2020中考数学专题复习课件-27 尺规作图

合集下载

中考数学-尺规作图专题复习

中考数学-尺规作图专题复习

中考总复习—尺规作图一、理解“尺规作图”的含义在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、最基本,最常用的尺规作图,通常称基本作图。

中考数学专题复习 尺规作图

中考数学专题复习 尺规作图
上一页 返回导航 下一页
(2)在(1)的条件下,若 BC=5,AD=4,tan∠BAD=34,求 DC 的长. 解:∵AD⊥BC,∴在 Rt△ABD 中, ∵tan∠BAD=BADD=34, ∴BD=34×4=3. ∴DC=BC-BD=5-3=2.
上一页 返回导航 下一页
5.(2020 武威)如图,在△ABC 中,D 是 BC 边上一点,且 BD=BA. (1)尺规作图(保留作图痕迹,不写作法): ①作∠ABC 的角平分线交 AD 于点 E; ②作线段 DC 的垂直平分线交 DC 于点 F.
上一页 返回导航 下一页
2.如图,在△ABC 中,用尺规作图法作∠ABD=∠C,与边 AC 交于点 D.(保留作图痕迹,不用写作法)
上一页 返回导航 下一页
3.作已知角的平分线(已知∠AOB). 作法: ①以点 O 为圆心,适当长为半径画弧,分别交 OA,OB 于点 N,M; ②分别以点 M,N 为圆心,大于12MN 的长为半径画弧,两弧相交于点 P; ③作射线 OP,射线 OP 即为所求作的角平分线.
上一页 返回导航 下一页
课堂检测
1.(2020 河北)如图 1,已知∠ABC,用尺规作它的角平分线.如图 2,步骤如下, 第一步:以 B 为圆心,以 a 为半径画弧,分别交射线 BA,BC 于点 D,E; 第二步:分别以 D,E 为圆心,以 b 为半径画弧,两弧在∠ABC 内部交于点 P; 第三步:画射线 BP.射线 BP 即为所求.
上一页 返回导航 下一页
(1)尺规作图(不写作法,保留作图痕迹),补全图形; 解:如图,⊙O,射线 BM,直线 DE 即为所求.
上一页 返回导航 下一页
(2)判断⊙O 与 DE 交点的个数,并说明理由.
解:⊙O 与 DE 的交点只有一个. 理由如下: ∵OB=OD,∴∠ODB=∠OBD. ∵BD 平分∠ABC,∴∠ABD=∠OBD. ∴∠ODB=∠ABD.∴OD∥AB. ∵DE⊥AB,∴DE⊥OD. 又∵OD 是⊙O 的半径, ∴直线 DE 是⊙O 的切线. ∴⊙O 与 DE 的交点只有一个.

2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例精析典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.1 2【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.拓展1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.复杂作图利用五种基本作图作较复杂图形.典例精析典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.拓展3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)同步测试1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD4.如图,点C 在∠AOB 的OB 边上,用尺规作出了∠AOB =∠NCB ,作图痕迹中,弧FG 是A .以点C为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧5.如图,△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG 交BC 边于点D . 则∠ADC 的度数为A .65°B .60°C .55°D .45°6.如图,△ABC 为等边三角形,要在△ABC 外部取一点D ,使得△ABC 和△DBC 全等,下面是两名同学做法: 甲:①作∠A 的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;12乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.。

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

2020年中考数学第一轮复习专题 第27课 尺规作图(含答案)

第27课尺规作图本节内容考纲要求考查五个基本作图和能转化为基本作图的简单尺规作图。

广东省近5年试题规律:以解答题出现,一般考查作角平分线,线段的垂直平分线和过一点直线的垂线,多与三角形、四边形问题结合一起,难度不大,但学生欠缺动手操作,是常见丢分题。

