PLC控制步进电机的实例
FX1S控制步进电机的实例(图与程序)精品
FX1S控制步进电机的实例(图与程序)FX1S控制步进电机的实例(图与程序) :·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
·FX系列PLC 单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
PLC高速脉冲输出控制步进电机
PLC高速脉冲输出控制步进电机1. 背景介绍步进电机是一种常见的电动机类型,它具有精准的位置控制和高速运动的特点。
在很多工业自动化应用中,步进电机常常需要与PLC(可编程逻辑控制器)配合使用,以实现精准的位置控制和高速脉冲输出。
本文档将介绍如何通过PLC实现高速脉冲输出控制步进电机的方法和步骤。
2. 所需材料在开始之前,我们需要准备以下材料:•PLC控制器•步进电机驱动器•步进电机•连接线•电源请确保以上材料齐全并符合各自的规格要求。
3. PLC高速脉冲输出控制步进电机的步骤步骤一:连接电源和PLC控制器首先,将电源连接到PLC控制器上。
确保电源的电压和PLC控制器的额定电压匹配。
然后将PLC控制器的电源线连接到电源上,并确保连接牢固。
步骤二:连接步进电机驱动器和PLC控制器将步进电机驱动器的电源线连接到电源上,并确保连接牢固。
然后,将步进电机驱动器的控制线连接到PLC控制器上,确保连接正确。
步骤三:连接步进电机和步进电机驱动器将步进电机的线束连接到步进电机驱动器上,确保连接正确。
根据步进电机的规格要求,选择正确的接线方法。
步骤四:PLC编程在PLC编程软件中进行编程,以实现高速脉冲输出控制步进电机。
以下是一个简单的PLC编程示例:BEGINVARmotor_output: BOOL := FALSE; -- 步进电机控制信号pulse_delay: TIME := T#10MS; -- 脉冲延迟时间,控制步进电机的速度END_VAR-- 主程序WHILE TRUE DO-- 输出一个脉冲信号控制步进电机运动motor_output := NOT motor_output;DELAY pulse_delay; -- 延迟一段时间,控制步进电机的速度END_WHILE;END;以上的PLC程序实现了一个简单的高速脉冲输出控制步进电机的功能。
在主程序中,通过循环不断地输出一个脉冲信号来控制步进电机的运动,同时通过调整延迟时间来控制步进电机的速度。
PLC控制步进电机的实例(图与程序)
PLC控制步进电机的实例(图与程序)·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
PLC实训程序--步进电机的PLC控制
步进电机的PLC控制一、实验目的1、掌握PLC控制的基本原理,掌握移位寄存器的使用。
2、掌握步进电机的工作原理,掌握环形分配器的使用方法。
3、掌握运用PLC驱动步进的方法。
二、实验器材1、PLC-2型可编程控制器实验台1台2、步进电机的PLC控制演示板1块3、PC机或手持编程器1台4、编程电缆1根5、自锁式连接导线若干图16.1三、实验原理与实验步骤1、步进电机的PLC控制演示板如图16.1所示。
2、实验原理本演示装置采用的四相步进电机,运用PLC设计一个步进电机的环形分配器的软件程序。
以此来实现步进电机的单步,连续运转。
四相步进电机的结构如下图所示。
演示板上四个LED发光管分别代表步进电机的四个相位。
3、设计要求:按照步进电机的工作方式,设四相线圈分别为A、B、C、D,公共端为E、F。
当电机正向转动时其工作时序如下:A→AB→B→BC→C→CD→D→DA当电机反向转动时其工作时序如下:A←AB←B←BC←C←CD←D←DA要求慢速度为I S—格,快速度为0.1S—格。
4、实验步骤:(1)打开PLC-2型实验台电源,编程器与PLC连接。
(2)根据具体情况编制输入程序,并检查是否正确。
(3)实验台与PLC-DOME008连接,检查连线是否正确。
(4)按下启动按钮,观察运行结果。
四、设计程序清单1、I/O地址分配清单:输入地址:正向启动X0 反向启动X1停止X2 速度控制X3 输出地址: A Y0 B Y1C Y2 C Y3E\F COM2、程序(1)指令表0 LD X0001 OR S02 ANI X0013 ANI X0024 OUT S06 LD X0017 OR S18 ANI X0009 ANI X00210 OUT S112 LD X00313 CJ P0 16 LDI T33 26 OUT Y01527 LDI X00328 CJ P131 P032 LDI T3333 OUT T32 K136 LD T3237 OUT T33 K140 OUT S242 OUT Y01543 P144 LD S245 PLS M1051 ANI