积分对称性定理

合集下载

二重积分积分区域的对称性

二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称定理4设二元函数在平面区域连续,且关于轴对称,则1)当(即就是关于得奇函数)时,有、2)当(即就是关于得偶函数)时,有、其中就是由轴分割所得到得一半区域.例5 计算,其中为由与围成得区域。

解:如图所示,积分区域关于轴对称,且即就是关于得奇函数,由定理1有、类似地,有:定理5设二元函数在平面区域连续,且关于轴对称,则其中就是由轴分割所得到得一半区域。

例6 计算其中为由所围。

解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、定理6设二元函数在平面区域连续,且关于轴与轴都对称,则(1)当或时,有、(2)当时,有其中为由轴与轴分割所得到得1/4区域。

9例7 计算二重积分,其中: 、解:如图所示,关于轴与轴均对称,且被积分函数关于与就是偶函数,即有,由定理2,得其中就是得第一象限部分,由对称性知,,故、情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有、例8 计算二重积分,为与所围区域、解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得、情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1);、2)当时,有、3)当时,有、例9 求,为所围、解:积分区域关于直线对称,由定理8,得,故、类似地,可得:定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;(2)当,则有、例10 计算,其中为区域:, 、解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:、注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。

二重积分的性质

二重积分的性质

二重积分的性质性质1 设α与β为常数,则()(),,d Df x yg x y αβσ⎡⎤+⎣⎦⎰⎰ ()(),d ,d D Df x yg x y ασβσ=+⎰⎰⎰⎰性质2 设闭区域D 可以分为两个闭区域1D 与2D ,则()()()12,d ,d ,d D D D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰ 性质3 1d Dσσ=⎰⎰,其中σ表示D 的面积.性质4 若在D 上有()(),,f x y g x y ≤,则有由于()()(),,,f x y f x y f x y -≤≤, 特别地, ()(),d ,d D Df x yg x y σσ≤⎰⎰⎰⎰ 又有()(),d ,d D D f x y f x y σσ≤⎰⎰⎰⎰性质5 设M 与m 分别是(),f x y 在D 上的最大值和最小值, σ是D 的面积,则有(),d D m f x y M σσσ≤≤⎰⎰ 估值不等式性质6 (中值定理) 设(),f x y 在闭区域D 上连续,则在 D 上至少存在一点(),ξη,使得()(),d ,D f x y f σξησ=⎰⎰二元函数的奇偶性:若(,)(,)f x y f x y -=-,称),(y x f 关于x 为奇函数; 若),(),(y x f y x f -=-,称),(y x f 关于y 为奇函数; 若),(),(y x f y x f =-或),(),(y x f y x f =-,称f 关于x 或y 为偶函数.二重积分的对称性定理:1、设积分区域D 关于x 轴对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧-=-⎪=⎨-=⎪⎩⎰⎰⎰⎰1D 为D 的对称部分中的一半.二重积分的对称性定理:2、设积分区域D 关于y 轴对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧-=-⎪=⎨-=⎪⎩⎰⎰⎰⎰1D 为D 的对称部分中的一半.二重积分的对称性定理:3、设D 关于原点对称,则 ()()()()()()10,,,d 2,d ,,D D f x y f x y f x y f x y f x y f x y σσ⎧--=-⎪=⎨--=⎪⎩⎰⎰⎰⎰ 1D 为D 的对称部分中的一半.二重积分的对称性定理:4、设D 关于直线y =x 对称,则()(),d ,d D D f x y f y x σσ=⎰⎰⎰⎰二重积分的对称性定理:5、设1D 与2D 关于直线y =x 对称,则()()12,d ,d D D f x y f y x σσ=⎰⎰⎰⎰例 设区域D 是422≤+y x ,求()31d D xy σ+⎰⎰ 解 D 关于x 轴对称,3xy 关于y 为奇函数, 则3d 0D xy σ=⎰⎰, 3(1)d D xy σ+=⎰⎰d Dσ=⎰⎰4π例 设D 是三角形闭区域, 三顶点各为(1,0),(1,1),=1I 4()d Dx y σ+⎰⎰, =2I()d D x y σ+⎰⎰, =3I 2()d D x y σ+⎰⎰, 则1I 、2I 、3I 的大小顺序如何?解 在D 上,1x y +>, (2,0), o xy121D42()()()x y x y x y +>+>+, 由此得 231I I I <<.。

对称性在积分计算中的应用

对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。

积分的对称性问题

积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4

二重积分的对称性定理

二重积分的对称性定理

能用此性质。

的奇偶性两者兼得时才的对称性与被积函数注意:仅当积分域对称,则关于直线如果轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积同时为关于原点对称,如果积分域轴的右半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域二重积分的对称性定理
),(),(),(.4),(),(,),(2),(),(,0),(,),(.3),(),(),(2),(),(0),(),(.2),(),(),(2),(),(0),(),(.1112211y x f D d x y f d y x f x y D x D D y x f y x f y x f d y x f y x f y x f y x f d y x f y x y x f D y D D y x f y x f x f d y x f y x f y x f x f d y x f x y x f y D x D D y x f y x f y f d y x f y x f y x f y f d y x f y y x f x D D D
D D D D D D ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰===--⎪⎩
⎪⎨⎧-=--==-⎪⎩
⎪⎨⎧-=-==-⎪⎩
⎪⎨⎧-=-=***σ
σσσσσσσ。

积分对称性定理

积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。

(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。

(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。

(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。

3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。

对称性在积分中应用

对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。

1对称性在二重积分中的应用

1对称性在二重积分中的应用
为奇(偶)函数.
定义 2:若二元函数 f (x, y)的定义域 D 关于 x
轴对称,且满足 f (x, y) f (x, y)
(或 f (x, y) f (x, y)),则称 f (x, y) 关于y
为奇(偶)函数.
定义 3:若二元函数 f (x, y) 的定义域 D 关于
直线 y 对x称,且满足 f (x, y) f ( y,, x)
解:由 e ydxdy etdudt exdydx
x2 y2 R2
u2 t2 R2
y2 x2 R2
exdxdy x2 y2 R2
计算
(ex e y )dxdy
x2 y2 R2
解: 由 e ydxdy exdxdy
x2 y2 R2
x2 y2 R2
故 (ex e y )dxdy exdxdy e ydxdy
片的质量M.
解:根据二重积分的物理意义,M e|x||y|dxdy. D
由于积分区域 D 关于x 轴,y 轴都对称,且
数关于 x, y 都是偶函数,根据推论1.1得
被积函
y
1
D
y 1 x
M e|x||y| dx d y 4 exy dx d y
D1DD1源自1 1x1 O1x
4 d x exy d y 4.
y
定理 1’
D1 D
若有界闭区域 D 关于 x 轴对称,f (x, y) O
x
在区域 D 上连续, 则
f
(x,
y)
dx
d
y
0
当 f (x, y) 关于y 为奇函数时
D
2 f (x, y)dxdy
D1 当 f (x, y) 关于 y 为偶函数时