知识清单知识点一尺规作图定义只用圆规和尺子来完成的图画,称为尺规作图.基本步骤(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,使它符合什么条件;(3)作法:运用五种基本作图,保留作图痕迹;(4)证明:验证所作图形的正确性;(5)结论:对所作的图形下结论.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过一已知点作直线的垂线;(5)作已知线段的垂直平分线.课前小测1.(尺规作图的定义)尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.(作角平分线)如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS3.(作一个角等于已知角)小明回顾用尺规作一个角等于已知角的作图过程(如图所示),连接CD、C′D′得出了△OCD≌△O′C′D′,从而得到∠O=∠O′,其中小明作出△OCD≌△O′C′D′判定的依据是()A.SSS B.SAS C.ASA D.AAS 4.(作垂直平分线)如图所示,已知线段AB=6,现按照以下步骤作图:①分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧相交于点C和点D;②连结CD交AB于点P.则线段PB的长为.5.(作垂线)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.经典回顾考点一作线段垂直平分线【例1】(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【点拨】作线段的垂直平分线要点:①以线段两端点为圆心作弧,两弧交于两点;②再过两点作垂线.考点二作角平分线【例2】(2018•赤峰)如图,D是△ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∥AC.【点拔】作角的平分线要点:①以顶点为圆心画弧交角的两边于两点;②再以这两点为圆心作弧,两弧交于一点;③最后过顶点与交点作射线.考点三作垂线【例3】(2015•广东)如图,已知锐角△AB C.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.【点拨】过一点作垂线或作高线要点:①以这点为圆心,在直线上截取一条线段;②再作线段的垂直平分.考点四作一个角等于已知角【例4】(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC 于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.【点拔】过一点作一个角等于已知角要点:①以角的顶点为圆心画弧交两边于两点,以这一点为圆心,相同半径作弧,交于一点;②再以两点间距离为半径,作弧,两弧交于一点;③最后过这一点于交点作射线.对应训练1.(2019•泰州)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.2.(2019•中山一模)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.3.(2019•江门期末)画图题:如图,已知三角形ABC,AB=5.(1)过点C作CD⊥AB,点D为垂足:(2)在(1)的条件下,若DB=2,求点A到CD的距离.4.(2019•顺德期末)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.中考冲刺夯实基础1.(2019•赤峰)已知:AC是□ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.2.(2019•惠阳二模)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(不要求写作法,保留作图痕迹)(2)判断△ACE的形状,并证明.3.(2019•玉林)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.(2019•越秀一模)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.能力提升5.(2019•白银)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.6.(2019•三明模拟)如图,在△ABC中,AB=AC.(1)尺规作图:作∠CBD=∠A,D点在AC边上(要求:不写作法,保留作图痕迹)(2)若∠A=40°,求∠ABD的度数.7.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.第27课尺规作图课前小测1.C.2.D.3.A.4.3.5.B.经典回顾考点一作线段垂直平分线【例1】解:(1)如图,直线EF即为所求;(2)∵四边形ABCD是菱形,∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABD=∠DBC=12∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.考点二作角平分线【例2】(1)解:如图,DE为所求;(2)证明:∵DE平分∠ADB,∴∠ADE=∠BDE,∵∠ADB=∠C+∠DAC,而∠C=∠DAC,∴2∠BDE=2∠C,即∠BDE=∠C,∴DE∥AC.考点三作垂线【例3】解:(1)如图,MN为所求;(2)∵AD⊥BC,∴∠ADB=∠ADC=90°,∵tan∠BAD=BDAD =34,∴BD=3,∴CD=BC﹣BD=5﹣3=2.考点四作一个角等于已知角【例4】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴AEEC =ADDB=2.对应训练1.解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.2.解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.3.解:(1)如图,CD为所作.(2)∵AB=5,BD=2,∴AD=3,∴点A到CD的距离为3.4.解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.中考冲刺夯实基础1.解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.2.解:(1)如图即为所求:(2)△ACE是等腰三角形.证明:∵CE平分∠ACD,∴∠ACE=∠ECD,∵AB∥CD,∴∠AEC =∠ECD ,∴∠ACE =∠AEC ,∴△ACE 是等腰三角形.3.(1)解:如图,点D 为所作;(2)证明:∵AB =AC ,∴∠ABC =∠C =(180°﹣36°)=72°, ∵DA =DB ,∴∠ABD =∠A =36°,∴∠BDC =∠A +∠ABD =36°+36°=72°, ∴∠BDC =∠C ,∴△BCD 是等腰三角形.4.(1)解:如图,F 点为所作;(2)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠B =90°,∴∠DAE =∠AEB ,∵DF ⊥AE ,∴∠AFD =90°,在△ABE 和△DFA 中B DFAAEB DAF AE AD=⎧⎪=⎨⎪=⎩∠∠∠∠,∴△ABE≌△DFA(AAS),∴AB=DF.能力提升5.解:(1)如图⊙O即为所求.(2)25π.6.解:(1)如图,∠CBD为所作;(2)∵AB=AC,∴∠ABC=∠C=1(180°﹣∠A)=70°,2∵∠CBD=∠A=40°,∴∠ABD=70°﹣40°=30°.7.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴DEAC =BEBC,即2DE=33DE,∴DE=65.。

