018-2019学年必修四第一章训练卷 三角函数(二) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简sin600︒的值是( )A .0.5B .0.5-C .3D .3- 2.若sin cos 0x x ⋅<,则角x 的终边位于( )A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限3.函数tan 2xy =是( )A .周期为2π的奇函数B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为2π的偶函数 4.已知4tan 53α⎛⎫--π=-⎪⎝⎭,则tan 3απ⎛⎫+ ⎪⎝⎭的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2C .12D .13 6.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( ) A .2π- B .2k π-2π(k ∈Z) C .k π(k ∈Z) D .k π+π2(k ∈Z) 7.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是( ) A .310- B .310 C .3±10 D .34 8.将函数y =sin x 的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin 210x π⎛⎫- ⎪⎝⎭ B .y =sin 25x π⎛⎫- ⎪⎝⎭ C .y =sin 1210x π⎛⎫- ⎪⎝⎭ D .y =sin 1220x π⎛⎫- ⎪⎝⎭ 9.将函数y =sin(x -θ)的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线x =4π,则θ的一个可能取值是( )此卷只装订不密封 班级姓名准考证号考场号座位号A.512πB.-512πC.1112πD.-1112π10.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()11.在同一平面直角坐标系中,函数y=cos322xπ⎛⎫+⎪⎝⎭(x∈[0,2π])的图象和直线y=12的交点个数是()A.0 B.1 C.2 D.412.设a=sin 57π,b=cos27π,c=tan27π,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果cosα=15,且α是第四象限的角,那么cos2απ⎛⎫+⎪⎝⎭=________.14.设定义在区间0,2π⎛⎫⎪⎝⎭上的函数y=6cos x的图象与y=5tan x的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=sin x的图象交于点P2,则线段P1P2的长为________.15.函数y=A sin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.16.给出下列命题:(1)函数y=sin|x|不是周期函数;(2)函数y=tan x在定义域内为增函数;(3)函数y=|cos2x+12|的最小正周期为2π;(4)函数y=4sin32x⎛π⎫⎪⎝⎭+,x∈R的一个对称中心为,06π⎛⎫-⎪⎝⎭.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知α是第三象限角,()()()()3sin cos tan22tan sinfααααααππ⎛⎫⎛⎫-+π-⎪ ⎪⎝⎭⎝⎭--π-π-=.(1)化简f(α);(2)若31cos25α⎛⎫-π=⎪⎝⎭,求f(α)的值.18.(12分)已知4sin2cos3sin5cosθθθθ-+=611,求下列各式的值.(1)2225cossin2sin cos3cosθθθθθ+-;(2)1-4sinθcosθ+2cos2θ.19.(12分)已知sinα+cosα=15.求:(1)sinα-cosα;(2)sin3α+cos3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤2π)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间; (3)是否存在实数m ,满足不等式Asin(φ)>Asin(+φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:(1)根据以上数据,求函数y=A cosωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?2018-2019学年必修四第一章训练卷三角函数(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】sin 600sin 60︒=-︒=.故选D .2.【答案】C3.【答案】B4.【答案】A5.【答案】B【解析】由图象知2T =2π,T =π,∴2πω=π,ω=2.故选B .6.【答案】D【解析】若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0, ∴φ=k π+π2,(k ∈Z).故选D .7.【答案】B【解析】∵sin cos tan 12sin cos tan 1θθθθθθ++==--,∴tan θ=3.∴sin θcos θ=22sin cos sin cos θθθθ+=2tan tan 1θθ+=310.故选B .8.【答案】C【解析】函数y =sin x 向右平移10π个单位长度,y =sin 10x π⎛⎫- ⎪⎝⎭横坐标伸长到原来的2倍,纵坐标不变,得y =sin 1210x π⎛⎫- ⎪⎝⎭.故选C .9.【答案】A【解析】将y =sin(x -θ)向右平移3π个单位长度得到的解析式为y =sin 3x θ⎡π⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=sin 3x θπ⎛⎫-- ⎪⎝⎭.