积分对称性定理

积分对称性定理

关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 满足0≥y 上半平面区域。

(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。

(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域. (4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=。

积分对称性定理

积分对称性定理

积分对称性定理积分对称性定理是数学中的一个重要定理,它可以帮助我们更好地理解积分如何用于解决问题,进一步引发我们对数学知识的思考和研究。

积分对称性定理指出,当连续函数 $f(x)$ 作为积分上下界的差值被积分时,该积分的值可以通过将上下界互换来得到相同的结果。

简单来说,就是积分上下界的交换不影响积分的结果。

这个定理具体是如何证明的呢?我们可以考虑一个一般形式的积分:$$\int_a^bf(x)dx$$将上下界互换之后,该积分变为:为了证明积分对称性定理,我们需要证明上述两个积分的值相等。

这可以通过积分中值定理来得到。

根据积分中值定理,当 $f(x)$ 在 $[a,b]$ 上连续时,存在 $c\in [a,b]$ 使得:由于 $[a,b]$ 和 $[b,a]$ 实际上是同一个区间,因此我们可以将 $d$ 表示为$c$ 的对称点,即 $d=2b-c$。

这样,我们可以将 $\int_b^af(x)dx$ 中的 $d$ 替换为$c$:如果我们能证明 $f(c)=f(2b-c)$,则可以得到:证明这个等式的关键在于,$f(x)$ 是否具有对称性。

如果 $f(x)$ 是奇函数,即$f(-x)=-f(x)$,则有:$$f(2b-c)=f(2b-(2b-a))=-f(a+c-2b)=-f(2b-c)$$即 $\int_a^bf(x)dx=\int_b^af(x)dx=0$。

综上所述,无论 $f(x)$ 是奇函数还是偶函数,都有$\int_a^bf(x)dx=\int_b^af(x)dx$。

这就是积分对称性定理的证明过程。

具体来说,积分对称性定理在实际问题中的应用非常广泛。

比如,我们可以利用积分对称性定理来求解较为复杂的积分问题,特别是在变量替换时,通过对称性来方便地改变积分上下限,简化计算过程。

此外,积分对称性还可以用于求某些未知函数的积分值,通过对称性进行简化和化简,为后续工作提供便利。

总之,积分对称性定理是数学学习中的一个重要定理,我们需要认真学习并灵活运用。

二重积分的对称性

二重积分的对称性

jj f (x,y)d“ = I 2JJ/(x,y)db,如果/(x,y)在D上关于x为偶函数.
D
[ Di
弋HEFEI insiVhJtSITY OF TEC HNOLCMiY
/高等数学
例 1 设区域D : x + y < 1,求JJ(x3y2 + y3 sin2 x) do.
解如图,
D
H
且 由于区域D关于yJ轴J对x3称y2,do = x3y2关于x为奇函数,故 1 D
| F3j
言笙劫当
二、二重积分的轮换对称性
二重积分的轮换对称性可视为从f bf (x)dx = fb f (t)dt引伸过来.
a
a

ff f ( x, y ) dxdy = ff f (u, v) dudv.
Dxy
Duv
ff f ( y,x) =dxdy
D
D dydx)
与 。 仍 其中
为区域
D
关于直线/ = x的对称区域.
冬比.
久*
HEFEI inMIVBRSITY OF TFC HNCMXMiY
二重积分的对称性
/高等数学
冬比.
/高等数学
久二重积分的对称性包括奇偶对称性和抡换对称性. 一*、二重积分的奇偶对称性
HEFEI inMIVBRSITY OF TFC HNCMXXiY
二重积分的奇偶对称性可视为从定积分的奇偶对称性引伸过来的.
/高等数学
冬比.
设 。 定理(二重积分的轮换对称性) f(X,7)在有界闭区域 上连
久*
为 关 』 续, D HEFEIinMIVBRSITY OF TFC HNCMXXiY
D
于直线

对称性在多元函数积分中的应用

对称性在多元函数积分中的应用

对称性在多元函数积分中的应用1.引言多元函数积分计算是微积分中的一个重点和难点,很多初学者对此是望而却步。

但被积函数和积分区域的某些特殊结构特征常常会对问题的求解带来便捷,对于被积函数存在奇偶性、积分区域具有对称性的重积分、第一类曲线积分、第一类曲面积分的计算问题,巧妙利用对称性,能使复杂的计算变得简单易行。

2.主要结论定理1:(1)如果积分区域D关于y轴对称,则:(ⅰ)当时,有;(ⅱ)当时,有其中.(2)如果积分区域D关于x轴对称,则:(ⅰ)当时,有;(ⅱ)当时,有,其中.证明:(1)如果积分区域D关于y轴对称,按y型积分区域顺序计算二重积分有,其中为D在y轴上的投影,为任意平行于x轴的且穿越区域内部的直线与区域边界交点的横坐标。

由于积分区域D关于y轴对称,故在平行于x轴的直线上关于点对称,由定积分对称性结论[1],[3]可得:当时,,所以;当时,,所以,其中同理可证结论(2)。

以上结论可进一步推广到积分区域关于原点和关于直线对称的情况。

推论1(1)如果积分区域D关于原点对称,则:(ⅰ)当时,有;(ⅱ)当时,有,其中D1为D的右半平面.(2)如果积分区域D关于对称,则,其中,分别为在的上方与下方部分。

将二重积分积分区域定义的平面直角坐标系推广到空间直角坐标系,将平面直角坐标系中关于坐标轴的对称推广到空间直角坐标系中关于坐标面的对称即可得到三重积分的相关结论。

定理2:设在有界闭区域连续,若关于平面对称,则:(1),若关于为奇函数;(2),若关于为偶函数,其中.类似可得到关于平面对称的情况下的结论。

另外,由二重积分的结论可直接推广得到第一类曲线积分的结论,由三重积分的结论可直接推广得到第一类曲面积分的结论。

定理3:设在分段光滑的曲线L上连续.若L关于x轴(或y轴)对称,则:(1),若关于y(或x)为奇函数;(2),若关于y(或x)为偶函数,其中L1为L的右半平面或上半平面。

