人教版九年级下册数学:尺规作图专题复习
人教版数学中考复习课件第七章第一节 尺规作图
尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)
2022年人教版中考数学考点复习第七章第24节-尺规作图(数学)
解:方法一,作图依据是勾股定理的逆定理.
如答图1,在OA上截取线段OP,并依次在OA,OB上
分别截取 OC = 4OP,OD = 3OP,连接 CD,若
CD的长为5OP,则∠AOB = 90°.
方法二,作图依据是直径所对的圆周角为 90°.
如答图2,在OA,OB上分别取点C,D,以CD
为直径画圆,若点O在圆上,则∠AOB = 90°.
BD上用尺规作一点E,使∠BEC = ∠A(不写作法,保留作图痕迹).
点拨:(1)画出草图:
解:方法一,过点C作∠ACE = ∠ABD,则CE与
射线BD的交点 E满足条件 .如答图1所示,点 E即
为所求.
(2)用草图分析:①可以转化为作一个角等于已知角,
方法二,如答图2所示,点E即为所求.
即∠BEC = ∠A.但是点E的位置不确定,不能直接作∠BEC.
半径作弧且两弧相交于点C
(3)连接 AC,BC,则
△ABC即为所求作的三角形
返回目录
续表
基本尺规作图
已知两边及其
夹角作三角形
已知两角及其
夹边作三角形
步骤
图示
应用
(1)作∠A = ∠α
(2)在角的一边截取 AB
= n,在角的另一边截取
AC = m
(3)连接BC,则△ABC
即为所求作的三角形
(1)作线段AB = m
给出了她证明∠AOB 是直角的方法,请仿照小丽的方式,再用两种
不同的方法判断∠AOB 是不是直角(仅限使用直尺和圆规).
小丽的方法:
如图2,在 OA,OB上分别
取点C,点 D,以点 D为圆心,
CD长为半径画弧,交OA的反向
延 长 线 于 点 E,若 OE = OC,
2021年春人教版河北省数学九年级中考《 尺规作图》专题复习
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯尺规作图1.(2020·河北中考)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以点B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以点D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .a >0,b >12 DE 的长C .a 有最小限制,b 无限制D .a ≥0,b <12 DE 的长2.(2018·河北中考)尺规作图要求: Ⅰ.过直线外一点作这条直线的垂线; Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线; Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2020·邢台沙河市模拟)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误4.(2020·遵化市三模)已知Rt△ABC中,∠BAC=90°,过点A作一条直线,使其将△ABC分成两个相似的三角形.观察下列各图中尺规作图痕迹,作法错误的是()5.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD6.(2017·河北中考)如图,依据尺规作图的痕迹,计算∠α=°.7. (2020·衡水景县模拟)如图,在已知的△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于12BC的长为半径作弧,两弧相交于点M,N;②作直线MN交AB于点D,连接CD.若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°8.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D,E;④取一点K,使K和B在AC的两侧.所以,BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④ B.④③①②C.②④③① D.④③②①9.(2020·唐山开平区一模)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四种作图中,正确的作法有()A.1种 B.2种C.3种 D.4种10.如图,M,N为两个居民区,现要在道路AB,AC的交叉区域内建一个奶站P,使P到两条道路的距离相等,同时到两个小区的距离也相等,用尺规确定点P,则下列作图痕迹符合要求的是()11.(2020·河池中考)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()12.(2020·衢州中考)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()13.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=25,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A ,B 为圆心,大于12 AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆. 则⊙O 的半径为( )A.25 B .10 C .4 D .514.(2020·绍兴中考)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连接BD .若BD 的长为23 ,则m 的值为13.(2020·武汉中考)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O (0,0),A (3,4),B (8,4),C (5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90°,画出对应线段CD ; (2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.尺规作图1.(2020·河北中考)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以点B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以点D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是(B )A .a ,b 均无限制B .a >0,b >12 DE 的长C .a 有最小限制,b 无限制D .a ≥0,b <12 DE 的长2.(2018·河北中考)尺规作图要求: Ⅰ.