灰色预测灰色关联分析报告

合集下载

梨树生长的灰色关联分析和预测模型

梨树生长的灰色关联分析和预测模型

9(-: !"# ;(: $ # # <05: %""&
文章编号:!""A=!&B! ( %""& ) "$=""AA="B
梨树生长的灰色关联分析和预测模型
杜晓东
( 河北省农林科学院农业经济研究所,河北 石家庄# "C""C! )
摘要:以不同树龄鸭梨树的生长发育资料为依据,利用灰色关联分析法,对鸭梨产量与树体 发育指标的关联程度进行了分析。结果表明,影响鸭梨产量的树体因素中,果数占据最为重 要的地位。根据 ! (" , ") 预测模型,由干周增长量、树高和枝展可有效预测枝量,由果 数和单果重可有效预测产量。经检验,建立的灰色预测模型良好。从而定量说明,鸭梨产量 与树体发育性状之间存在着密切关系。 关键词:鸭梨;修剪模式;产量;灰色系统 中图分类号: 7&&!: %# # # 文献标识码:3
,7.("’1( : P,80F (+ 4*(Q6L ,+F F0R0-(SI0+6 F,6, (. T,-2 S0,* ,6 F2..0*0+6 J0,*8, 6L0 4*0J *0-,60F F04*00 ,= +,-J828 ,+F ! (" , ") S*0F2562(+ I(F0- Q0*0 5,**20F ()6: UL0 *08)-68 8L(Q0F 6L,6 6L0 +)I10* (. .*)26 (. J,-2 Q,8 6L0 I(86 2IS(*6,+6 .,56(* 6( F060*I2+0 .*)26 J20-F ,I(+4 F2..0*0+6 .,56(*8 (. 6*008: UL0 ,I()+6 (. 1*,+5L Q,8 0..0562R0-J S*0F2560F 1J 2+5*0I0+6 (. 6*)+V 52*5)I.0*0+50 , 6*00 L24L ,+F 1*,+5L Q2F6L , ,+F J20-F 1J .*)26 +)I10* ,+F S0* .*)26 Q024L6: UL0 4*0J S*0F2562(+ I(F0- Q,8 4((F ,.60* 5L05V2+4 , 6L)8, 26 8)440860F 6L,6 6L080 5L,*,560*286258 L,F 5-(80 5(**0-,62(+: 8#$ 52").: T,-2 S0,*; W*)+2+4 I(F0-; T20-F; X*0J 8J860I

灰色预测法GM(1,1)总结

灰色预测法GM(1,1)总结

灰色预测模型一、灰色预测的概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。

灰色系统是介于白色系统和黑色系统之间的一种系统。

灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。

2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。

尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。

二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。

3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。

4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。

i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。

如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。

灰色关联分析法及其应用案例

灰色关联分析法及其应用案例
在这些因素中哪些是主要的哪些是次要的有待研究和量化分析三应用实例以输沙量为参考数列以年径流量为平均年降雨量为平均汛期降雨量为则相应的关联系数序列如下根据关联系数求关联度得年径流量与输沙量的关联程度年平均降雨量与输沙量的关联程度平均汛期降雨量与输沙量的关联程度相应的关联序为上述关联序表明对输沙量影响最大的是年径流量其次是汛期降雨量再其次是平均年降雨量
例如在社会系统中,人口是一种重要的子系统。影响人口 发展变化的有社会因素,如计划生育、社会治安、社会道德 风尚、社会的生活方式等。影响人口发展变化的因素还有经 济的,如社会福利、社会保险;还有医疗的,如医疗条件、 医疗水平等。总之,人口是多种因素互相关联、互相制约的 子系统。这些因素的分析对于控制人口、发展生产是必要的。
关联度
关联系数的数很多,信息过于分散,不便于比较,为此有 必
要将各个时刻关联系数集中为一个值,求平均值便是做这种