其对称轴是x =4π,则4π-3π-θ=k π+2π(k ∈Z) ∴θ=-k π-712π(k ∈Z).当k =-1时,θ=512π.故选A . 10.【答案】D 【解析】图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.故选D . 11.【答案】C 【解析】函数y =cos 322x π⎛⎫+ ⎪⎝⎭=sin 2x ,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.故选C . 12.【答案】D 【解析】∵a =sin 57π=sin 57π⎛⎫π- ⎪⎝⎭=sin 27π.27π-4π=828π-287π>0. ∴4π<27π<2π.又α∈,42ππ⎛⎫ ⎪⎝⎭时,sin α>cos α.∴a =sin 27π>cos 27π=b . 又α∈0,2π⎛⎫ ⎪⎝⎭时,sin α<tan α.∴c =tan 27π>sin 27π=a .∴c >a .∴c >a >b .故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【解析】∵α是第四象限的角且cos α=15.∴sin α,∴cos 2α⎛⎫ ⎪⎝π⎭+=-sin α.14.【答案】23【解析】由6cos 5tan y x y x =⎧⎨=⎩消去y 得6cos x =5tan x .整理得6cos 2x =5sin x ,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0,所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23.15.【答案】3【解析】由函数y =A sin(ωx +φ)的图象可知:2T =(-3π)-(-23π)=3π,∴T =23π.∵T =2ωπ=23π,∴ω=3.16.【答案】(1)(4)【解析】本题考查三角函数的图象与性质.(1)由于函数y =sin|x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义1cos 2()22f x x f x π⎛⎫=≠⎭+ ⎪⎝+,∴2π不是函数的周期;(4)由于06f π⎛⎫= ⎪⎝⎭,故根据对称中心的意义可知,06π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故只有(1)(4)是正确的.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)见解析;(2.【解析】(1)()()()()3sin cos tan 22tan sin f ααααααππ⎛⎫⎛⎫-+π- ⎪ ⎪⎝⎭⎝⎭--π-π-=()()sin sin tan 2tan sin αααααπ⎛⎫--- ⎪⎝⎭=- cos sin tan tan si c s n o αααααα=-=-. (2)∵3cos 2α⎛⎫-π ⎪⎝⎭=3cos 2α⎛⎫π- ⎪⎝⎭=-sin α=15.∴sin α=-15. ∵α是第三象限角,∴cos α.∴f (α)=-cos α. 18.【答案】(1)1;(2)-15. 【解析】由已知4sin 2cos 3sin 5cos θθθθ-+=611,∴4tan 23tan 5θθ-+=611.解得:tan θ=2. (1)原式=25tan 2tan 3θθ+-=55=1. (2)原式222222sin 4sin cos 3cos sin 4sin cos 3cos sin cos θθθθθθθθθθ=-+++=- 22tan 4tan 31tan θθθ-+=+=-15. 19.【答案】(1)±75;(2)37125. 【解析】(1)由sin α+cos α=15,得2sin αcos α=-2425, ∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75. (2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α) =(sin α+cos α)(1-sin αcos α), 由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×12125⎛⎫+ ⎪⎝⎭=37125. 20.【答案】(1)f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭;(2)见解析. 【解析】(1)由图象知A =2.f (x )的最小正周期T =4×5126ππ⎛⎫- ⎪⎝⎭=π, 故ω=2T π=2.将点,26π⎛⎫ ⎪⎝⎭代入f (x )的解析式得sin 3ϕπ⎛⎫+ ⎪⎝⎭=1,又|φ|<2π,∴φ=6π,故函数f (x )的解析式为f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭.(2)变换过程如下:y =2sin x 图象向左平移6π个单位得y =2sin 6x π⎛⎫+ ⎪⎝⎭,又所有点的横坐标缩短为原来的12且纵坐标不变得y =2sin 26x π⎛⎫+ ⎪⎝⎭.21.【答案】(1)y =3sin 13510x π⎛⎫+ ⎪⎝⎭;(2)[]104,10Z ()k k k π-ππ+∈π;(3)存在,见解析.【解析】(1)由题意得A =3,12T =5π⇒T =10π,∴ω=2T π=15.∴y =3sin 15x ϕ⎛⎫+ ⎪⎝⎭,由于点(π,3)在此函数图象上,则有3sin 5ϕπ⎛⎫+ ⎪⎝⎭=3,∵0≤φ≤2π,∴φ=2π-5π=310π.∴y =3sin 13510x π⎛⎫+ ⎪⎝⎭.(2)当2k π-2π≤15x +310π≤2k π+2π时,即10k π-4π≤x ≤10k π+π时,原函数单调递增.∴原函数的单调递增区间为[]104,10Z ()k k k π-ππ+∈π.(3)m 满足2223040m m m ⎧-++≥⎪⎨-+≥⎪⎩,解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4,∴, 同理.