定理4:设在分块光滑曲面S上连续,若S关于平面对称,则:(1),若关于x为奇函数;(2),若关于x为偶函数,其中.类似可得到关于平面对称的情况下的结论。

多元函数积分学的对称性问题

多元函数积分学的对称性问题
D
(1) x 2 y 2 2 x 2 y 2 ;
2
(2) x 2 y 2 2 xy.
2
解 (1) 由 x 2 y 2
2 x y 2 2 2
而被积函数 xy 围成的积分区域 D (图 6—2)对称于 x 轴.
D
关于 y 是奇函数,即 x y xy .故由第 2 种情况知 xy d x d y 0 . (2) 由 x 2 y 2 2 xy 所围的域 D (图 6—3)对称于原点. 而被积函数 x y xy ,
借助于几何意义,此结论不难理解. 证将区域 D D1
D2 关于 y 轴进行对称性划分, i D1 ,与之对称的有 i D2 ,令
为小区域的最大直径,取点 (i ,i ) i ,与点 (i,i) i 对称.
f ( , ) f ( , ) f ( x, y ) d x d y lim
解 积分域是圆 x 2 y 2 a 2 ,故关于 x 、 y 轴、原点及变元 x 、
y 均对称.将被积函数分项积分
x2 y 2 a2

2 x 3 y d 0
2
O
2
x

2
x y a

2
x2 d
2 2
x y a

2
y2 d
2
1 a4 2 2 x y d ,又 2 x2 4 y 2 a2
解 依积分区域 D 及被积函数 arcsin x y 的特点, 首先将 D 分解为 D ( i 1,2,3 )如图所示. 因为 D2 与 D3 关于直线 x y 0 对称,而被积函数 arcsin x y 在 D2 奇函数,所以

对称性在积分计算中的应用精编

对称性在积分计算中的应用精编

对称性在积分计算中的应用引言积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.那么,如果我们在解题中发掘或注意到问题的对称性,并巧妙地把它们应用到积分的计算过程中去,往往可以简化计算过程,达到事倍功半的效果,我们甚至可以不用计算就可以直接判断出其结果.在积分计算中利用对称性来解题这种方法,是一种探索性的发现方法,它与其他方法的不同之处主要体现在其创造性功能. 因此,掌握和充分利用对称性求积分这一方法,对于活跃和开拓我们学生的创造性思维,提高判断解题能力,探讨解题方法是十分有益的.下面从定积分、积分、线面积分三方面来介绍一下对称性在积分计算中的应用.一、相关的定义设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)。