M552 ANI M653 ANI M754 AND S155 LDI M256 ANI M357 ANI M458 ANI M559 ANI M660 ANI M761 ANI M862 AND S063 ORB68 AND S069 SFTR M0 M1 K8 K178 MPP79 AND S180 SFTL M0 M2 K8 K189 LD M190 OR M291 OR M892 OUT Y00093 LD M294 OR M395 OR M496 OUT Y00117 OUT T32 K520 LD T3221 OUT T33 K5 24 OUT S2101 LD M6102 OR M7 47 LDI M148 ANI M249 ANI M350 ANI M4103 OR M864 OUT M065 LD M800266 OR M1067 MPS104 OUT Y00397 LD M498 OR M599 OR M6100 OUT Y002105 END梯形图接线图※FX系列的输出继电器的公共端:FX2N-32MR为COM0~COM4;FX2N-48MR为COM0~COM5; FX1N-60MR为COM0~COM7五、思考题1、如果是三相步进电机,工作方式为三相六拍,程序该如何编制?2、如果是E、F公共端不接,作为二相时机使用,程序又该如何处理?。
电机传动实验-PLC步进电动机控制实验
PLC步进电动机控制实验一、步进电机与步进电机驱动器的接线图步进电机驱动器与PLC连接,SH-2H042Ma步进电机驱动器的输入信号为CP+、CP-和DIR+、DIR-,其连接方式有三种:①共阳极方式:把CP+和DIR+接在一起作为共阳端OPTO(接外部系统的+5V),脉冲信号接入CP-端,方向信号接入DIR-端;②共阴极方式:把CP-和DIR-接在一起作为共阴端(接外部系统的GND),脉冲信号接入CP+端,方向信号接入DIR+端;③差动方式:直接连接。
二、PLC接线图PLC接线图(带驱动器)PLC 接线图(不带驱动器,输出电源电压应与步进电动机额定电压匹配) SB1为启动按钮,SB2为停止按钮,SB3为加速按钮,SB4为减速按钮。
三、按带驱动器的PLC 接线图的方式编写PLC 程序四、附录:采用西门子S7-300PLC 控制三相步进电机的过程例子电路说明:输出: A 相加电压:Q0.0B 相加电压:Q0.1C 相加电压:Q0.2 启动指示灯:Q0.3三相单三拍运行方式:Q0.4三相双三拍运行方式:Q0.5 三相单六拍运行方式:Q0.6 输出脉冲显示灯: Q0.7三相单三拍运行方式三相双三拍运行方式三相单六拍运行方式编程方法:1.使用定时器指令实现各种时序脉冲的要求:使用定器产生不同工作方式下的工作脉冲,然后按照控制开关状态输出到各相对应的输出点控制步进电机。
M0.0作为总控制状态位,控制脉冲发生指令是否启动。
一旦启动,采用T0、T1、T2以及它们的组合可以得到三相单三拍和三相双三拍的两种工作方式下,各相的脉冲信号。
如T0的状态为三相单三拍工作状态下A相的脉冲。
同理可使用类似程序得到三相单六拍时各相所需的脉冲信号。
2.使用移位指令实现各相所需的脉冲信号。
例如在MW10中进行移位,每次移位的时间为1秒钟。
如图为三相单六拍正向时序流程图,三相单三拍可利用相同的流程图,从M11.1开始移位,每次移两位,而三相双三拍从M11.2开始,每次移两位。
PLC控制步进电机的应用案例
P L C控制步进电机的应用案例1利用P L S Y指令任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转;控制要求:利用PLC控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止电机的轴锁住;1、系统接线PLC控制旋转步进驱动器,系统选择内部连接方式;2、I/O分配X26——启动按钮,X27——停止按钮;Y1——脉冲输出,Y3——控制方向;3、细分设置在没有设置细分时,歩距角是,也即是200脉冲/转,设置成N细分后,则是200N脉冲/转;假设要求设置5细分,则是1000脉冲/转;4、编写控制程序控制程序可以用步进指令STL编写,用PLSY指令产生脉冲,脉冲由Y1输出,Y3控制方向;5、脉冲输出指令PLSY的使用脉冲输出指令PLSYM8029置1;如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲;若X10再次变为ON则脉冲从头开始输出;注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC;6、控制流程图7、梯形图程序参考8、制作触摸屏画面PLC控制步进电机的应用案例2利用定时器T246产生脉冲任务:利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态;其中:步进电机的方向控制,只需通过控制U/D-端的On 