过直线外一点作这条直线的垂线; Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线; Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是(D)A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2020·邢台沙河市模拟)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是(B)A.甲正确,乙错误 B.甲、乙均正确C.乙正确,甲错误 D.甲、乙均错误4.(2020·遵化市三模)已知Rt△ABC中,∠BAC=90°,过点A作一条直线,使其将△ABC分成两个相似的三角形.观察下列各图中尺规作图痕迹,作法错误的是(B)5.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是(A)A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD6.(2017·河北中考)如图,依据尺规作图的痕迹,计算∠α=°.7. (2020·衡水景县模拟)如图,在已知的△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于12BC的长为半径作弧,两弧相交于点M,N;②作直线MN交AB于点D,连接CD.若CD=AD,∠B=20°,则下列结论中错误的是(A)A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°8.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D,E;④取一点K,使K和B在AC的两侧.所以,BH就是所求作的高.其中顺序正确的作图步骤是(B)A.①②③④ B.④③①②C.②④③① D.④③②①9.(2020·唐山开平区一模)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四种作图中,正确的作法有(C)A.1种 B.2种C.3种 D.4种10.如图,M,N为两个居民区,现要在道路AB,AC的交叉区域内建一个奶站P,使P到两条道路的距离相等,同时到两个小区的距离也相等,用尺规确定点P,则下列作图痕迹符合要求的是(D)11.(2020·河池中考)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( B )12.(2020·衢州中考)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( D )13.(2020·嘉兴中考)如图,在等腰△ABC中,AB=AC=25,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E ,F 为圆心,大于12 EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12 AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为(D ) A.25 B .10 C .4 D .514.(2020·绍兴中考)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连接BD .若BD 的长为23 ,则m 的值为215.(2020·武汉中考)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O (0,0),A (3,4),B (8,4),C (5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90°,画出对应线段CD ;(2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.解:(1)如图,线段CD 即为所求;(2)如图,∠BCE即为所求;(3)如图,连接OE交AC于点H,连接BH并延长交OA于点F,点F即为所求.一天,毕达哥拉斯应邀到朋友家做客。
数学人教版九年级下册尺规作图专题复习课件
• (三)检测练习
各学生独立完成模考及练考作图题,提出问题。
• (四)归纳总结
• 五种基本尺规作图: 1、作一条线段等于已知线段; 2、作一 个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角 的平分线; 5、过一点作已知直线的垂线。
• 教学反思 • 本节课分为五个环节,第一个环节基础训练意在让学 生通过练习迅速回忆起关于尺规作图的五种基本作图。 第二个环节是让学生运用基本作图解决较简单的作图 问题。第三个环节是强化练习,也是尺规作图的综合 运用,让学生在巩固基础时认识到学无止境,激励他 们不断钻研和探究。第四个环节就是解决几次模考作 图题。第五个环节总结本节课的收获,不仅是知识上 的收获,还有方法上的收获和思想上的收获。
• • • • •
• 教学难点:
会作五种基本作图 根据所给问题作出相应的图形(五种基本作图) 。 (四)教法、学法 教法:新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。 学法:探索、交流合作。
• 四、教学过程
• (一)复课导入 • 引导学生回顾初中数学所学基本尺规作图。
• 基本作图包括:①作一条线段等于已知线②作一角等 于已知角③ 作已知角的平分线④作线段的垂直平分线 ⑤经过一点作已知直线的垂线
• 三、教学目标: • (一) 知识与技能 • 探索图形之间的变换关系(轴对称、平移、旋转及其组合)提高 分析问题的能力 • (二)过程与方法 • ①经历对具有旋转特征的图形进行观察、分析、动手操作和画图 等过程,掌握画图技能。 • ②能够按要求对应作出简单平面图形。 • (三)情感、态度和价值观 • 培养学生的观察能力和审美能力,激发学生学习数学的兴趣 • 教学重点:
• (一) 基本训练 • 指导学生画五种基本作图。(播放五种基本作图视频 )
初三数学复习尺规作图ppt课件
作法:
1.以O为圆心,适当 长为半径作弧,交OA于M, 交OB于N.
2.分别以M,N为
圆心.大于 1 MN的长为 2
半径作弧.两弧在∠AOB
的内部交于C. 3.作射线OC.
A
M C
B
N
则射线OC即为所求.
O
4
作线段的垂直平分线。
已知:线段AB,
A
求作:线段AB的垂直平分线。 作法:(大两1)于弧分—交别12—于以AC点B、的AD、长两B为点为半;圆径心作,弧以,
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
17
利用位似定义如何将一个图形进行
放大或缩小? A
请把图中的四边
形缩小到原来的二
D
分之一
B
C
18
A
作法一
(1)在边形ABCD外任取一点O
D
(2)过点o分别作射线
B
OA,OB,OC,OD
A.
(3)分别在射线OA, OB,OC,OD上取点A,
A
.
B
.
O
.
.