息处理集中处理的一种方法。ri
1 N
N
i (k)
k 1
关联度的一般表达式为:
无量纲化
无量纲化的方法常用的有初值化与均值化,区间相对值化。 初值化是指所有数据均用第1个数据除,然后得到一个新的数 列,这个新的数列即是各个不同时刻的值相对于第一个时刻
影响泥沙输入水库的因素较多,比如降雨量、径流量、植被 覆盖率等。在这些因素中哪些是主要的,哪些是次要的有待研 究和量化分析。
以输沙量为参考数列x 0 ,以年径流量为x 1 ,平均年降雨量为x 2
平均汛期降雨量为x 3 则相应的关联系数序列如下:
1 ( k ) ( 1 , 0 . 4 , 0 . 4 , 0 . 3 2 , 0 . 8 6 , 0 . 2 3 , 0 . 2 9 , 0 . 2 , 0 . 5 3 , 0 . 4 5 , 0 . 1 7 , 0 . 2 9 , 0 . 7 3 , 0 . 3 6 , 0 . 2 7 , 0 . 3 1 , 0 . 3 5

灰色关联分析详解+结果解读

灰色关联分析详解+结果解读

灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。

输出:反应考核指标与母序列的关联程度。

3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。

其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。

4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。

step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。

当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。

6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。

输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。

图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。

灰色预测模型※※分析

灰色预测模型※※分析

灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

灰色关联分析在经济预测中的应用

灰色关联分析在经济预测中的应用

灰色关联分析在经济预测中的应用随着社会和科技的发展,数据分析越来越受到经济学领域的重视。

而在各种经济预测方法中,灰色关联分析(Grey Relational Analysis, GRA)成为了一种非常有效的方法。

这种方法以其独特的方式,将经济预测更加科学化和精确化。

下面,就让我们来探讨一下灰色关联分析在经济预测中的应用。

一、灰色关联分析的基本概念灰色关联分析首先在上世纪80年代被提出。

它是一种新型的数据分析方法,主要基于信息度量,利用相关性分析,通过跟踪和关联数据来了解不同参数之间的互相关系。

该方法的突出特点是,它可以高效地处理缺少充分数据的情况下,对事物间的联系和趋向性进行综合分析、预测和决策。

其中,灰色是指一些信息不完全或部分未知的不确定性事项。

这类事项不同于黑色和白色,即确定性事物和完全信息事项。

而关联则体现了不同参数之间的实际联系。

因此,灰色关联分析可以被理解为,一种基于反映不确定性联系的相关分析方法。

二、灰色关联分析在经济预测中的应用非常广泛。

它经常被用于分析复杂的经济变量和模式,提高预测的准确性和实用性。

下面,我们来看看灰色关联分析在经济预测中的具体应用。

1. 金融市场的预测在金融市场的预测中,灰色关联分析可以帮助分析各种经济指标之间的关系,比如利率、货币供应量、股票价格等等。

这些指标间可能存在着复杂的联系,在这种情况下,传统的统计预测方法难以有效预测。

而灰色关联分析能够通过信息的度量,综合考虑这些指标之间的影响和因素,从而给出更加准确的市场趋势预测和决策。

2. 经济增长的预测经济增长是各个国家关注的焦点。

灰色关联分析可以帮助分析GDP、生产率、投资等指标之间的联系,从而预测经济增长的发展趋势和突破点。

在这个过程中,灰色关联分析利用信息度量的概念,根据不同指标的大小和趋势,计算它们之间的关联度,并综合考虑出最终的经济增长情况。

3. 成本预测在某些行业中,成本预测是非常重要的一项任务。

陕西省农民消费结构的灰色关联分析及其变动预测

陕西省农民消费结构的灰色关联分析及其变动预测

M= ama ()m m n n△, ) m x xA{ , = imi ( k k
第 四步 , 关联 系数 求 , (,) : ,,,, ∈0 1 k 12345
∈称 为分 辨 系数 。 越 小 , ∈ 分辨 力 越 大 , 般 ∈的取 值 区间 为 一
(,)具 体 取 值 可 视 情况 而定 。通 常 取 §05 0 1, = .。
() 4 式
3 2 陕 西省 2 1 ~ 0 4年 农 村 居 民 家庭 人均 消 . 00 2 1 费 支 出 和构 成 预 测 函数 及 预 测值 利 用 ( ) 进 行 还 原 得 到 () , X (+ ) 3式 4式 从 。 1 K
O 9 6 5 0 8 7 9 0 8 8 5 0 8 2 3 0 8 9 6 0 8 7 9 0 8 9l 0 6 3 9 . 19 5 . 98 4 . 7 12 . 7 55 . 3 95 .2 9 7 . 21 1 .0 6 2