和Off就能决定电机的正传或者反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由转动状态;1、系统接线系统选择外部连接方式;PLC控制左右、旋转、上下步进驱动器的其中一个;CP+端、U/D+端——+24VDC;CP-——Y0;U/D-——Y2;PLC的COM1——GND;A、A-——电机A绕组;B、B-——电机B绕组2、I/O分配X0—正转/反转方向,X1—电机转动,X2—电机停止,X4—频率增加,X5—频率减少;Y0—脉冲输出,Y2—方向;3、编写控制程序4、制作触摸屏画面PLC控制步进电机的应用案例3利用FX2N-1PG产生脉冲任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制;控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式;PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个;VIN端、CP+端、U/D+端——+24VDC;CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GND;A、A-——电机A绕组;B、B-——电机B绕组2、I/O分配X0—正转,X1—反转,Y4—方向;;3、编写控制程序4、制作触摸屏画面。
PLC控制步进电动机的一个实例
&"’) 发 出 电 动 机 运 行 运 行 信 号 " +"’! 控 制 步 进 电 动 机 旋 转 方 向 " 电 动 机 第 一 段 以 频 率 为 ("" 赫 兹 & 周 期 为 !#"" 微 秒 ! 开 始 启 动 " ,-. 每 发 一 个 脉 冲 周 期 减 少 %" 微 秒 " 共 发 %#" 个 脉 冲 " 电 动 机 行 走 %#" 步 " 频 率 则 上 升 到 %""" 赫 兹 $
& 周期不变 !
%""" 微 秒 " 每 个 脉 冲 周 期 增 加 # 微 秒 " 共 发 %"" 个脉冲 " 电动机停止 # 程序编制如下 % 控制系统启动 -/ &"’( 控制系统运行自保持 0 1"’" 控制系统停止 23 &"’# $) 万方数据
10:/ >%)"" " :/#%$ 共发出 %)"" 个脉冲 10:= >%"""" :=#%* 第三段起始周期为 %""" 微秒 &%""" 赫兹 ! 每个周期增加 # 微秒 10:= >#" :=#%@ 10:/ >%""" :/#!% 共发出 %"" 个脉冲 步进电动机运行到位 2 &"’*
(! 银行汇款 !
账户 ! 中国食品杂志社 开户行 ! 工行阜外大街分理处 账号 ! )*)))+,*),)*+,**--*
PLC如何控制步进电机
PLC如何控制步进电机PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,通过输入/输出模块对各种机电设备进行控制。
在PLC系统中,步进电机是常见的执行元件之一,它具有准确的位置控制和高的加减速性能。
本文将介绍PLC如何控制步进电机,包括步进电机的驱动方式、PLC的控制原理及步进电机控制的程序设计。
一、步进电机的驱动方式1.串行通信驱动方式:步进电机通过串行通信驱动方式与PLC进行通信和控制。
首先,将PLC与串行通信模块相连,通过串行通信模块与步进电机控制器进行通信。
PLC通过串行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
2.并行通信驱动方式:步进电机通过并行通信驱动方式与PLC进行通信和控制。
与串行通信驱动方式类似,首先将PLC与并行通信模块相连,通过并行通信模块与步进电机控制器进行通信。
PLC通过并行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
3.脉冲驱动方式:步进电机通过脉冲驱动方式与PLC进行通信和控制。
在脉冲驱动方式中,需要PLC输出脉冲信号控制步进电机。
通常情况下,PLC将脉冲信号传递给步进电机驱动器,在驱动器中产生相应的控制信号,实现对步进电机的控制。
二、PLC的控制原理PLC作为控制器,一般采用扫描运行方式。
其运行原理如下:1.输入信号读取:PLC将外部输入信号输入到输入模块中,采集输入信号,并将其从输入模块传递给中央处理器(CPU)进行处理。
2. 程序执行:CPU根据事先编写好的程序进行处理,包括数据处理、逻辑运算和控制计算等。
PLC程序一般采用ladder diagram(梯形图)进行编写。
3.输出信号控制:根据程序的执行结果,CPU将处理好的数据通过输出模块发送给外部设备,用于控制和操作外部设备。