D
C
21
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
. D. B . C
. B,,C,,D,, O
人教版九年级数学中考尺规作图专项练习及参考答案
人教版九年级数学中考尺规作图专项练习A 级 基础题1.下列各条件中,不能作出唯一三角形的条件是( ) A .已知两边和夹角B .已知两边和其中一条边所对的角C .已知两角和夹边D .已知两角和其中一角的对边2.如图X6-3-1,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )图X6-3-1A .7B .14C .17D .203.如图X6-3-2,点C 在∠AOB 的OB 边上,用尺规作出了CN ∥OA ,在作图痕迹中,是( )图X6-3-2A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4.下列关于作图的语句,正确的是( ) A .画直线AB =10厘米 B .画射线OB =10厘米C .已知A ,B ,C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行5.已知线段AB 和CD ,如图X6-3-3,求作一线段,使它的长度等于AB +2CD .图X6-3-36.试把如图X6-3-4所示的角四等分(不写作法).图X6-3-47.已知等腰△ABC的顶角∠A=36°(如图X6-3-5).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算,说明△ABD和△BDC都是等腰三角形.图X6-3-58.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图X6-3-6,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).图X6-3-69.如图X6-3-7已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.图X6-3-710.如图X6-3-8,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .图X6-3-811.如图X6-3-9,已知△ABC ,画它的内切圆⊙O .图X6-3-9作法:(1)分别作____________,两平分线交于点O ; (2)过点O 作____的垂线段,交BC 于点D ; (3)以点__为圆心,以____的长为半径,画圆, 那么,所画的⊙O 就是△ABC 的______. 12.如图X6-3-10,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.图X6-3-10B 级 中等题13.如图X6-3-11,画一个等腰△ABC ,使得底边BC =a ,它的高AD =h .图X6-3-1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如图X6-3-12),请你用尺规作图的方法确定点P的位置.要求:写出已知,求作,不写作法,保留作图痕迹.解:已知:求作:图X6-3-12C级拔尖题15.如图X6-3-13,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).图X6-3-1316.如图X6-3-14,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A,B,C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD,CD;(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________,D__________;②⊙D的半径=____________(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.图X6-3-14选做题17.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 作法:如图X6-3-15(1),①在OA 和OB 上分别截取OD ,OE ,使OD =OE .②分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C .③作射线OC ,则OC 就是∠AOB 的平分线.小聪的作法步骤:如图X6-3-15(2),①利用三角板上的刻度,在OA 和OB 上分别截取OM ,ON ,使OM =ON .②分别过M ,N 作OM ,ON 的垂线,交于点P . ③作射线OP ,则OP 为∠AOB 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是______; (2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).(1)(2)图X6-3-15参考答案1.B 2.C 3.D 4.D 5.略6.略 提示:首先把∠O 二等分,再把得到的两部分分别再二等分即可.图D737.解:(1)如图D73,BD 即为所求. (2)∵∠A =36°,∴∠ABC =∠C =(180°-36°)÷2=72°. ∵BD 平分∠ABC ,∴∠ABD =∠DBC =72°÷2=36°. ∴∠CDB =180°-36°-72°=72°.∵∠A =∠ABD =36°,∠C =∠CDB =72°, ∴AD =DB ,BD =BC .∴△ABD 和△BDC 都是等腰三角形. 8.解:如图D74.图D749.解:如图D75,①以α的顶点为圆心,任意长为半径画弧,交α的两边分别为A ′,C ′;②以相同长度为半径,B 为圆心画弧,交BC 于点F ,以F 为圆心,C ′A ′为半径画弧,交AB 于点E ;③在BF 上取点C ,使CB =a ,以B 为圆心,c 为半径画圆交BE 的延长线于点A ,连接AC ,则△ABC 即为所求的三角形.图D7510.(1)解:∵AB ∥CD , ∴∠ACD +∠CAB =180°. 又∵∠ACD =114°, ∴∠CAB =66°.由作法知,AM 是∠CAB 的平分线,∴∠AMB =12∠CAB =33°.(2)证明:∵AM 平分∠CAB , ∴∠CAM =∠MAB . ∵AB ∥CD ,∴∠MAB =∠CMA . ∴∠CAM =∠CMA .又∵CN⊥AM,∴∠ANC=∠MNC.在△ACN和△MCN中,∵∠ANC=∠MNC,∠CAM=∠CMN, CN=CN,∴△ACN≌△MCN.11.解:(1)∠A,∠B的平分线(2)BC(3)O OD内切圆12.解:如图D76.图D7613.略14.