经济学。 徐 威 威 (9 7 ) 男 , 苏宿 迁人 , 州 大 学 商 学 院研 究 生 , 究 方 向 : 18 一 , 江 扬 研 农 业 经济 学。
[] 曾 国平、 4 王韧 , 国居 民 收 入 差 距 的 变动 趋 势— — 基 于 双 二 元 动 中
态框 架的 实证 L . 经研 究,06 ) — 2 『财 ] 20 ( : 1 . 84
[ ] 李实 , 1 中国个人收入分配研究回顾与展 望f]经济学季刊 ,0 32: J. 2 0 ()
3 9 0 7 -4 4
陕 西 省 20 ~o 9年 的农 民人 均 消 费支 出及 其 构 成 情 况 见 00 2 o 表 1此 即本 文 进 行灰 色 关 联 分 析 的 数据 源 。 .

灰色关联分析法(灰色综合评价法)

灰色关联分析法(灰色综合评价法)

灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。

设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。

(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。

(3) 确定各指标值对应的权重。

可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。

(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。

灰度预测模型详解举例分析

灰度预测模型详解举例分析

灰色系统预测重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM (1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。

1灰色系统理论的产生和发展动态1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。

1985灰色系统研究会成立,灰色系统相关研究发展迅速。

1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。

目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。

国际著名检索已检索我国学者的灰色系统论著500多次。

灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。

2灰色系统的基本原理2.1灰色系统的基本概念我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。

系统信息不完全的情况有以下四种:1.元素信息不完全2.结构信息不完全3.边界信息不完全4.运行行为信息不完全2.2灰色系统与模糊数学、黑箱方法的区别主要在于对系统内涵与外延处理态度不同;研究对象内涵与外延的性质不同。

灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。

“黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。

2.3灰色系统的基本原理 公理1:差异信息原理。

“差异”是信息,凡信息必有差异。

公理2:解的非唯一性原理。

信息不完全,不明确地解是非唯一的。

公理3:最少信息原理。

灰色系统理论的特点是充分开发利用已有的“最少信息”。

公理4:认知根据原理。

信息是认知的根据。

公理5:新信息优先原理。

新信息对认知的作用大于老信息。

灰色关联分析模型

灰色关联分析模型

模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础

灰色预测模型实验以及例题分析实验报告

灰色预测模型实验以及例题分析实验报告
Columns 19 through 20
1.0691 1.2371
预测数据与实际数据的比较图如下:
2.P3-2(P34)
结果如下:
a=-0.0624
b =156.6162
预测数据与实际数据的比较图如下:
3.预测与会代表人数”(P35)
结果如下:
G=
Columns 1 through 9
0.1810 0.1980 0.1735 0.1520 0.1331 0.1166 0.1021 0.0895 0.0784
实验名称
灰色预测模型实验
实验目的
用MATLAB编程验证程序P3-1(P32)及P3-2(P34),并用其解决“预测与会代表人数”(P35)问题。
学会使用matlab编程做灰色预测实验。
实验内容(算法、程序、步骤和方法)
实验内容(算法、程序、步骤和方法)
实验内容(算பைடு நூலகம்、程序、步骤和方法)
1.P3-1(P32)
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2); %预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)
F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a;
end
G=[];G(1)=A(1);
for i=2:(n+10)
G(i)=F(i)-F(i-1); %得到预测出来的数据
end
t1=1:4;
t2=1:14;
G
plot(t1,A,'o',t2,G) %原始数据与预测数据的比较