三、步进电机控制的程序设计步进电机的控制程序主要包括参数设定、模式选择、起停控制、运动控制等部分。
下面以一个简单的例子来说明步进电机控制的程序设计过程:1.参数设定:首先需要设定步进电机的一些参数,如电机型号、步距角度、运动速度等。
三菱PLC控制步进电机实例
三菱PLC控制步进电机实例
1.接线图
上图的接线为控制一台步进电机接线,这次为大家展示控制两台步进同时运动的方法,
IO表为
X0 步进1原点
X1 步进2原点
X2 启动按钮
Y0 步进1脉冲
Y1 步进1方向
Y2 步进2脉冲
Y3 步进2方向
2.控制工艺:按下启动按钮,两台步进电机先复位,复位完成后两台步进电机运动到指定位置,运动结束。
3.程序如下:
按下启动按钮,两台步进电机开始复位,M11控制步进电机1复位,M12控制步进电机2复位。
步进电机1复位,M13为复位完成标志。
步进电机2复位,M14为复位完成标志。
两台步进电机都复位完成后启动步进电机运动到指定目标,M15控制步进电机1,M16控制步进电机2
步进电机1运动,M17为运动完成标志
步进电机2运动,M18为运动完成标志
两台步进电机运动结束后,结束,等待下一次的启动,重复动作。
PLC控制步进电机正实现正反转速度控制定位
PLC控制步进电机正实现正反转速度控制定位PLC控制步进电机实现正反转速度控制定位是自动化生产过程中的一种常见应用。
本文将详细介绍PLC控制步进电机的原理、控制方式以及步进电机的正反转速度控制定位实现方法,并探讨其在实际应用中的优势和注意事项。
一、PLC控制步进电机原理步进电机是一种特殊的电动机,其每次输入一个脉冲信号后,会按照一定的角度旋转。
PLC(可编程逻辑控制器)是一种通用、数字化、专用微处理器,广泛应用于工业控制领域。
PLC控制步进电机可以通过控制脉冲信号的频率、方向和脉冲数来实现电机的正反转、速度控制和定位。
二、PLC控制步进电机的控制方式1.开关控制方式2.脉冲控制方式脉冲控制方式是PLC控制步进电机最常用的方式。
PLC向步进电机发送一系列脉冲信号,脉冲信号的频率和脉冲数决定了电机的转速和转动角度。
脉冲信号的正负决定了电机的正反转方向。
通过改变脉冲信号的频率和脉冲数,可以实现电机的速度控制和定位。
三、步进电机正反转速度控制定位实现方法步进电机的正反转速度控制定位可以通过PLC的程序来实现。
下面以一个简单的例子来说明该实现方法。
假设要实现步进电机顺时针转动2圈、逆时针转动1圈、再顺时针转动3圈的循环。
步进电机的一个转一圈需要200个脉冲信号。
首先,需要定义一个变量n,用来记录电机的圈数。
其次,在PLC的程序中编写一个循环步骤:1.设置脉冲信号的频率和脉冲数,使步进电机顺时针旋转2圈。
2.当步进电机转动2圈后,n=n+23.判断n的值,如果n=2,则设置脉冲信号的频率和脉冲数,使步进电机逆时针旋转1圈。
4.当步进电机转动1圈后,n=n-15.判断n的值,如果n=1,则设置脉冲信号的频率和脉冲数,使步进电机顺时针旋转3圈。
6.当步进电机转动3圈后,n=n+37.返回第一步,继续循环。
通过这样的循环过程,步进电机可以按照预定的顺序和速度进行正反转,并实现定位控制。
四、PLC控制步进电机优势和注意事项1.精确控制:PLC可以精确控制步进电机的转速和转动角度,适用于需要高精度定位的应用。
松下PLC步进电机控制例子
fkqbok^qflk^i =====qo^fkfkd
[ Y20 ] [ Y21 ] [ED]
=PÄ=
R9010 [ F62 WIN, WX4, K800, K1600 ] R900A [ Y22 ] R900B [ Y21 ] R900C [ Y20 ] [ED]
! ! ! R42 [ ] 10
TMX 3 ) [ F0 MV, H 4, DT9052 [ F0 MV, H 0, DT9052
] ] [ ED ]
!=uQ=
!"#$
PLC-2
=NÄ=
fkqbok^qflk^i =====qo^fkfkd
X1 (DF R50 R50 (DF R51 ) )
sN OFF ON OFF
=R sN
=U
OFF OFF ON
MODE
OFF
ON +
Y20 Y21 Y22
IN
Vo Io COM V1 I1 V I COM
-
OUT COM
PLC-2
=P~=
R9010 [ F0 MV, WX4, DT100 ]
> DT100, 1000 ] [< > DT100, 1000 ] [<
~F=
!"#$%&'()=EbåÅçÇÉêF= =m_N= !"#$%& =uP= ' !"#$=mi`=
!"# ()*+,
m_N uN uP uM opO uQ opP uR m_P ! ! ! !" vM vO vQ
!"#$%&'
!"#$%&'()*+,-./0123 !"#$%&'()*+$%&!,-./
plc控制步进电机程序.