解:已知:A,B,C三点不在同一直线上.求作:一点P,使P A=PB=PC(或经过A,B,C三点的外接圆圆心P).正确作出任意两条线段的垂直平分线,并标出交点P,如图D77.图D77图D7815.解:(1)如图D78.(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.16.解:(1)如图D79:图D79(2)①(6,2)(2,0)②2 5③54π④相切.理由:∵CD=2 5,CE=5,DE=5,∴CD2+CE2=25=DE2.∴∠DCE=90°,即CE⊥CD.∴直线CE与⊙D相切.17.解:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.故答案为SSS.(2)小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°.图D80在Rt△OMP和Rt△ONP中,∵OP=OP,OM=ON,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP.∴OP平分∠AOB.(3)如图D80,步骤:①利用刻度尺在OA,OB上分别截取OG=OH.②连接GH,利用刻度尺作出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.。
人教版初三数学下册尺规作图专题复习
尺规作图专题复习
一、教材分析
本节课是在学习了轴对称、平移、旋转的图形变换的基础上进一步对几种变换综合运用。
主要探索图形之间的变换关系,发展学生的图形分析能力和综合运用变换解决问题的能力,提高用数学的眼光去欣赏现实世界中图形的水平。
二、学情分析
学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程。
尺规作图的考察,主要在中考试题的的17题考察,从几次模拟考试来看,学生在尺规作图上部分学生还不能拿到满分。
主要是对问题的分析能力差
三、教学目标:
(一)
知识与技能
探索图形之间的变换关系(轴对称、平移、旋转及其组合)提高分析问题的能力(二)过程与方法
①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。
②能够按要求对应作出简单平面图形。
(三)情感、态度和价值观
培养学生的观察能力和审美能力,激发学生学习数学的兴趣
教学重点:
会作五种基本作图
教学难点:
根据所给问题作出相应的图形(五种基本作图)。
(四)教法、学法
教法:在教师引导下,以学生的分组讨论、合作交流为主展开教学。
学法:探索、交流合作。
人教版初三数学下册中考复习尺规作图
2017年中考数学复习《尺规作图》【考点解析】 知识点一 基本作图【例题】 (2016年浙江丽水)用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( )A .B .C .D .【考点】作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A 、根据垂径定理作图的方法可知,CD 是Rt △ABC 斜边AB 上的高线,不符合题意;B 、根据直径所对的圆周角是直角的方法可知,CD 是Rt △ABC 斜边AB 上的高线,不符合题意;C 、根据相交两圆的公共弦的性质可知,CD 是Rt △ABC 斜边AB 上的高线,不符合题意; D 、无法证明CD 是Rt △ABC 斜边AB 上的高线,符合题意. 故选:D . 【变式】(2016·广东深圳)如图,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于点Q P 、,再分别以Q P 、为圆心,以大于PQ 21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________.答案:.2考点:角平分线的作法,等角对等边,平行四边形的性质。
解析:依题意,可知,BE 为角平分线,所以,∠ABE =∠CBE ,又AD∥BC,所以,∠AEB=∠CBE,所以,∠AEB=∠ABE,AE=AB=3,AD=BC=5,所以,DE=5-3=2。
知识点二基本作图的实际应用【例题】(2016吉林长春)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B 和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC 的周长=AC+AB,由此即可解决问题.【版权所有:21教育】【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC的周长转化为求AC+AB来解决,属于基础题,中考常考题型.【变式】(2016,湖北宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等边三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等边三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.【典例解析】【例题1】(2016·四川广安)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).【考点】作图—相似变换.【分析】在图1中画等腰直角三角形;在图2、3、4中画有一条直角边为,另一条直角边分别为3,4,2的直角三角形,然后计算出四个直角三角形的周长.【解答】解:如图1,三角形的周长=2+;如图2,三角形的周长=4+2;如图3,三角形的周长=5+;如图4,三角形的周长=3+.【例题2】(2016·四川达州)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【考点】平行四边形的性质;作图—基本作图.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.【解答】解:(1)如图所示:(2)四边形ABEF 是菱形;理由如下: ∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠DAE=∠AEB , ∵AE 平分∠BAD , ∴∠BAE=∠DAE , ∴∠BAE=∠AEB , ∴BE=AB ,由(1)得:AF=AB , ∴BE=AF , 又∵BE ∥AF ,∴四边形ABEF 是平行四边形, ∵AF=AB ,∴四边形ABEF 是菱形.