2020年中考数学一轮复习基础考点及题型专题27 尺规作图与命题的证明(解析版)

2020年中考数学一轮复习基础考点及题型专题27 尺规作图与命题的证明(解析版)

专题27 尺规作图与命题的证明考点总结【思维导图】【知识要点】知识点一尺规作图尺规作图的概念:用无刻度直尺和圆规作图,叫做尺规作图。

基本作图方法:1、作一条线段等于已知线段2、作一个角等于已知角3、作已知角的角平分线4、过一点作已知线段的垂线5、作已知线段的垂直平分线【考查题型汇总】考查题型一运用基本作图确定几何图形特殊位置1.(2019·江苏中考模拟)按要求作图,并保图作图痕迹.如图,已知线段a、b、c,用圆规和直尺作线段AD,使AD=a+2b﹣c.【答案】见解析.【详解】解:如图所示:AE即为所求.2.(2019·山东中考模拟)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.【答案】见试题解析【解析】如图所示:.3.(2019·广东中考模拟)如图,在锐角△ABC 中,AB =2cm ,AC =3cm .(1)尺规作图:作BC 边的垂直平分线分别交AC ,BC 于点D 、E (保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD ,求△ABD 的周长.【答案】(1)作图见解析;(2)ABD 的周长为5cm. 【解析】(1)如图,DE 为所作;(2)∵DE 垂直平分BC , ∴DB=DC ,∴△ABD 的周长=AB+BD+AD=AB+CD+AD=AB+AC=2+3=5(cm ).4.(2018·山东中考模拟)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.【答案】见解析【详解】如图所示:P点即为所求.5.(2019·江苏中考模拟)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.【答案】(1)见解析(2)见解析(3)见解析【详解】(1)如图所示:点O即为所求.(2)如图所示,等边△DFH即为所求;(3)如图所示:六边形DEFGHI即为所求正六边形.6.(2019·吉林东北师大附中中考模拟)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.【答案】(1)见解析;(2)见解析.【详解】解:(1)如图①,作A关于MN的对称点A′,连接BA′,交MN于P,此时PA+PB=PA′+PB=BA′,根据两点之间线段最短,此时PA+PB最小;(2)如图②,作B关于MN的对称点B′,连接AB′并延长交MN于Q,此时∠AQM=∠BQM.考查题型二运用基本作图确定实际问题特殊位置1.(2019·甘肃中考模拟)同学们,数学来源于生活又服务于生活,利用数学中的知识可以帮助我们解决许多实际问题.如王明想建一个超市,经调查发现他家附近有两个大的居民区A,B,同时又有相交的两条公路CD,EF,为方便进货和居民生活,王明想把超市建在到两居民区的距离相等,同时到两公路距离也相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助王明在图上确定超市的位置!请用尺规作图....确定超市点P的位置.(作图不写作法,但要求保留作图痕迹)分析:先将实际问题转化为数学问题,把超市看作一个点.点P到A,B两点的距离相等,根据性质:__________________,需用尺规作出_____________;又点P到两相交直线CD,EF的距离相等,根据性质:_________________,需用尺规作出_______________;而点P同时满足上述两个条件,因此应该是它们的交点.请同学们先完成分析过程(即填空) ,再作图;【答案】如图所示见解析. 线段垂直平分线上的点到线段两个端点的距离相等,线段AB的垂直平分线,角的角平分线.平分线上的点到角两边的距离相等,COF【详解】如图所示,线段垂直平分线上的点到线段两个端点的距离相等线段AB的垂直平分线角平分线上的点到角两边的距离相等的角平分线COF2.(2019·福建省永春第二中学初一期末)如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不需要写画法和结论)(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB、AD、BD的数量关系式AB+AD>BD,理由是______.【答案】(1)见解析;(2)见解析;(3)见解析;(4)两点之间,线段最短.【详解】解:(1)(2)(3)如图所示;(4)AB+AD>BD理由是:两点之间,线段最短.故答案为:两点之间,线段最短.知识点二命题、定理与证明命题的概念:像这样判断一件事情的语句,叫做命题。