灰色关联度分析法

灰色关联度分析法

灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。

它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。

在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。

一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。

灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。

具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。

2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。

3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。

关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。

4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。

二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。

下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。

2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。

通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。

3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。

通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。

4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。

《灰色预测法》2004.7.21

《灰色预测法》2004.7.21

灰色预测法第一节灰色系统一、灰色预测的概念灰色预测是就灰色系统所作的预测。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体含义是:如果某一系统的全部信息已知为白色系统,全部信息末知为黑箱系统,部分信息已知、部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测,可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有本知或非确定信息的系统进行预测,就是对在一定范围内变化的,与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律。

灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色预测一般有四种类型。

1.数列预测。

对某现象随时间的顺延而发生的变化所作的预测定义为数列预测。

例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。

2.灾变预测。

对发生灾害或异常突变事件可能发生的时间预测称为灾变预测。

例如对地震时间的预测。

3.系统预测。

对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。

例如市场中代用商品、相互关联商品销售量互相制约的预测。

4.拓扑预测。

将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。

二、系统功能模拟与灰色分析(一)系统模拟所谓系统模拟是指通过系统模型间接地模拟真实系统的过程。

系统模型建立起来后,在人为控制的条件下,通过改变特定参数,观察和研究模型的情况,以预测系统在真实环境下的特征、规律、作用、效率等。

这是组建系统的必经过程,也是研究系统的重要手段。

根据系统模型和系统真实情况相似关系的特点,一通常把模拟分为物理模拟与数学模拟两大类。

物理模拟是以系统模型和真实系统之间物理相似或几何相似为基础的一种模拟方法。

灰色预测方法实验报告

灰色预测方法实验报告

灰色预测方法实验报告实验报告:灰色预测方法一、实验目的通过使用灰色预测方法,对某个问题进行预测,并分析预测结果的准确性。

二、实验原理灰色预测方法是一种基于数据的预测方法,用于在缺乏足够数据的情况下对未来趋势进行预测。

该方法主要基于灰色系统理论,通过对数据序列进行灰色分析,找出其内在规律,并建立预测模型。

三、实验步骤1. 收集相关数据:首先,需要收集与要预测的问题相关的数据,包括历史数据和现有数据。

2. 数据预处理:对收集到的数据进行清洗和处理,确保数据的准确性和可靠性。

3. 灰色分析:使用灰色分析方法对数据进行处理,包括建立灰色模型、计算关联度等步骤。

4. 模型建立:基于灰色分析的结果,建立预测模型。

5. 验证模型:使用部分历史数据进行模型验证,评估模型的准确性和可靠性。

6. 进行预测:根据建立的模型,对未来一段时间内的数据进行预测。

7. 分析结果:对预测结果进行分析,并评估预测的准确性和可行性。

四、实验结果通过实验,我们成功应用了灰色预测方法对某个问题进行了预测,并得到了如下结果:1. 在灰色分析过程中,我们找到了数据序列的内在规律,并建立了预测模型。

2. 模型验证结果显示,该模型在部分历史数据上具有较高的准确性和可靠性。

3. 根据建立的模型,我们对未来一段时间内的数据进行了预测,并取得了一定的准确性。

五、实验结论通过实验,我们验证了灰色预测方法的有效性和可行性,该方法可以在缺乏足够数据的情况下进行预测,并取得一定的准确性。

在实际应用中,我们可以根据实际问题的特点,选择适当的灰色预测方法,并进行合理的预测。

六、实验总结通过本次实验,我们对灰色预测方法有了更深入的了解,并且验证了其在预测问题上的有效性。

实验过程中,我们还需要注意数据的质量和预处理的准确性,以及模型的验证过程,确保预测结果的准确性和可靠性。

灰色预测方法在实际应用中有很大的潜力,可以帮助我们做出合理的预测和决策。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色关联分析法根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,来衡量因素间关联程度。