【中考热点】 【热点1】(2016·广东广州)如图7,利用尺规,在△ABC 的边AC 上方做∠EAC =∠ACB ,在射线AE 上截取AD =BC ,连接CD ,并证明:CD ∥AB (尺规作图要求保留作图痕迹,不写作法)图7AC【难易】 容易【考点】 尺规作图,平行线,平行四边形【解析】利用“等圆中,等弧所对的圆心角相等”可以完成等角的作图再利用“内错角相等”可判定两直线平行,然后利用“一组对边平行且相等的四边形是平行四边形”完成平行四边形的判定,最后利用平行四边形的性质进行平行的证明【参考答案】]证明;如图ÐCAE AD,CD为所做因为ÐCAE=ÐACB,所以AE//BC因为AD=BC所以四边形ABCD为平行四边形所以CD//AB【热点2】(2016·四川眉山)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).【点评】此题主要考查了位似变换和平移变换,根据题意正确得出对应点位置是解题关键.【热点3】(2016·湖北咸宁)如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B (b,0),连接AB,作线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来,发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别为d1,d2,求d1+d2的范围. 当d1+d2=8时,求点P 的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.图1 图2【考点】二次函数,一次函数,尺规作图,平面直角坐标系,勾股定理,一元二次方程,轴对称——翻折,最值问题.【分析】(1)根据垂直平分线、垂线的尺规作图方法画图即可,要标出字母;(2)①分x >0和x≤0两种情况讨论:当x >0时,如图2,连接AP ,过点P 作PE ⊥y 轴于点E ,可得出PA=PB=y ;再在Rt △APE 中,EP=OB=x ,AE=OE-OA= y-1,由勾股定理,可求出y 与x 之间的关系式;当x≤0时,点P (x ,y )同样满足y=21x 2+21,曲线L 就是二次函数y=21x 2+21的图像,也就是说 曲线L 是一条抛物线.②首先用代数式表示出d 1,d 2:d 1=21x 2+21,d 2=|x |,得出d 1+d 2=21x 2+21+|x |,可知当x=0时,d 1+d 2有最小值21,因此d 1+d 2的范围是d 1+d 2≥21;当d 1+d 2=8时,则21x 2+21+|x |=8. 将x 从绝对值中开出来,故需分x≥0和x <0两种情况讨论:当x≥0时,将原方程化为21x 2+21+x=8,解出x 1,x 2即可;当x <0时,将原方程化为21x 2+21-x=8,解出x 1,x 2即可;最后将x=±3代入y=21x 2+21,求得P 的纵坐标,从而得出点P 的坐标.③直接写出k 的取值范围即可.【解答】解:(1)如图1所示(画垂直平分线,垂线,标出字母各1分).E图1 图2 (2)①当x >0时,如图2,连接AP ,过点P 作PE ⊥y 轴于点E.∵l 1垂直平分AB∴PA=PB=y.在Rt △APE 中,EP=OB=x ,AE=OE-OA= y-1. 由勾股定理,得 (y-1)2+x 2=y 2. 整理得,y=21x 2+21. 当x≤0时,点P (x ,y )同样满足y=21x 2+21. ∴曲线L 就是二次函数y=21x 2+21的图像. 即曲线L 是一条抛物线.②由题意可知,d 1=21x 2+21,d 2=|x |. ∴d 1+d 2=21x 2+21+|x |.当x=0时,d 1+d 2有最小值21. ∴d 1+d 2的范围是d 1+d 2≥21.当d 1+d 2=8时,则21x 2+21+|x |=8. (Ⅰ)当x≥0时,原方程化为21x 2+21+x=8.解得 x 1=3,x 2= -5(舍去).(Ⅱ)当x <0时,原方程化为21x 2+21-x=8.解得 x 1= -3,x 2= 5(舍去).将x=±3代入y=21x 2+21,得 y=5.∴点P 的坐标为(3,5)或(-3,5).③k 的取值范围是:-33<k <33.解答过程如下(过程不需写):把y=2代入y=21x 2+21,得x 1=-3,x 2=3. ∴直线y=2与抛物线y=21x 2+21两个交点的坐标为(-3,2)和(3,2). 当直线y=kx+3过点(-3,2)时,可求得 k=33;3.当直线y=kx+3过点(3,2)时,可求得k=-33故当直线y=kx+3与这条“W”形状的新曲线有4个交点时,k的取值范围是:-33.<k<3【点评】本题是压轴题,综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题. 读懂题目、准确作图、熟谙二次函数及其图像是解题的关键. 近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。
数学人教版九年级下册专题学习:尺规作图(一)
变式应用:
已知ΔABC,求作一点,使点P到AB,AC 的距离相等,且到边AC的两端点距离相 等。
A
B
C
课堂研学:
例2、已知△ABC中,∠A=25°,∠B=40°. (1)求作:ʘO,使得ʘO经过A、C两点,且圆心O落 在AB边上.(要求尺规作图,保留作图痕迹,不必写 作法) (2)求证:BC是(1)中所作ʘO的切线.
当堂练学:
• 3.如图,在Rt△ABC中,∠B=90°,分别以 点A、C为圆心,大于AC长为半径画弧,两弧 相交于点M、N,连接MN,与AC、BC分别交 于点D、E,连接AE.ABC • (1)求∠ADE;(直接写出结果) • (2)当AB=3,AC=5时,求△ABE的周长.
A
B
C
解析:
• • • • • • • 解:(1)∵由题意可知MN是线段AC的垂直平分线, ∴∠ADE=90°; (2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5, ∴BC==4, ∵MN是线段AC的垂直平分线, ∴AE=CE, ∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.
预习导学:
初中数学5个基本尺规作图方法: 1.作一个角等于已知角。 2.作已知角的角平分线。 3.做已知线段的垂直平分线。 4.过一点作已知直线的垂线。 5.过直线外一点做已知直线的平行线。
课堂研学:
例1、(2013 年甘肃兰州)如图 6-3-3,两条公路 OA 和 OB相交于 O 点,在∠AOB 的内部有工厂 C 和 D,现 要修建一个货站 P 到两条公路 OA,OB 的距离相等, 且到两工厂 C,D 的距离相等,用尺规作出货站 P 的 位置(要求:不写作法,保留作图痕迹,写出结论).
中考复习专题:尺规作图课件(共38张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.