2024年中考数学复习课件-第26讲 尺规作图

2024年中考数学复习课件-第26讲 尺规作图
证明: , , 点 在以 为直径的圆上, . . 为 的切线, . , . . .在 和 中, .
图56
考点专练
图6
4.尺规作图.(只保留作图痕迹,不要求写出作法)如图6,已知 .请根据“ ”基本事实作出 ,使 .
图2
【解析】由作图可知, 是线段 的垂直平分线, 四边形 是平行四边形, , .又 , , .故
【答案】D
结论B,C正确. ,即 . 故结论A正确.由已知条件,无法证明 ,故结论D不正确.
考点专练
2.如图3,在 中, , 为 的外角.观察图3中尺规作图的痕迹,则下列结论错误的是( ) .
第26讲 尺规作图
典题精析
考点一 基本作图的认识
名师指导 熟练掌握五种基本作图的方法和作图依据,是用尺规作图的基础.
例1 尺规作图:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图1是按上述要求排乱顺序的尺规作图,则正确的配对是( ) .
C
A. B. C. D.
图2
例2 (2023·随州)如图2,在 中,分别以点 , 为圆心,大于 的长为半径画弧,两弧相交于点 , ,过 , 两点作直线交 于点 ,分别交 , 于点 , .下列结论中,不正确的是( ) .
A. B. C. D.
思路点拨 由作图可知, 垂直平分线段 .根据线段垂直平分线的性质得到 ,再结合平行四边形的性质,逐一进行判断.
作图依据
①等腰三角形底边上的高线、底边上的中线、顶角的平分线互相重合(“三线合一”)②两点确定一条直线
续表
图形
作法
①任意取一点 ,使点 和点 在直线 的两侧②以点 为圆心,____长为半径画弧,交直线 于点 , ③分别以点 , 为圆心,大于_ ____的长为半径向直线 的同侧画弧,两弧相交于点 ④作直线 ,则直线 就是所求作的垂线

中考数学复习—尺规作图训练PPT优秀课件

中考数学复习—尺规作图训练PPT优秀课件

中考数学复习—尺规作图训练PPT优秀 课件
5.如图,已知锐角△ABC. (1)过点 A 作 BC 边的垂线 MN,交 BC 于点 D(用尺规作图法, 保留作图痕迹,不要求写作法); (2)在(1)的条件下,若 BC=5,AD=4,tan∠BAD=43,求 DC 的长.
中考数学复习—尺规作图训练PPT优秀 课件
9.如图,已知线段 a 及∠α(∠α<90°).
(1)作等腰△ABC 并使得所作等腰△ABC 腰长为 a,且底角等 于∠α(尺规作图,保留作图痕迹,不写作法);
(2)若 a=4,∠α=30°,求(1)中所作△ABC 的面积.
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
解:(1)如图,E 点即为所求. (2)∵四边形 ABCD 是平行四边形, ∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB, ∵AE 是∠BAD 的平分线,∴∠DAE=∠BAE, ∴∠BAE=∠BEA,∴BE=BA=5, ∴CE=BC-BE=3.故答案为 3.
中考数学复习—尺规作图训练PPT优秀 课件
6.如图,⊙O 为锐角△ABC 的外接圆,半径为 5. (1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 的交 点 E(保留作图痕迹,不写作法); (2)若(1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长.
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
中考数学复习—尺规作图训练PPT优秀 课件
解:(1)如图,MN 即为所求. (2)∵AD⊥BC,∴∠ADB=∠ADC=90°. 在 Rt△ABD 中,∵tan∠BAD=ABDD=43, ∴BD=34×4=3,∴DC=BC-BD=5-3=2.