二、对称性在定积分中的应用(一) 定积分的概念 1. 概念设函数)(x f 在],[b a 上有界,(1) 在],[b a 内插入若干个分点,......210b x x x x a n =<<<<=把区间[,]a b 分成n 个小区间01121[,],[,],......[,],n n x x x x x x -各个小区间长度依次为110221,,x x x x x x ∆=-∆=-1.......n n n x x x -∆=-(2) 在每个小区间上任取一点1(),()i i i i i x x f ξξξ-≤≤作函数与小区间长度i x ∆的乘积()(1,2,......,),i i f x i n ξ∆=,并作出和 1().ni i i S f x ξ==∆∑(3) 记12max{,,......,},n x x x λ=∆∆∆如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么这个极限称为函数的()f x 在区间],[b a 上的定积分,记为⎰ba dx x f )(即记为1()()nbi i ai f x dx I f x ξ===∆∑⎰其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],[b a 叫做积分区间. 2. 几何意义几何上,⎰<ba b a dx x f )()(表示曲线()y f x x =与轴,,x a x b ==所围曲边梯形面积的代数和.(二) 对称性在定积分中的性质性质 1 若()x f [,]a b k 在上可积,为常数,则()x kf 在],[b a 上也可积,则⎰b adx x kf )(⎰=badx x f k )(性质 2 ()()上也可积,且在则上可积都在若],[)()(,],[,b a x g x f b a x g x f ±.)()()]()([dx x g dx x f dx x g x f bab aba⎰⎰⎰±=±性质 3 ()()()()上也可积在上可积,则在都在若],[],[,b a x g x f b a x g x f ⋅ 性质 4 ()()上与在任给上可积的充要条件是:在],[],[),,(],[b c c a x f b a c b a x f ∈.都可积.)()()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f 此时又有等式规定 1 0)(⎰==badx x f b a 时,令当.规定 2 .)()(⎰⎰-=>abb adx x f dx x f b a 时,令当 .性质 5 ()⎰≥∈≥badx x f b a x x f b a x f .0)(],,[,0)(.],[则若上的可积函数为设推论(积分不等式性)()()],,[),()(],[b a x x g x f b a x g x f ∈≤上的两个可积函数,且为与若性质 6()().)()(],[],[dx x f dx x f b a x f b a x f baba⎰⎰≤上也可积,且在上可积,则在若(三) 对称性在定积分中的定理定理1 若)(x f 在a][-a,(a>0)上连续且为偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(.证明 因为 ⎰⎰⎰+=--aaaadx x f dx x f dx x f 0)()()(对积分作代换-t x =,则得⎰⎰⎰⎰-=-=--=-aaaa dx x f dt t f dt t f dx x f 0)()()()(所以 ⎰⎰⎰⎰-+=+=--aa aaadx x f x f dx x f dx x f dx x f 00)]()([)()()((1) 若)(x f 为偶函数,则)(2)()(),()(x f x f x f x f x f =+-=-即 所以⎰⎰=-aaadx x f dx x f 0)(2)((2) 若)(x f 为奇函数,则0)()(),()(=+--=-x f x f x f x f 即 所以0)(=⎰-aa dx x f .注 定理1可简化计算偶函数,奇函数在对称于原点的区间上的定积分为0.(四) 对称性在定积分中的应用举例 例 1 dx x x 23111)1(-+⎰-解 =⎰⎰---+-112311211dxx x dx x因为积分区间关于原点对称,而2-1x 是偶函数,231x x -是奇函数,故,011123=-⎰-dx x x设 x =y sin 2cos 1222112πππ⎰⎰--==-dy y dx x原式=2π 例 2 计算()2x 2ln 1e x dx -+⎰因为积分区间关于原点对称,但()x e 1ln +既不是奇函数也不是偶函数,我们可()().b ba af x dxg x dx ≤⎰⎰则有利用()()()()()22x f x f x f x f x f --+-+=.其中()()2x f x f -+为偶函数,()()2x f x f --为奇函数,把它分解为一个偶函数和一个奇函数之和.解 令()()x x f e 1ln +=,则()()()x x x f x f -++=-+e e 2ln 212,()()x x f x f 212=--,()()2222x x -x 222220118ln 1+e ln 2e e d 223x dx x x dx x x x dx ---⎡⎤=+++===⎣⎦⎰⎰⎰⎰所以有例3 计算 ⎰-+22223sin )cos (ππxdx x x分析 由于x x 23sin 是一个奇函数, x x 22sin cos 是一个偶函数,并且积分区域]2,2[ππ-关于原点对称,因此可用定理1来计算. 解 由定理1得 原式⎰⎰--+=22222223sin cos sin ππππxdx x xdx x⎰-+=2222sin cos 0ππxdx x=)sin sin (2204202⎰⎰-ππxdx xdx 其中220sin xdx π⎰=22222220sin cos (sin cos cos )sin xd x x xx dx dx x dx πππππ-=--=-⎰⎰⎰⎰2220sin xdx π⎰=2π ,220sin xdx π⎰=221π⋅ 同理得:22143)sin 204ππ⋅⋅=⎰xdx原式 )22143221(2ππ⋅⋅-⋅=8π=.利用函数关于直线对称以及区间关于直线对称,应用定理得出积分为0,使上述复杂积分简单化,易得出结论.三、对称性在二重积分中的应用(一)二重积分的概念 1 概念设(,)f x y 是有界闭区域D 上的有界函数,(1) 将闭区域D 任意分成n 个小闭域12,,......,,n σσσ∆∆∆其中i σ∆表示第i 个小闭区域,也表示它的面积.(2) 在每个i σ∆上任取一点(,),i i εη 作乘积(,)i i i f εησ∆ (1,2,......,),i n =并作和1(,),niiii f εησ=∆∑(3) 如果当个小闭区域的直S 径的最大值0λ→时,这和的极限总存在,则称此极限为函数(,)f x y 在闭区域D 上的二重积分,记作 01(,)lim (,)ni i i i Df x y d f λσεησ→==∆∑⎰⎰其中(,)f x y 叫做被积函数,(,)f x y d σ叫做被积表达式,d σ叫做面积元素,x y 与叫做积分变量,D 叫做积分区域,1(,)ni i i i f εησ=∆∑叫做积分和.2 几何意义当(,)f x y 为闭区域D 上的连续函数,且(,)0,f x y ≥则二重积分(,)Df x y d σ⎰⎰表示以曲面(,)z f x y =为顶,侧面以D 的边界曲面为准线,母线平行于z 轴的曲顶柱体的体积.一般地,(,)Df x y d σ⎰⎰表示曲顶柱体体积的代数和.(三) 二重积分的性质性质 7 上也可积,且在为常数,则上可积,在区域若D y x kf k y x f ),(D ),(⎰⎰⎰⎰=DDd y x f k d y x kf .),(),(σσ性质 8 上也可积,且在上都可积,则在若D y)g(x,y)f(x,D ),(),,(±y x g y x f⎰⎰⎰⎰⎰⎰±=±DDDd y x g d y x f d y x g y x f .),(),(]),(),([σσσ性质 9 若 ),(y x f 在1D 和2D 上都可积,且1D 与2D 无公共内点,则),(y x f 在1D ⋃2D 上可积,且.),(),(),(2121σσσd y x f d y x f d y x f D D D D ⎰⎰⎰⎰⎰⎰+=⋃性质 10 则上可积,且在与若,),(),,(),(),(),(D y x y x g y x f D y x g y x f ∈≤⎰⎰⎰⎰≤DDd y x g d y x f .),(),(σσ性质 11 ⎰⎰Dd y x f D y x f D y x f σ),(),(),(上也可积,且在上可积,则在若σd y x f D⎰⎰≤),(性质 12 σd y x f mS D y x M y x f m D y x f DD ),(,),(,),(),(⎰⎰≤∈≤≤则上可积,在若.,的面积是积分区域这里D S MS D D ≤(三) 对称性在二重积分中的定理定理2 设有界闭区域12D D D = ,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则⎰⎰Dd y x f σ),(0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)iD f x y d σ⎰⎰(1,2)i =注 设函数),(y x f 在有界闭区域D 上连续(i)若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y y x f d y x f 2),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中2D 是D 的上半部分 2D =}0|),{(≥∈y D y xy)(x y ϕ=1Da 0b x2D)(-x y ϕ= 图1 证明12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰ (1)若区域D 对称于x 轴(图1),对任意(,)P x y ∈1D ,其对称点(,)P x y '-∈2D1D ={}0(),y x a x b ϕ≤≤≤≤,2D ={}()0,x y a x b ϕ-≤≤≤≤,令x xy t=⎧⎨=-⎩, 则2D 变换为xot 坐标面上的{}10()D t x a x b ϕ=≤≤≤≤,,且雅可比行列式(,)(,)x y x t ∂∂10101==--. 