plc控制步进电机程序·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
用FX1S 实现PLC控制步进电机的实例(图与程序)
用FX1S 实现PLC控制步进电机的实例(图与程序)原创2018-01-26 工控教练工控教练FX1s是晶体管型PLC,有两个脉冲输出端子,分别是Y0 和Y1,能同时输出两组100KHZ的脉冲。
PLS+,PLS-是步进驱动器的脉冲信号端子,DIR+,DIR-是步进驱动器的方向信号端子。
本次实例的动作方式:当正转开关X0 闭合时,电机动作到A 点停止;当反转开关X1 闭合时,电机动作到B 点停止。
1·绝对位置控制(DRVA),是指定要走到距离原点的位置,原点位置数据存放于32 位寄存器D8140 里。
当机械位于我们设定的原点位置时用程序把D8140 的值清零,也就确定了原点的位置。
·实例动作方式:正转开关X0 闭合时,电机动作到A 点停止;反转开关X1 闭合时,电机动作到B 点停止。
2 三菱FX系列PLC绝对位置控制指令DRVA应用:绝对位置控制指令DRVA的格式:DRVA D0 D2 Y0 Y2 *D0:目标位置,可以是数值或是寄存器,也就是PLC要输出的脉冲个数。
*D2:输出脉冲频率,可以是数值或是寄存器。
也就是PLC输出的脉冲频率,也就是速度*Y0:脉冲输出地址,只能是Y0或Y1。
*Y2:方向控制输出,正向是ON或是OFF,反向是OFF或是ON (根据所控制执行元件设置来确定)3下面是PLC程序的梯形图:(此程序只为说明用,实用需改善。
)·在原点时将D8140的值清零(本程序中没有做此功能)·32 位寄存器D8140 是存放Y0 的输出脉冲数,正转时增加,反转时减少。
当正转动作到A 点时,D8140 的值是3000。
此时闭合X1,机械反转动作到B 点,也就是-3000 的位置。
D8140 的值就是-3000。
·当机械从A 点向B 点动作过程中,X1 断开(如在C 点断开)则D8140 的值就是200,此时再闭合X0,机械正转动作到A 点停止。
PLC如何控制步进电机
PLC如何控制步进电机用三菱PLC的FX1S-14MT以切纸机为例,大致阐述一下PLC控制步进电机的方法。
*PL+,PL-:步进驱动器的脉冲信号端子,*DR+,DR-:步进驱动器的方向信号端子。
为了简单明了地讲明PLC控制步进电机的方法,所以本例一切从简,只画了PLC的脉冲输出端Y0,方向控制端Y2与步进电机驱动器的脉冲信号端子,方向信号端子的接线方式。
PLC输出端的内部结构如上图,其为NPN输出方式。
所以其负载(驱动器的光电三极管)应该接在输出三极管的集电极。
驱动器信号端子的内部结构图如上,其供电电压应该是5V,根据其电流参数计算,24V 供电应该串联了一个2K左右的电阻。
*个人认为24V串联电阻供电方式比5V供电抗干扰性要好,所以宁愿麻烦多串两个电阻。
电气接线为:X0接启动按钮,X1接停止按钮。
X2接切刀位置开关(切刀在下方切纸结束时接通).Y4控制切刀电磁阀。
机械结构大致为:步进电机经过同步带带动压轮(周长40mm),也就是说步进电机转动一圈送纸40mm。
切刀由电磁阀带动(实际应用切刀也用步进电机驱动更理想).根据机械结构与精度要求(误差小于0.1mm),本例将驱动器的设为4细分,也就是驱动器接收到800个脉冲步进电机转一圈,PLC输出一雎龀逅椭?.05mm.程序如下:本程序只为说明控制方法,没有认真考虑工作过程要求,程序严密性定然不够,不具备设计参考价值!第0步:设定基底速度120转/分(一转800个脉冲,1600HZ就是每秒2转),加速时间100ms,最高速度600转/分(一转800个脉冲,8000HZ就是每秒10转)。
HZ(赫兹)是频率单位,每秒PLC输出的脉冲个数。
第20步,22步:启动,停止操作。
T0的延时有防干扰作用,停止按钮(X1)闭合时间不到100毫秒无效。
20步的启动按钮应该再串联一个触点,防止再运行过程中按启动按钮,M0置位。
(懒得改程序了)第26步:按停止按钮不是立刻停止,而是用M1来达到完成一个过程后再停止(送纸后,切刀完成再停止)第29步:本例送纸40mm,送纸电机速度600转/分,送纸结束M8147断开置位M2,开始切纸过程。
国产plc海为plc一路脉冲控制两台步进电机
海为一路脉冲控制两台步进电机
发布人:厦门海为科技有限公司
一、引言
海为S系列PLC有一路的高速脉冲输出,一般情况下只能控制一台步进电机进行工作。
但是为了充分利用资源节约成本,可以利用正转/反转输出脉冲的模式再增加两个输出端来控制两台步进电机进行工作。