中考数学总复习 第七章 尺规作图及图形变换 第27讲(课堂本)课件

中考数学总复习 第七章 尺规作图及图形变换 第27讲(课堂本)课件
第十四页,共五十六页。
3.作一个角的平分线 作法:①在 OA,OB 上分别截取 OD,OE,使 OD=OE;② 分别以 D,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠ AOB 内交于点 C;③作射线 OC,则 OC 就是∠AOB 的平分线, 如图.
第十五页,共五十六页。
4.作线段的垂直平分线 作法:①分别以点 A 和 B 为圆心,大于21AB 的长为半径作弧, 两弧相交于点 C 和 D;②作直线 CD,则直线 CD 就是线段 AB 的垂直平分线,如图.
第十三页,共五十六页。
2.作一个角等于已知角 作法:①作射线 O′A′;②以点 O 为圆心,以任意长为半径 画弧,交 OA 于点 C,交 OB 于点 D;③以 O′为圆心,以 OC 的长为半径画弧,交 O′A′于点 C′;④以 C′为圆心,以 CD 的长为半径画弧,交前弧于点 D′;⑤过点 D′作射线 O′B′,则∠A′O′B′就是所求作的角,如图.
第十六页,共五十六页。
5.过定点作已知直线的垂线,不论点在已知直线上,还是在 已知直线外,都可以利用线段垂直平分线的作法作出. 6.过定点作已知直线的中线,可以利用线段垂直平分线的作 法作出.
第十七页,共五十六页。
课堂精讲
基本作图 (6 年 6 考) 1.(2018 赤峰)如图,D 是△ABC 中 BC 边上一点,∠C=∠ DAC. (1)尺规作图:作∠ADB 的平分线,交 AB 于 点 E(保留作图痕迹,不写作法); (2)在(1)的条件下,求证:DE∥AC.
解:如图,⊙O 即为所求.
第九页,共五十六页。
5.(2018 广西)如图,在平面直角坐标系中,已知△ABC 的三 个顶点坐标分别是 A(1,1),B(4,1),C(3,3).

2024年中考数学一轮总复习+课件++第1节 尺规作图

2024年中考数学一轮总复习+课件++第1节 尺规作图
当长为半径画弧,
分别交∠α的两边
于点P,Q;
(2)作射线O'A;
已知:∠α.
(3)以点O'为圆心,
作一个
求作:
OP长为半径画弧,
角等于
∠AO'B,使
已知角
交O'A于点M;(4)以
∠AO'B=∠α
点M为圆心,PQ长
为半径画弧,交前
弧于点N;(5)过点N
作射线O'B,∠AO'B
即为所求作的角
类型
要求
作图步骤
作图步骤
图示
(1)在直线另一侧任
取点M;
(2)以点P为圆心,
PM的长为半径画
弧,交直线于A,B两
点;
(3)分别以点A,B为
1
圆心,大于 2 AB的长
为半径画弧,交点M
同侧于点N;
(4)作直线PN,PN即
为所求作的垂线
特别提醒➡【新课标】过直线外一点作这条直线的
平行线
已知与求作
步骤及原理
图示
作法:(1)过点P作
解:(1)如图:
(2)如图,设OD与AC相交于点E.∵AB是☉O的直径,
∴∠ACB=90°.
在Rt△ABC中,AC=8,BC=6,
∴AB= 2 + 2 =10.∵OD⊥AC,∴AE=CE.
又∵OA=OB,∴OE 是△ABC 的中位线.
1
∴OE=2BC=3,即点
O 到 AC 的距离为 3.
段AB的 垂直平分线 ,射线AE是∠DAC的 平分线 ;
(2)在(1)所作的图中,∠DAE的度数为 25° .
知识点2复杂作图及基本作图的应用
1.复杂作图:复杂的尺规作图都是由基本作图组成的.