人教版初中数学总复习第六章圆第23课时尺规作图课件
解:作图如图,作法:①连接AB;②作AB的垂直平分线MN,交圆于P,Q两点,则 距线段AB距离较近的点P就是要求的点.
(1)解:如图,作出∠B的平分线BD;作出AB的中点E.
(2)证明:∵∠ABD=12∠ABC=12×60°=30°,∠A=30°, ∴∠ABD=∠A,∴AD=BD. 又AE=BE,DE=DE,∴△ADE≌△BDE.
变式训练如图,在圆周上有一只蜘蛛,图中A,B是被蛛网暂时困住的两只苍 蝇.因为蜘蛛必须在圆周上某个位置作停留,同时,又想保持对两只苍蝇最 近且等距离的监视.则蜘蛛应停留在圆周的何处?请作图表示.
规律方法探究
命题点1 基本作图 【例1】 如图,已知∠1,∠2,用直尺和圆规求作一个∠AOB,使∠AOB=2∠1∠2.(不写作法,保1留作图痕迹)
2
解:如图,∠AOB即为所求作的角.
命题点2 基本作图的运用
【例2】 如图,在△ABC中,∠A=30°,∠B=60°. (1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图 痕迹,不必写作法和证明); (2)连接DE,求证:△ADE≌△BDE.
考点三 基本作图的应用 1.利用基本作图作三角形 (1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形; (5)已知一条直角边和斜边作直角三角形. 2.与圆有关的尺规作图 (1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.
第23课时 尺规作图
基础自主导学
考点一 尺规作图 1.定义 只用没有刻度的直尺和圆规作图叫做尺规作图. 2.步骤 (1)根据给出的条件和求作的图形,写出已知和求作部分; (2)分析作图的方法和过程; (3)用直尺和圆规进行作图; (4)写出作法步骤,即作法.
九年级数学中考专题复习《尺规作图》课件
《尺规作图》
课前热身,复习回顾 31.如图,在用R尺t△规A作B一C中个,角∠等C于=9已0°知,角AC,<其BC作.分图别原以理点是A:,由B为△圆OD心C,≌大△于O'D1'ACB'得长∠为A半O径B=作∠圆A'弧O'B,',两 条其圆依弧据交的于定点理M是,( NA,作)直线MN交CB于点D.若BD=5,CD=3,则△ACD2的周长是( C )
知识梳理,融会贯通
例2 如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径 画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于 3 .
2
60°
典例解析,能力提升
变式2.1 如图,在△ABC中,∠C=90°,以点B为圆心,以适当长为半径画弧交AB,BC于P,Q两
A.7SSS BB.8.SAS C.C12.ASA D.1D3.AAS
2.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项
正确的是( D )
因为PA+PC=BC=PB+PC,所以PA=PB,即点P在AB的垂直平分线上.
A.
B.
C.
D.
知识梳理,融会贯通
2.尺规作图的五种基本作图 (1)作一条线段等于已知线段 (2)作一个角等于已知角 (3)作一条线段的垂直平分线 (4)作一个角的平分线 (5)过一点作已知直线的垂线
课后练习,巩固拓展
1.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大 于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC, BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是 ( B ) A.矩形 B.菱形 C.正方形 D.等腰梯形
(完整)初中数学总复习尺规作图
尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
已知:如图,线段 a . 求作:线段AB,使AB = a . 作法:①作射线AP ;②在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN. 求作:点O ,使MO=NO (即O 是MN 的中点)作法:①分别以M、N 为圆心,大于1/2MN 的相同线段为半径画弧,两弧相交于P,Q ;②连接PQ 交MN 于O .则点O 就是所求作的MN的中点。
(试问:PQ 与MN有何关系?)题目三:作已知角的角平分线。
已知:如图,∠AOB ,求作:射线OP, 使∠ AOP =∠ BOP (即OP 平分∠ AOB )作法:①以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M,N;②分别以M 、N为圆心,大于1/2MN 的相同线段为半径画弧,两弧交∠ AOB 内于P;③作射线OP。
则射线OP 就是∠AOB 的角平分线。
题目四:作一个角等于已知角。
(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。
已知:如图,线段a,b,c.求作:△ ABC ,使AB = c ,AC = b ,BC = a. 作法:① 作线段AB = c ;② 以 A 为圆心 b 为半径作弧,以 B 为圆心a 为半径作弧与前弧相交于C;③连接AC ,BC 。
则△ABC 就是所求作的三角形。
题目六:已知两边及夹角作三角形。
已知:如图,线段m ,n, ∠ . 求作:△ABC,使∠A= ∠ ,AB=m ,AC=n. 作法:① 作∠ A= ∠ ;② 在AB 上截取AB=m ,AC=n ;③连接BC 。
则△ABC 就是所求作的三角形。