灰色关联分析法的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。

根据评价目的确定评价指标体系,为了评价×××我们选取下列评价指标:收集评价数据(此步骤一般为题目中原数据,便省略)将m 个指标的n 组数据序列排成m*n 阶矩阵:'''12''''''1212'''12(1)(1)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x m x m x m ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭对指标数据进行无量纲化为了消除量纲的影响,增强不同量纲的因素之间的可比性,在进行关联度计算之前,我们首先对各要素的原始数据作...变换。

无量纲化后的数据序列形成如下矩阵:01010101(1)(2)(1)(2)(2)(2)(,,,)()()()n n n n x x x x x x X X X x n x n x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭确定参考数据列为了比较...【评价目的】,我们选取...作为参考数据列,记作 ''''0000((1),(2),,())TX x x x n =计算0()()i x k x k -,得到绝对差值矩阵求两级最小差和两级最大差011min min ()()min(*,*,*,*,*,*)*nmi i k x k x k ==-==011max max ()()max(*,*,*,*,*,*)*n mi i k x k x k ==-==求关联系数由关联系数计算公式0000min min ()()max max ()()()()()max max ()()i i ikiki i i ikx k x k x k x k k x k x k x k x k ρζρ-+⋅-=-+⋅-,取0.5ρ=,分别计算每个比较序列与参考序列对应元素的关联系数,得关联系数如下:计算关联度分别计算每个评价对象各指标关联系数的均值,以反映各评价对象与参考序列的关联关系,并称其为关联度,记为:011()mi i k r k m ζ==∑。

经过计算得到关联度:()()010203...R r r r ==[注] 如果各指标在综合评价中所起的作用不同,可对关联系数求加权平均值即011(),mi k i k r W k m m ζ='=⋅∑ (k=1,)式中k W 为各指标权重。

根据关联度矩阵得出综合评价结果如果不考虑各指标权重(认为各指标同等重要),*个被评价对象由好到劣依次为: 。

如果存在多个参考数据列,则为优度分析问题,类似的得到关联度矩阵如下:111213212223313233r r r R r r r r r r ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭从上述关联度矩阵,可以得到如下几点结论:由1i max =iγ表明,在...中,【i代表的指标】占有最大的优势,它对...【参考指标】的贡献最大,其次是,,,。

由ij max =iγ表明,在*、*、*中,与...【i 代表的指标】联系最为紧密的是...【j 代表的指标】。

[注] 常用的无量纲化方法有均值化法(见公式(1.1))、初值化法(见公式(1.2))和标准化变换(见公式(1.3))等.或采用插法使各指标数据取值围(或数量级)相同.''1()()1()imiik k k k m x x x==∑ (1.1) ''()()()i i ik k k x x x =(1.2) x xs- (1.3)灰色系统预测模型GM(1,1)使用条件1.数据量不少于4个(大数据、小数据都可精准预测)2.灰色预测适用于原始数据非负的,具有较强指数规律的序列。

3. 对于(1,1)GM 发展系数a 与级比(0)k σ有: a 的可容区间为(2,2)- 当0.3a -≤时,可以用作中长期预测; 当0.30.5a <-≤时,可用作短期预测中长期慎用; 当0.50.8a <-≤时,作短期预测慎用; 当0.81a <-≤时,用残差修正模型; 当1a ->时,不宜采用模型。

(0)k σ的可容区间为22(,)e e -=(0.1353,7.3891)建模步骤设原有数据序列(0)(0)(0)(0)(1),(2)......(n)(k)0,k 1,2...n x x x x ≥=,它们满足。

[注意剔除异常数据;如原始数据不是非负时作平移变换,令]。

1.求级比,并作建模可行性分析 根据级比公式(0)(0)(k 1)(k)(k)x x σ-=,求得当对所有的k 有221+1(k)(e ,e )n n σ-+∈时,可用作建模。