正转脉冲和反转脉冲分别接的是两台步进电机的脉冲输入端口,而两台步进电机的方向则通过其它输出端口进行控制。
这样就实现了通过一路正转/反转脉冲输出来控制两台步进电机的功能。
l 适用条件:两台步进电机(脉冲+方向)分时工作(不可同时工作)
二、硬件连接示意图及配置
1、PLC与步进电机的硬件连接图如下所示。
2、在PLC硬件配置中,脉冲输出通道号的输出模式必须改成“2-正转/反转脉冲”
三、PLC程序示例
下面是根据上述思路,对两台步进电机进行简单的正反转控制示例
步进电机1正反转:
PauF端:输出频率,PauN端:脉冲输出的个数(必须为正,表示控制电机1)
Y2是控制步进电机1的正反转,Y2失电时,步进电机1正转;Y2得电时,步进电机1反转。
步进电机2正反转:
PauF端:输出频率,PauN端:脉冲输出的个数(必须为负,表示控制电机2)
Y3是控制步进电机1的正反转,Y3失电时,步进电机2正转;Y3得电时,步进电机2反转。
四、总结
通过一路的高速脉冲输出达到可以控制两台步进电机进行分时工作的目的。
不足之处在于不能控制两台步进电机同时进行工作。
PLC控制步进电机的应用案例
PLC控制步进电机的应用案例PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备。
步进电机是一种适用于许多工业应用的电动执行器。
它们的高精度、高可靠性和低成本使其成为PLC控制的理想选择。
以下是几个PLC控制步进电机的应用案例:1.机械加工在机械加工领域,步进电机经常用于驱动各种类型的机床,如铣床、车床和钻床。
通过PLC控制,可以根据设定的切削参数和工件要求来精确控制步进电机的转速和位置。
这种控制可确保机床的精度和稳定性,并实现自动化的加工过程。
2.包装和印刷包装和印刷设备通常需要高精度和高速度的运动控制。
步进电机可以接入PLC系统,通过控制电机的步进角和转速来实现准确的定位和运动。
这样可以确保包装和印刷设备的工作过程高效、准确且可靠。
3.自动化仓储系统在自动化仓储系统中,步进电机被广泛应用于各种类型的输送带、堆垛机和拆堆机。
通过PLC控制,可以精确控制步进电机的动作,如启动、停止、定位和速度调整,以实现自动化的物料搬运和仓储流程。
4.机器人工业步进电机与PLC结合可用于机器人工业中的各种关节控制。
机器人的关节通常由步进电机驱动,PLC控制电机的旋转角度和速度,从而实现机器人的精确定位和运动轨迹。
这种控制方法提供了更高的精度和可靠性,使机器人能够执行更复杂的任务。
5.自动化化工过程在化工工业中,PLC控制步进电机可以用于自动化的流体控制和精确的化学物料分配。
例如,在液体流体控制过程中,步进电机可以驱动阀门来控制流量和压力。
通过PLC控制,可以根据需要调整电机的转速和位置,以实现精确的流体控制。
总结起来,PLC控制步进电机的应用案例非常广泛,涵盖了机械加工、包装和印刷、自动化仓储系统、机器人工业以及化工过程等多个领域。
这些应用案例充分体现了PLC控制步进电机在工业自动化中的重要性和价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PLC控制步进电机的实例(图与程序)
·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!
·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)
·说明:
·在原点时将D8140的值清零(本程序中没有做此功能)
·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!
·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):
·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0
·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
·一般两相步进电机驱动器端子示意图:
·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。
而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。
·V+,GND:为驱动器直流电源端子,也有交流供电类型。
·A+,A-,B+,B-分别接步进电机的两相线圈。