2020年中考数学专题:尺规作图

2020年中考数学专题:尺规作图

专题:尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【例题1】如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。

【例题2】如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

中考数学总复习 第27讲 尺规作图二次函数(基础讲练+锁定考试目标+导学必备知识+探究重难方法)(含

中考数学总复习 第27讲 尺规作图二次函数(基础讲练+锁定考试目标+导学必备知识+探究重难方法)(含

第27讲尺规作图考标要求命题趋势1.能用尺规完成五种基本作图.2.会写已知、求作,了解作图的道理,保留作图的痕迹,不要求写出作法.3.能运用尺规的基本作图方法解决作图的简单应用问题.中考对本部分内容的考查主要是利用尺规作图解决实际问题的能力,题型主要以设计、探究形式的解答题为主.知识梳理一、尺规作图1.定义只用没有刻度的__________和__________作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二、五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三、基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.自主测试1.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C,D两点,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形2.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形3.如图,△ABC是直角三角形,∠ACB=90°.(1)实验与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作△ABC的外接圆,圆心为O;②以线段AC为一边,在AC的右侧作等边△ACD;③连接BD,交⊙O于点E,连接AE.(2)综合运用在你所作的图中,若AB=4,BC=2,则①AD与⊙O的位置关系是__________.②线段AE的长为__________.4.A,B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A,B两校的距离相等?如果有,请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点一、基本作图【例1】按要求用尺规作图(只保留作图痕迹,不必写出作法).(1)在图(1)中作出∠ABC的平分线;(2)在图(2)中作出△DEF的外接圆O.解:如图.方法总结依据基本作图的方法步骤,规范作图,注意一定保留好作图痕迹.触类旁通1画△ABC,使其两边为已知线段a,b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法)已知:求作:考点二、基本作图的实际应用【例2】如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB,BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).分析:∵圆与AB,BC都相切,∴圆心到AB,BC的距离相等.∴圆心应是∠ABC的角平分线与AC的交点.解:下图即为所求图形.方法总结要作一个圆与角的两边都相切,根据角平分线的性质,角平分线上的点到角两边的距离相等,即可解决问题.触类旁通2为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P 到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.1. (2012湖南益阳)如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB长为半径画弧,两弧交于点D,分别连接AB,AD,CD,则四边形ABCD一定是( )A.平行四边形B.矩形C.菱形D.梯形»FG2. (2012河北)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧3.(2012浙江绍兴)如图,AD为⊙O的直径,作⊙O的内切正三角形ABC,甲、乙两人的作法分别如下:甲:1.作OD的中垂线,交⊙O于B,C两点.2.连接AB,AC.△ABC即为所求作的三角形.乙:1.以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.2.连接AB,BC,AC.△ABC即为所求作的三角形.A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确4.(2012贵州铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)5. (2012山东德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)1. 