故2(,)D f x y dxdy ⎰⎰=1(,)1D f x t dxdt -∙-⎰⎰=1(,)D f x y dxdy -⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdy f x y f x y f x y dxdy f x y f x y ⎧-=⎪⎪⎨--=-⎪⎪⎩⎰⎰⎰⎰,于是,代入(1)式得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y =--⎧⎪=⎨=-⎪⎩⎰⎰⎰⎰ 0 , ,(ii) 若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f x y x f d y x f 1),(),(2),(,0),(为偶函数关于,如果为奇函数关于如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y xy)(y x ϕ-= d )(y x ϕ=2D 1D 0 xc图2证明 若区域D 对称于y 轴(图2),对任意(,)P x y ∈1D ,对称点(,)P x y '-∈2D ,类似 (i) 的证明可得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y -=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰ 0 , ,定理 3 设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续 (1)若),(y x f 关x 和y 均为偶函数,则1(,)4(,),DD f x y d f x y d σσ=⎰⎰⎰⎰其中1D 是D的第一象限的部分1{(,)|0,0}D x y D x y =∈≥≥(,)f x y (2)若关x 和y 均为奇函数,则(,)0Df x y d σ=⎰⎰定理 4 设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y xy2D 1D )(x y ϕ= 0 x a b)(x y ψ=图3证明 若区域D 对称于原点(图3),对任意(,)P x y ∈1D ,对称点P '(,)x y --∈2D ,{}1()()D x y x a x b ψϕ=≤≤≤≤,, {}2()()D x y x b x a ϕψ=--≤≤---≤≤-,,令x uy v =-⎧⎨=-⎩, 则区域2D 变换为uov 坐标平面内区域{}1()()D x y x a x b ψϕ=≤≤≤≤,,雅可比行列式(,)(,)x y u v ∂∂10101-==-,所以2(,)D f x y dxdy ⎰⎰=1(,)D f u v dudv --⎰⎰=1(,)D f x y dxdy --⎰⎰=11(,),(,)(,)(,),(,)(,)D D f x y dxdyf x y f x y f x y dxdy f x y f x y ⎧---=-⎪⎪⎨--=⎪⎪⎩⎰⎰⎰⎰,代入12(,)(,)(,)DD D f x y dxdy f x y dxdy f x y dxdy =+⎰⎰⎰⎰⎰⎰,得1(,)(,)(,)2(,)(,)(,)DD f x y f x y f x y dxdy f x y dxdy f x y f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰ 0 ,若 ,若定理 5 设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰(四) 对称性在二重积分中的应用举例例 4 计算二重积分25sin Sx ydxdy ⎰⎰,其中S 是由1x y +=,0x =,1x y -=所围成的区域.解 积分区域S 关于x 轴对称(见图),且ydxdy x S52sin ⎰⎰为关于y 的奇函数,故由定理225sin 0Sx ydxdy =⎰⎰例 5 设 :sin ,,12D y x x y π==±= 围成求 (1)Dxy dxdy-⎰⎰x 2π-= y x 2π=y=1x图5x11-10 图4y解 12DDD D DI xydxdy dxdy xydxdy xydxdy dxdy =-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰因为12D D 和关于y 轴对称,所以由定理2知120D D xydxdy xydxdy +=⎰⎰⎰⎰所以 原式 =Ddxdy π=⎰⎰例 6 计算二重积分 222(373),: 1.DI x x y d D x y σ=++++≤⎰⎰其中解 见下图 D 关于x y 轴轴都对称,而37x y 和分别关于变量x 和变量y 为奇数 所以由定理330,Dxd σ=⎰⎰70Dyd σ=⎰⎰设 θσθr d r d d r x ==,c o s ,=⎰⎰σd x D2rdr r d ⎰⎰πθθ2012)cos ( 所以 原式πθθπ3)cos (2012+=⎰⎰rdr r d π411=yDx图6例 7 计算 (),DI x y d x d y =+⎰⎰ 其中: 1.D x y +≤解 D x y 关于轴,轴对称,且被积函数关于x 和y 是偶函数,即有(,)f x y -=(,)(,)f x y f x y -=由定理3,有1()()DD I x y dxdy x y dxdy =+=+⎰⎰⎰⎰,其中1D D 是的第一象限部分,由对称性知11D D x dxdy y dxdy =⎰⎰⎰⎰22(3)3DDDI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰故 11144()4()8.3D D D I x y d x d y xx d x d y x d x d y =+=+==⎰⎰⎰⎰⎰⎰例 8 计算2()Dxy x y dxdy +⎰⎰其中D 是由,1,1y x y y ===-0x =以及所围城的闭区域图7解 如图, 12D D D =+,1D 、2D 关于原点对称,但被积函数不满足(,)(.)f x y f x y =--,也不满足(,)(.)f x y f x y =---,故不能直接用定理来计算, 所以令1(,)f x y xy = , 22(,)f x y x y =对1(,)f x y 和2(,)f x y 分别应用定理4,则11(,)2DD f x y dxdy xydxdy =⎰⎰⎰⎰,2(,)0Df x y dxdy =⎰⎰,故 2()DI xy x y dxdy =+⎰⎰41221001==⎰⎰⎰⎰xD xydydx xydxdy 例 9 设()f x 为恒正的连续函数,计算积分222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 解 由于积分区域222x y r +≤关于y x =对称,所以由定理5 ,可得222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=222()()()()x y r af y bf x dxdy f y f x +≤++⎰⎰, 于是222()()2()()x y r af x bf y dxdy f x f y +≤++⎰⎰ 222222()()()()()()()()x y r x y r af x bf y af y bf x dxdy dxdy f x f y f y f x +≤+≤++=+++⎰⎰⎰⎰ 222()x y r a b dxdy +≤=+⎰⎰=2()a b r π+.故222()()()()x y r af x bf y dxdy f x f y +≤++⎰⎰=2()2a b r π+.四、对称性在三重积分中的应用根据被积函数的奇偶性及积分区域的对称性可以简化三重积分的计算,三重积分的计算中也有相应的对称性定理. (一) 对称性在三重积分中的定理定理6 设Ω由0),,(≤z y x ϕ表示,若将x 和y 的位置交换后,0),,(≤z x y ϕ仍然表示Ω,则⎰⎰⎰Ωdv z y x f ),,(=⎰⎰⎰Ωdv z x y f ),,(,这种位置的对称,也称变量可轮换性.定理7 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于xoy 面对称,函数),,(z y x f 在Ω上可积,则⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上是关于在当的偶函数上是关于在当z f z f dxdydvz y x f dv z y x f ,0,),,,(2),,,(1定理8 设三维实空间有界闭区域21Ω⋃Ω=Ω,且1Ω与2Ω关于z 轴对称,函数),,(z y x f 在Ω上可积,则:⎰⎰⎰⎰⎰⎰ΩΩ⎪⎩⎪⎨⎧ΩΩ=的奇函数上为关于在当的偶函数上为关于在当y x f y x f dxdydzz y x f dxdydz z y x f ,,0,,),,,(2),,,(1(二) 对称性在三重积分中的应用举例例10 计算⎰⎰⎰++ωdu z y x )(,其中Ω:≤++222z y x R 2,(0,00,≥≥≥z y x ).解 本题具有变量位置的对称,因此有⎰⎰⎰ωxdu =⎰⎰⎰ωydu =⎰⎰⎰ωzdu 设D z :)0,0(2222≥≥=++y x R z y x ,则原式为 3⎰⎰⎰ωzdu =3⎰⎰⎰RD zdxdy zdz 0=43⎰Rdz z R z 022)-(π=1634R π 可见,类似的题目都只需计算其中任意一元数值,及对应系数,即可求得结果.例11 计算⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222,其中ω:≤++222z y x 1. 