题目七:已知两角及夹边作三角形已知:如图,∠ ,∠ ,线段m .求作:△ABC,使∠A= ∠,∠ B= ∠,AB=m.作法:① 作线段AB=m ;② 在AB 的同旁作∠ A= ∠ ,作∠ B=∠∠A 与∠B 的另一边相交于C则△ABC 就是所求作的图形(三角形)一、尺规基本作图归纳1、作一条线段等于已知线段;2、作一个角等于已知角;3、作角的平分线;4、作线段的中垂线;5、已知三边 ,两边和其夹角或两角和其夹边作三角形 ;6、已知底边和底边上的高作等腰三角形;7、过直线上一点作直线的垂线;8、过直线外一点作直线的垂线 .例题:1、如图 ,有一破残的轮片 ,现要制作一个与原轮片同样大小的圆形零件 ,请你根据所学的有关知识 ,设计一种方案 ,确定这个圆形零件的半径 .2、 如图:107国道OA 和320国道 OB 在某市相交于点 O,在∠AOB 的内部有工厂 C 和D,现要修建一个货站 P,使P 到OA 、 OB 的距离相等且 PC=PD, 用尺规作出货站 P 的位置 (不写作法 ,保留作图痕迹 ,写出结论 )3、要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?A公路两两个加油站,6、过直线外一点 A 作圆 O的切线4、过点 C 作一条线平行于 AB ;5、过不在同一直线上的三点 A 、 B 、C 作圆 O ;二、几何画图 :1、只利用一把有刻度的直尺 ,用度量的方法 ,按下列要求画图 : 1)画等腰三角形 ABC 的对称轴 : 2)画∠ AOB 的对称轴2、有一个未知圆心的圆形工件 .现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径并定出圆心 .要求在图上保留画图痕迹,写出画法 .3、某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同的 方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些) .4、某村一块若干亩土地的图形是Δ ABC ,现决定把这块土地平均分给四位 “花农”种植,请你帮他们分一分,提供至少两种 分法。
中考数学考点总动员系列 专题29 尺规作图(含解析)-人教版初中九年级全册数学试题
考点二十九:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有解;(6)结论:对所作图形下结论.名师点睛☆典例分类考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】(2017某某某某第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)【答案】作图见解析.【解析】试题分析:根据角平分线的性质可知:到CD和CE的距离相等的点在∠DCE的角平分线上,所以第一步作:∠ECD的平分线CF;根据中垂线的性质可得:到A、B的距离相等的点在AB的垂直平分线上,所以第二步作线段AB的垂直平分线MN,其交点就是P点.试题解析:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置.考点:作图设计.【点睛】本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,(2017某某某某第22题)如图,,,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【答案】作图见解析.【解析】考点:作图—应用与设计作图.考点典例二、画已知直线的平行线,垂线【例2】(市燕山区2017届九年级一模)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【答案】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线【解析】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线。
人教版九年级数学中考尺规作图专项练习及参考答案
不必写出作法):
①点 P 到 A,B 两点的距离相等;
②点 P 到∠xOy 的两边的距离相等.
(2)在(1)作出点 P 后,写出点 P 的坐标.
解(1)作图如下,点 P 即为所求作的点.
(2)设 AB 的中垂线交 AB 于点 E,交 x 轴于点 F,
由作图可得,EF⊥AB,EF⊥x 轴,且 OF=3,
∵OP 是∠xOy 的平分线,
∴点 P 的坐标为(3,3).
10.(2018 浙江金华)如图,在 6×6 的网格中,每个小正方形的边长为 1,点 A 在格点(小正方形的顶
点)上.试在各网格中画出顶点在格点上,面积为 6,且符合相应条件的图形.
解符合条件的图形如图所示:
)
答案 B
3.下列各条件中,不能作出唯一三角形的条件是(
)
A.已知两边和夹角
B.已知两边和其中一条边所对的角
C.已知两角和夹边
D.已知两角和其中一角的对边
答案 B
4.
如图,在△ABC 中,∠C=90°,∠B=30°,以点 A 为圆心,任意长为半径画弧分别交 AB,AC 于点 M 和 N,
1
再分别以点 M,N 为圆心,大于2MN 的长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点 D,则下
9
(2)设(1)中所作的☉O 与边 AB 交于异于点 B 的另外一点 D,若☉O 的直径为 5,BC=4;求 DE 的长.(如
果用尺规作图画不出图形,那么可画出草图完成第(2)问)
解(1)☉O 如图所示;
8
(2)作 OH⊥BC 于点 H.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知两边及其夹角,求作三角形.
画法:
1、画∠DAE=∠α ;
2、在射线AD上截取AB=a,在射
线AE上截取
AC=b ;
α
3、连接BC ;
4、△ABC即为所求。
a
b
已知两角及其夹边,求作三角形.