如图,锐角△ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?( )A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD2.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO 长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于__________.3.数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形.这样的三角形最多能画__________个.4.如图,已知∠AOB,点M,N,求作点P,使点P在∠AOB的角平分线上,且PM=PN.(保留作图痕迹,不写作法)5.某汽车探险队要从A城穿越沙漠去B城,途中需要到河流l边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.6.如图,在△ABC 中,∠A =90°.(1)用尺规作图的方法,作出△ABC 绕点A 逆时针旋转45°后的图形△AB 1C 1(保留作图痕迹);(2)若AB =3,BC =5,求tan∠AB 1C 1.参考答案【知识梳理】 一、1.直尺 圆规 导学必备知识 自主测试1.B ∵分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D ,∴AC =AD =BD =BC ,∴四边形ADBC 一定是菱形.故选B.2.B 由图形作法可知,AD =AB =DC =BC , ∴四边形ABCD 是菱形,故选B. 3.解:(1)如图,(2)①相切 ②47214.解:(1)存在满足条件的点C . 作出图形,如图所示.(2)作点A 关于x 轴对称的点A ′(2,-2),连接A ′B ,与x 轴的交点即为所求的点P.设A ′B 所在直线的解析式为y =kx +b ,把(2,-2)和(7,3)代入得⎩⎪⎨⎪⎧7k +b =3,2k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =-4.∴y =x -4,当y =0时,x =4, ∴交点P 为(4,0). 探究考点方法触类旁通1.解:已知:线段a ,b ,角β. 求作:△ABC ,使边BC =a ,AC =b ,∠C =β. 画图(保留作图痕迹)触类旁通2.解:已知A 村、B 村、C 村,求作新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等.品鉴经典考题1.A 由作图知,AD =BC ,AB =CD ,∴四边形ABCD 一定是平行四边形.2.D 根据尺规作一个角等于已知角的方法,即可知»FG是以点E 为圆心,DM 为半径的弧.3.A 根据甲的思路,作出图形如下:连接OB .∵BC 垂直平分OD , ∴E 为OD 的中点,且OD ⊥BC ,∴OE =DE =12OD .在Rt△OBE 中,∵OB =OD ,∴OE =12OB ,∴∠OBE =30°.又∠OEB =90°,∴∠BOE =60°. ∵OA =OB ,∴∠OAB =∠OBA . 又∠BOE 为△AOB 的外角, ∴∠OAB =∠OBA =30°,∴∠ABC =∠ABO +∠OBE =60°. 同理∠C =60°,∴∠BAC =60°, ∴∠ABC =∠BAC =∠C ,∴△ABC 为等边三角形,故甲的作法正确. 根据乙的思路,作图如下:连接OB ,BD .∵OD =BD ,OD =OB ,∴OD =BD =OB ,∴△BOD 为等边三角形, ∴∠OBD =∠BOD =60°.同理可知△COD 也为等边三角形,∠OCD =∠COD =60°, ∴∠BOC +∠OCD =∠BOD +∠COD +∠OCD =180°, ∴BO ∥CD .又∵△BOD 和△COD 是等边三角形, ∴四边形BDCO 是菱形, ∴∠OBM =∠DBM =30°.又OA =OB ,且∠BOD 为△AOB 的外角, ∴∠BAO =∠ABO =30°,∴∠ABC =∠ABO +∠OBM =60°, 同理∠ACB =60°,∴∠BAC =60°, ∴∠ABC =∠ACB =∠BAC ,∴△ABC 为等边三角形,故乙的作法正确.故选A. 4.解:作图如图所示.5.解:作图如图所示:研习预测试题1.B 依据题意画出图形.可得知∠1=∠2,AE =DE ,∴∠2=∠3, ∴∠1=∠3,即DE ∥AB .故选B. 2.12 3.34.解:如图,连接MN ,作线段MN 的垂直平分线EF ,∠AOB 的角平分线OC ,EF 与OC 相交于点P .则点P 即为所求.5.解:如图所示,点C 即为所求.6.解:(1)作∠CAB 的平分线,在平分线上截取AB 1=AB , 作C 1A ⊥AB 1,在AC 1上截取AC 1=AC , 如图所示即是所求.(2)∵AB =3,BC =5,∴AC =4, ∴AB 1=3,AC 1=4,tan∠AB 1C 1=AC 1AB 1=43.。