由(2)知函数在[-4π,π]上递增, 若有:Asin(φ)>Asin(φ),m >12成立即可,所以存在m ∈(12,2],使Asin(φ)>Asin(φ)成立.22.【答案】(1)12,12,1cos 126y t π=+;(2)上午9∶00至下午3∶00.【解析】(1)由表中数据知周期T =12,∴ω=2T π=212π=6π,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴1cos 126y t π=+. (2)由题知,当y >1时才可对冲浪者开放,∴1cos 126t π+>1, ∴cos 6t π>0,∴2k π-2π<6πt <2k π+2π,即12k -3<t <12k +3.① ∵0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24. ∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动, 即上午9∶00至下午3∶00.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四第一章复习题
一、选择题(本大题共12小题,每题5分,共60分)
1.下列说法中,正确的是( )
A .第二象限的角是钝角
B .第三象限的角必大于第二象限的角
C .-831°是第二象限角
D .-95°20′,984°40′,264°40′是终边相同的角
2.若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ) A .0 B.33 C .1 D. 3
3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( )
A .第一、三象限
B .第二、四象限
C .第一、三象限或x 轴上
D .第二、四象限或x 轴上
4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当 x =2时取得最大值,那么( )
A .T =2,θ=π2
B .T =1,θ=π
C .T =2,θ=π
D .T =1,θ=π2
5.若sin ⎝ ⎛⎭
⎪⎫π2-x =-32,且π<x <2π,则x 等于( ) A.43π B.76π C.53π D.116π
6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )
7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得
到y =sin ⎝ ⎛⎭
⎪⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6
8.若tan θ=2,则2sin θ-cos θsin θ+2cos θ
的值为( ) A .0 B .1 C.34 D.54
9.函数f (x )=tan x 1+cos x
的奇偶性是( ) A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .既不是奇函数也不是偶函数
10.函数f (x )=x -cos x 在(0,+∞)内( )
A .没有零点
B .有且仅有一个零点
C .有且仅有两个零点
D .有无穷多个零点
cos A )=m ,lg 11-cos A =n ,则lgsin A B .m -n
D.12(m -n ) C , 对称;
②函数f (x )在区间⎝ ⎛⎭
⎪⎫-π12,5π12内是增函数; ③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其
中正确命题的个数是( )
A .0
B .1
C .2
D .3
二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)
13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭
⎪⎫-π2,0,则tan α=________. 14.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.
15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.
16.给出下列命题:
①函数y =cos ⎝ ⎛⎭
⎪⎫23x +π2是奇函数; ②存在实数x ,使sin x +x =2;
③若α,βα<β,则tan α<tan β;
④x =π8是函数y =sin ⎝ ⎛⎭
⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝
⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称. 其中正确命题的序号为__________.
小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭
⎪⎫3π2-α-sin (-α)的值.
18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值.
19.(12分)已知f (x )=sin ⎝
⎛2x (1)求函数f (x )(2)求函数f (x )(3)函数f (x )换得到?
20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝ ⎛⎭
⎪⎫π3,5. (1)求函数解析式;
(2)求函数的最大值,并写出相应的x 的值;
(3)求使y ≤0时,x 的取值范围.
21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=-2sin ⎝ ⎛⎭
⎪⎫π2+β,且0<α<π
22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中
θ∈⎝ ⎛⎭
⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;
(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).。