分析 很显然,ω关于xoy 面对称,可以直接运用定理7.解 因为ω关于xoy 面对称,且被积函数1)1ln(),,(222222++++++=z y x z y x z z y x f 在ω上连续并为关于z 的奇函数,故 ⎰⎰⎰++++++ωdxdydz z y x z y x z 1)1ln(222222 =0. 例12 计算⎰⎰⎰Ω+dV yx xyz 22,其中Ω为xy a 22222)z y (x =++与0=z 两曲面所围区域.解 显然,积分区域Ω关于z 轴对称,且22),,(y x xyzz y x f +=为关于x 、y 的偶函数,又因为≥++2222)(z y x 0,所以xy 同号.因而Ω分布在一、四象限内,从而由定理8得到⎰⎰⎰Ω+dV y x xyz 22=⎰⎰⎰Ω+1222y x xyzdxdydz =⎰⎰⎰θθϕππθθϕϕϕθcos sin sin 03202cos sin cos sin 2a dr r d d= ⎰⎰=202045334144cos sin cos sin 2ππϕϕϕθθθad d a .小结 用对称性定理来简化二重积分和三重积分的计算,有时候可以起到事半功倍的效果.对于一般的对称性定理,若加以适当拓广,还可以用来巧妙地求解一些重积分的计算和证明问题.五、对称性在曲线积分中的应用(一) 对称性在曲线积分中的定理 设函数),(y x f 定义在二维光滑曲线上1.若),(y x f 满足关系式),(y x f -=),(y x f 或),(y x f -=),(y x f ,则称),(y x f 为偶函数.2.若),(y x f 满足关系式),(y x f -=),(y x f -或),(y x f -=),(y x f -,则称),(y x f 为奇函数.定理9 设分段光滑的平面曲线L 关于x 轴对称,记L 在上半平面的部分为1L ,下半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L Ly y x f ds y x f y y x f ds y x f 的偶函数为关于的奇函数为关于 定理10 设分段光滑的平面曲线L 关于y 轴对称,记L 在右半平面的部分为1L ,左半平面部分为2L ,则⎪⎩⎪⎨⎧=⎰⎰1),(,),(2),(,0),(L L x y x f ds y x f x y x f ds y x f 的偶函数为关于的奇函数为关于 推论1 设分段光滑的平面曲线L 关于原点对称,则⎪⎩⎪⎨⎧I =⎰⎰11),(,),(4),(, 0),(L L L L x y y x f ds y x f x y y x f ds y x f 象限中的部分)位于第是的偶函数(其中或为关于的奇函数或为关于定理11 设分段光滑的平面曲线L 关于x 轴对称,则(1)⎰L dx y x P ),(=⎰--L dx y x P ),(=21⎰--Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰-L dy y x P ),(=21⎰-+L dy y x P y x P )],(),([定理12 设分段光滑的平面曲线L 关于y 轴对称,则 (1)⎰Ldx y x P ),(=⎰-Ldx y x P ),(=21⎰-+Ldx y x P y x P )],(),([(2)⎰L dx y x P ),(=⎰--L dy y x P ),(=21⎰--L dy y x P y x P )],(),([ 推论2 设分段光滑的有向平面曲线L 关于x 轴对称,(L 在上半平面部分记为1L ,在下半平面部分记为2L ),1L 与2L 方向相反,则(1) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于y y x P dy y x P y y x P dy y x P(2) ⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于y y x Q dy y x Q y y x Q dy y x Q推论3 设分段光滑的有向平面曲线L 关于y 轴对称,(L 在右半平面部分记为1L ,在左半平面部分记为2L ),1L 与2L 方向相反,则(1)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的偶函数为关于的奇函数为关于x y x P dy y x P x y x P dy y x P(2)⎰⎰⎪⎩⎪⎨⎧=L L 1),(,),(2),(,0),(的奇函数为关于的偶函数为关于x y x Q dy y x Q x y x Q dy y x Q(二) 对称性在曲线积分中的应用举例 例13 计算⎰=++1||||||||y x ds y x x解 因为积分曲线关于原点对称,被积函数||||),(y x xy x f +=为关于x 的奇函数,由推论1,得⎰=++1||||||||y x ds y x x=0 例14 计算⎰+Lxydy e x1,其中L 关于x 轴对称,取逆时针方向, L 所围成的闭区域D 的面积为σ.分析 显然,题目已知L 关于x 轴对称,又是分段曲线积分,可直接运用定理求得结果解 由定理11,有⎰+Lxydy e x 1=21dy e xe x Lxy xy ⎰-+++)11(=21⎰++Lxy xy dy e xe x 1=21⎰Lxdy =21⎰⎰Dd σ=21σ. 例15 计算⎰++L xy dydx 1||,其中1:=+y x L ,取逆时针方向.解 因为⎰++L xy dy dx 1||=⎰+L xy dx 1||+⎰+L xy dy 1||而L 关于x 轴、y 轴对称且对称两部分方向相反,函数),(y x f =1||1+xy 既为关于x 的偶函数,又为关于y 的偶函数,由推论2、推论3,原式=0.六、对称性在曲面积分的对称性(一) 对称性在曲面积分中的定理 设函数),,(z y x f 定义在三维光滑曲面上1.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f )或=-),,(z y x f ),,(z y x f ,则称),,(z y x f 为偶函数.2.若),,(z y x f 满足关系式=-),,(z y x f ),,(z y x f -或=-),,(z y x f ),,(z y x f -,则称),,(z y x f 为奇函数.定理13 设分段光滑的空间曲线Γ关于xoy (或yoz 或zox )坐标面对称,记1Γ为位于对称坐标面一侧的部分, 则⎪⎩⎪⎨⎧=⎰⎰1)(y)f(x,,),,(2)(),(,0),,(τ的偶函数或或为关于的奇函数或或为关于y x z ds z y x f y x z y x f ds z y x f z定理14 设曲面S 是由关于P (或平面α)对称的1S 和2S 组成,设1M ∈1S 的对称点为22S M ∈,则:⎰⎰⎰⎰⎪⎩⎪⎨⎧-===S12S 12)(M )(M ,0)(M )(M ,(M)2(M)1f f f f ds f ds f 若若 证明 以曲面S 关于平面α对称为例,不妨设曲面S 是关于xoy 对称的曲面1S 和2S 组成,设1M ∈1S 的坐标为),,(z y x ,则其对称点22S M ∈的坐标为),,(z y x -,设1S 、2S 在xoy 平面上的射影区域为xy σ,则⎰⎰⎰⎰⎰⎰+=21),,(),,(),,(S S Sds z y x f ds z y x f ds z y x f =⎰⎰++-+dxdy z zy x z y x f y x z y x f y x 221)]},(,,[)],(,,[{(1)当=-),(z y x f ),,(z y x f 时,⎰⎰Sds z y x f ),,(=⎰⎰1),,(2S ds z y x f(2)当=-),(z y x f -),,(z y x f 时,⎰⎰Sds z y x f ),,(=0.(二) 对称性在曲面积分中的应用举例例16 计算⎰⎰++εds zx yz xy )(,其中∑为锥面z =22y x +被曲面ax y x 222=+所截下的部分.分析 由于曲面∑关于zox 面对称,而被积函数中xy 与yz 都是y 的奇函数 解 根据定理,知⎰⎰++εds zx yz xy )(=⎰⎰εzxds =⎰⎰+++xyD y x dxdy z z y x x22221=⎰⎰+xyD dxdy y x x 222=2⎰⎰-22cos 203cos ππθθθa dr r d =42⎰-225cos ππθθd =156424a .例17 计算曲面积分⎰⎰=Sds xyz I ||,其中S 为曲面22y x z +=介于平面0=z 和1=z 之间的部分.解 因曲面S 关于平面xoz 和yoz 对称,而||),,(xyz z y x f =,由定理知⎰⎰=14S xyzds I ,其中1S 是S 在第一象限的部分22y x z +=,'x z x 2=,y z y 2'=,dxdy y x ds 22441++=.故I=dxdy y x y x xy xyD 2222441)(4+++⎰⎰=⎰⎰122cos sin 4θθθπr d ·2r ·241r +·rdr=4201-5125.由此可见,上述关于积分(定积分,重积分,线面积分)对称性的定理性质对于在特殊情况下简化积分的计算是非常有效的,它可以避免很多干扰,所以在解题中注意积分区间是否具有某种对称性是简化题目的关键,若对称性不明显则可以通过一定的方法,根据题目的特点构造对称性,可以减少一些繁琐的计算,提高解题效率.参考文献1 华东师范大学数学系, 数学分析(上册,下册),高等教育出版社2 同济大学,高等数学(上册,下册),高等教育出版社3 王莉,海天2013年考研数学基础班高数辅导讲义4 薛春荣,王芳,对称性在定积分及二重积分计算中的应用[J],科学技术与工程,2010,(1)5 赵达夫.高等数学的辅导讲义[M].新华出版社.6 孙钦福.二重积分的对称性定理及其应用.曲阜师范大学学报,2008.7 张仁华.二重积分计算中的若干技巧.湖南冶金职业技术学院学报,2008.8 温田丁.考研数学中二重积分的计算技巧.高等数学研究, 2008.后记本论文在选题及研究过程中得到指导老师的悉心指导。