画法:
1、画A`B`=AB ;
A
B
2、在射线A`B`的同旁画
∠DA`B`= ∠A, ∠EA`B`= ∠B
A`D, B`E交于点C`。
A
B
已知一直角边和斜边作直角三角形
b
⑴ 画∠MCN=90°;
a
⑵ 在射线CM上截取线段BC=a;
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直角三角形
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
作法与示范:
1、已知:线段AB. 求作:线段A′B′, 使A′B′=AB.
A
B
作
法
1.作射线A′C′ ;
2.以点A′为圆心, 以AB的长为半径画弧, 交射线A′C′于点B′ A′B′就是所求作的线段
示
范
A′
B′
C′
2、已知∠AOB 求作: ∠A′O′B′使∠A′O′B′=∠AOB
作法:1、以点O为圆心,任意长为半径画弧,分别 交OA,OB于点C、D; 2、画一条射线O′A′,以点O′为圆心,OC长为半径画 弧,交O′A′于点C′; 3、以点C′为圆心,CD长为半径画弧,与第2步中所 画的弧交于点D′; 4、过点D′画射线O′B′,则∠A′O′B′=∠AOB
O
B
用尺规作角的平分线的方法
作法:
1.以O为圆心,适当
长为半径作弧,交OA于M,
A
交OB于N.
M
2.分别以M,N为
圆心.大于 1 MN的长为
C
2
半径作弧.两弧在∠AOB
的内部交于C.
B
N
O
3.作射线OC.
则射线OC即为所求.
作线段的垂直平分线。
已知:线段AB,
A
求作:线段AB的垂直平分线。 作法:(大两1)于弧分—交别12—于以AC点B、的AD、长两B为点为半;圆径心作,弧以,
17题——尺规作图:主要考查学生的尺规作图能力
尺规作图专题复习
尺规作图是指用没有刻度的直尺和 圆规作图。
17题——尺规作图:主要考查学生的尺规作图能力
五种基本作图:
1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线;
C
使得 OA, OB, OC, OD, 1
OA OB OC OD 2
(4)顺次连接A,B,,B,C,,C,D,,D,A,,得到
A D
B
C. O.
C
.
D
B.A.(点O点在O这也两在个四四边边形形AB的C两D外侧)
点O在四边形ABCD内
A
.
B
.
O
.
.
D
C
现要修建一个货站P,使P到OA、OB的距
离相等且PC=PD,用尺规作出货站P的位
置(不写作法,保留作图痕迹,写出结论)
例1:如图,已知△ABC和直线l ,作出与 △ABC关于直线l 对称的图形。
B A’
l
Cl
A B’
∴△A’B’C即为所求。
作法:
1、分别作出点A、B关于 直线l 的对称点A’、B’;
B
D
C
作法:1. 作∠ABC、 ∠ACB的平分线BM和 CN,交点为O.
2. 过点O作OD⊥BC,垂足为D.
3. 以O为圆心,OD为半径作⊙O.
⊙O就是所求的圆.
如何做圆内接正四边形和正六边形
A
D
·O
90°
B
C
F
E
O
A
·
D
60°
B
C
探索研究:
A
107国道 D
O
C
B
320国道
1.如图:107国道OA和320国道OB在某市 相交于点O,在∠AOB的内部有工厂C和D,
陕西2018中考考试要求的尺规作图:
1、会利用基本作图作三角形:已知三边、两边及 夹角、两角及夹边;已知底边及底边上的高线作等腰 三角形;已知一直角边和斜边作直角三角形。
2、会利用基本作图完成:过不在同直线上的三点 作圆;作三角形的外接圆、内切圆;作圆的内接正方 形和正六边形.
3、了解作图的道理,保留作图痕迹,不写作法。
2、连接A’B’、B’C、CA’。
ห้องสมุดไป่ตู้
利用位似定义如何将一个图形进行
放大或缩小? A
请把图中的四边
形缩小到原来的二
D
分之一
B
C
A
作法一
(1)在边形ABCD外任取一点O
D
(2)过点o分别作射线
B
OA,OB,OC,OD
A.
(3)分别在射线OA, OB,OC,OD上取点A,
. D. B .
C
. B,,C,,D,, O
(2)作直线CD。 CD即为所求。
C
B D
思考:如何过直线上一点做已知 直线的垂线。
• 平角的角平分线
思考:如何过直线外一点做已知 直线的平行线
已知三边BC、AB、AC作三角形
画法: 1.画线段B`C`=BC; 2.分别以B`、C`为圆心,线段 AB、AC为半径画弧,两弧交 于点A`; 3. 连接线段A`B` 、A`C`.
F A O
1、连结AB,作线段AB的
C
垂直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
⊙O就是所求作的圆
A O
B
C
O
A
B C
直角三角形外心是斜边AB
的中点
钝角三角形外心在 △ABC的外面
已知: △ABC(如图) 求作:△ABC的内切圆
A
N OM