[否则对数据再做一定的平移变换使生成数列的级比满足条件。

] 2. 数据处理对(0)()x k 序列做一次累加生成(1)()x k 序列,以弱化原始序列的随机性和波动性。

即(1)(0)1()(),1,2...km x k x m k n===∑,那么有(0)(1)(1)()=(1)-()x k x k x k +。

对(0)(k)x 序列做紧邻均值生成(1)()z k 序列 即(1)(1)(1)()0.5()0.5(1),2,3...z k x k x k k n =+-=。

3.建立灰微分方程模型,并确定其参数。

令(0)(0)(0)(2)(3)()x x Y x n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,(1)(1)(1)(2)1(3)1()1z z B z n ⎛⎫- ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭,则a Y=B b ⎛⎫ ⎪⎝⎭。

用MATLAB 最小二乘法求解参数, T -1T T P=(B B)B Y=(a,b)。

接下来求解上面得到的基本模型。

4.建立白化形式的近似微分方程: (1)(1)dx +ax =b dt,其中a 为发展系数,b 为灰色作用量 根据其时间响应函数(1)(1)t (t)(x (1))e a b bx a a -=-+解得时间响应序列为:ˆ(1)(0)ˆˆb b ˆ(k 1)(x (1))e ˆˆak xa a-+=-+。

由累减生成(0)(1)(1)ˆˆˆ(k 1)(k 1)-(k)xx x +=+,得原始数据序列的预测值(模型还原值)为。

5.残差检验:序号 时间(年/月/...)原始值 预测值 残差 相对误差1 2 n残差、相对误差、平均相对误差与精度p 的定义如下:(0)(0)ˆ(k)x (k)x(k)q =- (0)(0)(0)(0)ˆ(k)(k)x(k)(k)100%100%(k)x (k)q x x ε-=⨯=⨯21(avg)|(k)|1n k n εε==-∑p (1(avg))100%ε=-⨯ 当=****<10%,p=****>90%时,模型精度较高,可进行预报和预测。

Verhulst 模型Verhulst 模型主要用来描述具有饱和状态的过程,即 S 形过程,常用于人口预测、生物生长、繁殖预测及产品经济寿命预测等。

1.数据处理对(0)()x k 序列做一次累加生成(1)()x k 序列,以弱化原始序列的随机性和波动性。

即(1)(0)1()(),1,2...km x k x m k n===∑,那么有(0)(1)(1)()=(1)-()x k x k x k +。

对(0)(k)x 序列做紧邻均值生成(1)()z k 序列 即(1)(1)(1)()0.5()0.5(1),2,3...z k x k x k k n =+-=。

2.建立 Verhulst 模型 ,并确定其参数。

令(0)(0)(0)(2)(3)()x x Y x n ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭,()()()2(1)(1)2(1)(1)2(1)(1)(2)(2)(3)(3)()(n)z z z zB z n z ⎛⎫- ⎪ ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭,则a Y=B b ⎛⎫ ⎪⎝⎭。

用MATLAB 最小二乘法求解参数,T -1T T P=(B B)B Y=(a,b)。

4.建立白化形式的近似微分方程:,其中a 为发展系数,b 为灰色作用量根据其时间响应函数(0)(1)(0)x (1)(t)x (1)()e at a x b a b -=+-解得时间响应序列为:(0)(1)(0)x (1)(1)x (1)()e ak a x k b a b -+=+-。

由累减生成(0)(1)(1)ˆˆˆ(k 1)(k 1)-(k)x x x +=+,得原始数据序列的预测值(模型还原值)为。

序号 时间(年/月/...)原始值 预测值 残差 相对误差1 2 n残差、相对误差、平均相对误差与精度p 的定义如下:(0)(0)ˆ(k)x (k)x(k)q =- (0)(0)(0)(0)ˆ(k)(k)x(k)(k)100%100%(k)x (k)q x x ε-=⨯=⨯21(avg)|(k)|1n k n εε==-∑p (1(avg))100%ε=-⨯ 当=****<10%,p=****>90%时,模型精度较高,可进行预报和预测。

相关文档
最新文档