积分对称性定理

积分对称性定理

曲面 1取前侧,在 yoz后半空间的部分曲面 2 取后侧,则
P x, y, z dxdy
0,
P x, y, z 关于x是偶函数,
2 P x, y, z dydz, P x, y, z 关于x是奇函数.
1
(3)设分片光滑的曲面 关于 xoz 坐标面对称,且 在 xoz 右半空间的部分 曲面 1取右侧,在 xoz 左半空间的部分曲面 2 取左侧,则
f x, y ds
L
0,
f x, y 为x的奇函数,
2 f x, y ds, f x, y 为x的偶函数. L1
(2)若分段光滑平面曲线 L 关于 x 轴对称,且 f x, y 在 L 上为连续函
数, L1 为 L 位于 x 轴上侧的弧段,则
欢迎下载
3

f x, y ds
L
0,
f x, y 为y的奇函数,
4

位于 xoy上侧 z 0的部分曲面,则
f x, y, z dS
0,
f x, y, z 为z的奇函数,
2 f x, y, z dS, f x, y, z 为z的偶函数.
1
曲面关于 yoz, xoz坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数 P( x, y, z) , Q (x, y, z) , R( x, y, z) 在分片光滑的曲面 上连续,

f x, y dxdy
D
0,
f x, y 为x的奇函数 ,
2 f x, y dxdy, f x, y 为x的偶函数 .
D2
其中: D2 为 D 满足 x 0 的右半平面区域。 (3) 如果积分区域 D 关于原点对称, f ( x, y) 为 x, y 的奇(或偶)函

专题十三 关于对称性在积分中的

专题十三 关于对称性在积分中的

专题十三 关于对称性在积分中的应用宇宙中的许多事物都具有某种对称性, 从基本粒子、分子的结构, 到晶体以及蛋白体的空间点阵排列; 从雪花、树叶的形态, 到动物躯体以至天体的外观; 从简单机械运动、天体运动, 到放射性原子的衰变以至电磁波的辐射, 无不显示出优美和谐的对称。

自然界绚丽多彩的对称性, 为数学研究提供了一种独特的方法, 即对称方法。

科学家利用这一锐利武器, 揭示和发现了很多自然界的奥秘, 其中最典型的例子有麦克斯韦(Maxwell)方程、笛沙格(Desargues)定理和伽罗瓦(Galois)群等。

它被著名科学家狄拉克(Dirac)称为“自然科学时代新方法的精华”。

对称的概念在数学领域中也有广泛而重要的应用。

对于一元函数而言对称通常表现为奇、偶函数 ,其图象关于原点、y 轴对称等。

在求解高等数学的某些问题时 ,利用对称性往往能简化解题过程。

数学中的对称性主要指在某种变换下保持不变的性质, 亦指数学概念、公式、命题结构的形式具有对称性。

数学上的许多问题可以利用对称性来解决。

数学对称法是一种探索性的发现方法, 它与其它方法的不同之处主要体现在其创造性功能。

因此掌握和运用对称法, 对于活跃开拓学生的创造性思维, 提高判断解题能力, 探讨解题方法是十分有益的。

积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,经常把计算复杂化而增加了计算的难度。

在积分的计算中充分利用积分区域的对称性及被积函数的奇偶性,往往能使计算简捷,达到事半功倍的效果。

问题1:对称性在积分中的应用主要体现在哪些方面?答:对称性在积分中的应用非常广泛,不仅在定积分,二重积分,还在线、面积分上也有应用。

问题2:什么样的定积分,可以应用对称性求解?有些什么样的结论?如何应用?答:定积分是积分学的基本内容, 定积分的计算方法很重要且多种多样, 有的方法不对,计算更繁琐,若能恰当应用对称性,即可简化定积分的计算。

二重积分的对称性定理

二重积分的对称性定理

1 / 1下载文档可编辑 能用此性质。

的奇偶性两者兼得时才的对称性与被积函数注意:仅当积分域对称,则关于直线如果轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积同时为关于原点对称,如果积分域轴的右半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域二重积分的对称性定理
),(),(),(.4),(),(,),(2),(),(,0),(,),(.3),(),(),(2),(),(0),(),(.2),(),(),(2),(),(0),(),(.1112211y x f D d x y f d y x f x y D x D D y x f y x f y x f d y x f y x f y x f y x f d y x f y x y x f D y D D y x f y x f x f d y x f y x f y x f x f d y x f x y x f y D x D D y x f y x f y f d y x f y x f y x f y f d y x f y y x f x D D D
D D D D D D ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰===--⎪⎩
⎪⎨⎧-=--==-⎪⎩
⎪⎨⎧-=-==-⎪⎩
⎪⎨⎧-=-=***σ
σσσσσσσ
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

二重积分积分区域的对称性

二重积分积分区域的对称性

二重积分积分区域的对称性Company number:【0089WT-8898YT-W8CCB-BUUT-202108】情形一:积分区域D 关于坐标轴对称定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有(,)0Df x y dxdy =⎰⎰ .2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有1(,)2(,)D D f x y dxdy f x y dxdy =⎰⎰⎰⎰ . 其中1D 是由x 轴分割D 所得到的一半区域。

例5 计算3()DI xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。

解:如图所示,积分区域D 关于x 轴对称,且3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有3()0D f xy y dxdy +=⎰⎰.类似地,有:定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则其中2D 是由y 轴分割D 所得到的一半区域。

例6 计算2,DI x ydxdy =⎰⎰其中D 为由22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有:11222220022215x D D I x ydxdy x ydxdy dx x ydxdy -+====⎰⎰⎰⎰⎰⎰. 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则(1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有(,)0D f x y dxdy =⎰⎰ .(2)当(,)(,)(,)f x y f x y f x y -=-=时,有其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于积分对称性定理
1、 定积分:
设)(x f 在[],a a -上连续,则
()()()()-0
0,d 2d ,a a
a
f x x f x x f x x f x x ⎧⎪
=⎨⎪⎩⎰
⎰为的奇函数,为的偶函数.
2、 二重积分:
若函数),(y x f 在平面闭区域D 上连续,则
(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分
()()()()1
0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,
为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。

(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分
()()()()2
0,
,,d d 2,d d ,
,D
D f x y x f x y x y f x y x y f x y x ⎧⎪
=⎨⎪⎩⎰⎰
⎰⎰为的奇函数,为的偶函数.
其中:2D 为D 满足0x ≥的右半平面区域。

(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即
),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分
()()()()2
0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.
其中:1D 为D 在0≥y 上半平面的部分区域。

(4)如果积分区域D 关于直线x y =对称,则二重积分
()()y x x y f y x y x f D
D
d d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称
性)
(5)如果积分区域D 关于直线y x =-对称,则有
1
0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪
=⎨--=⎪⎩⎰⎰⎰⎰当时当时
利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。

3、三重积分:
(1)若()z y x f ,,为闭区域Ω上的连续函数,空间有界闭区域Ω关
于xoy 坐标面对称,1Ω为Ω位于xoy 坐标面上侧0≥z 的部分区域,则有
()()()()1
0,,,,,d d d 2,,d d d ,,,f x y z z f x y z x y z f x y z x y z f x y z z ΩΩ⎧⎪
=⎨⎪⎩⎰⎰⎰⎰⎰⎰为的奇函数,为的偶函数. 注:),,(z y x f 是z 的奇函数:),,(),(z y x f z y x f -=-
),,(z y x f 是z 的偶函数:),,(),(z y x f z y x f =-
同样,对于空间闭区域Ω关于yoz xoz ,坐标面对称也有类似的性质。

4、
曲线积分(第一类)
(1)若分段光滑平面曲线L 关于y 轴对称,且()y x f ,在L 上为连续函数,1L 为L 位于y 轴右侧的弧段,则
()()()()1
0,,,d 2,d ,,L
L f x y x f x y s f x y s f x y x ⎧⎪=⎨
⎪⎩⎰
⎰为的奇函数,为的偶函数.
(2)若分段光滑平面曲线L 关于x 轴对称,且()y x f ,在L 上为连续函数,1L 为L 位于x 轴上侧的弧段,则
()()()()1
0,,,d 2,d ,,L L f x y y f x y s f x y s f x y y ⎧⎪=⎨
⎪⎩⎰⎰为的奇函数,为的偶函数. (3)若L 关于直线x y =对称,则
ds
x y f ds y x f L
L
⎰⎰=),(),(
其中(3)式也称为第一类曲线积分的轮换对称性。

5、第二类曲线积分
(1)设分段光滑的平面曲线L 关于x 轴对称,且L 在x 轴的上半部分1L 与在下半部分的2L 方向相反,

()()()()1
0,,,d 2,d ,
,L L P x y y P x y x P x y x P x y y ⎧⎪
=⎨⎪⎩⎰⎰是关于的偶函数,
是关于的奇函数.
(2)设分段光滑的平面曲线L 关于y 轴对称,且L 在y 轴的右半部分1L 与在左半部分的2L 方向相反

()()()()1
0,,,d 2,d ,,L L P x y x P x y x P x y x P x y x ⎧⎪
=⎨⎪⎩⎰⎰是关于的偶函数,是关于的奇函数.
对于积分(),L
Q x y dy ⎰也有类似地结论。

上述结论可推广到空间曲线的情
形.
6、 第一类曲面积分:
若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上侧0≥z 的部分曲面,则
()()()()1
0,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 曲面关于xoz yoz ,坐标平面对称也有类似的性质。

7、第二类曲面积分的对称性
设函数),,(,),,(,),,(z y x R z y x Q z y x P 在分片光滑的曲面∑上连续, (1)设分片光滑的曲面∑关于xoy 坐标面对称,且∑在xoy 上半空间的部分曲面1∑取上侧,在xoy 下半空间的部分曲面2∑取定下侧,则
()()()()1
0,,,,,d d 2,,d d ,,,R x y z z R x y z x y R x y z x y R x y z z ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (2)设分片光滑的曲面∑关于yoz 坐标面对称,且∑在yoz 前半空间的部分曲面1∑取前侧,在yoz 后半空间的部分曲面2∑取后侧,则
()()()()1
0,,,,,d d 2,,d d ,,,P x y z x P x y z x y P x y z y z P x y z x ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (3)设分片光滑的曲面∑关于xoz 坐标面对称,且∑在xoz 右半空间的部分曲面1∑取右侧,在xoz 左半空间的部分曲面2∑取左侧,则
()()()()1
0,,,,,d d 2,,d d ,,,Q x y z y Q x y z x y Q x y z y z Q x y z y ∑∑⎧⎪
=⎨⎪⎩⎰⎰⎰⎰关于是偶函数,
关于是奇函数. (4)若积分曲面∑关于z y x ,,具有轮换对称性,则
()()()()()(),,d d ,,d d ,,d d 1,,d d ,,d d ,,d d 3P x y z y z P y z x z x P z x y x y
P x y z y z P y z x z x P z x y x y ∑



===++⎰⎰⎰⎰⎰⎰⎰⎰。

相关文档
最新文档