中考复习专题:尺规作图课件(共38张PPT)

中考复习专题:尺规作图课件(共38张PPT)

优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.

尺规作图ppt课件

尺规作图ppt课件
结论:点E就是所求作的点.
常考四种题型之 4.求作特殊多边形 例4:小明想利用一块三角形纸片裁剪一个菱形,要求一个顶 点为A,另外三个顶点分别在三角形的三边上,请你在原图上 利用尺规作图把这个菱形作出来.
结论:菱形AEDF就是所求作的菱形.
练习1:2014年中考题 一块直角三角形的木板余料,要在上面裁处一块正方形木板。 要求:正方形的一个顶点在C处,有两条边在木板的直角边上且 面积最大。
图示
适用情形 ①在已知角的内 部作到角两边距 离相等的点;② 作一个角的折痕 ,使得折叠后角 两边可重叠;③ 作三角形内切圆 圆心
类型
步骤
作线段的 垂直平分 线(已知线 段AB)
①分别以点A、B为圆心, 大于1 AB长为半径,在AB
2 两侧作弧,分别交于点M、 N; ②过点M、N作直线交AB于 点O,直线MN即为所求垂
初三数学专题复习之
尺规作图
课前准备:学案、圆规、直尺、笔
5个基本作图:
1.作一条线段等于已知线段 2.作一个角等于已知角 3.作角的平分线 4.作线段的垂直平分线 5.过一点作已知直线的垂线
类型
步骤
作一条线段 ①作射线OP;
等于已知线 ②以点O为圆心,线段a的长为
段(已知线段 半径作弧,交射线OP于A,OA
常考四种题型之一 求作一个圆
例1:2016年中考题 已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的 内部,CO=a,且⊙O与∠ACB的两边作的圆.
练习: 有一张三角形的纸片,在这张纸片上剪下一个半圆,使它 的圆心在BC上,且与AB,AC都相切。 请你在图中做出这个半圆。
作弧,交O′A于点M; 已知角(已知
④以点M为圆心,PQ长为半径 ∠α)

第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)

第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)
【说明】掌Байду номын сангаас已知点的位置,可以确定该点到圆心的距离与
1. 点和圆的位置关系
已知⊙O的半径为r,点P到圆心O的距离为d,则:
位置关系
图形
半径的关系,反过来已知点到圆心的距离与半径的关系,可
以确定该点与圆的位置关系.
定义
性质及判定
点在圆的外部
d > r 点P在圆外
点在圆周上
d = r 点P在圆上
点在圆的内部
内切
内含
O2
d
性质及判定

> + ⇔两圆外离
1个切点
= + ⇔两圆外切
两个交点
− < < + ⇔两圆相交
1个切点
= − ⇔两圆内切
R
r
O1
O2
d
r
相交
公共点个数
O1
R
d
O2
rd R
O1 O2
R
r d
O1 O2

0 ≤ < − ⇔两圆内含
∴圆A与圆C外切,圆B与圆C相交,圆A与圆B外离,
故选:D.

考点二 切线的性质与判定
1.切线的性质与判定
定义
线和圆只有一个公共点时,这条直线叫圆的切线,这个公共点叫做切点.
圆的切线垂直于过切点的半径.(实际上过切点的半径也可理解为过切点的直径或经过切点与圆心的直线.)
解题方法:当题目已知一条直线切圆于某一点时,通常作的辅助线是连接切点与圆心(这是圆中作辅助线的一
∴不能判定BC是⊙A切线;
故选:D.

考点二 切线的性质与判定
题型02 利用切线的性质求线段长

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。

以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。

2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。

3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。

4.等长的线段的画法:直接用圆规量取即可。

5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。

需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。

在作图时,如果有多个要求,应逐个满足并取公共部分。

例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。

以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。

作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。

例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。

作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。

例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。

作法如下:作出AB的垂直平分线,与BC交于点P。

中考总复习数学27-第一部分 第27讲 尺规作图

中考总复习数学27-第一部分  第27讲 尺规作图

线l
O作直
(2)分别以点A,B为圆心,以大于AB的长为半

线l的
径向直线两侧作弧,两弧分别交于点M,N;

垂线
(3)过点M,N作直线MN,则直线MN即为所求
线
MN
垂线
图形示例
第27讲
返回思维导图
尺规作图— 考点梳理
续表
1.五种尺规作图
作图内容
作图步骤

过直线l (1)在直线另一侧取点M,连接PM;
OA等于已知 (2)在射线OP上截取OA=①
a
线段a
_____,OA即为所求线段
图形示例
第27讲
尺规作图— 考点梳理
返回思维导图
续表
1.五种尺规作图
作图内容
返回栏目导航
作图步骤
作∠A'O'B' (1)在∠α上以O为圆心,以任意长为半径作弧,交∠α的
等于∠α
两边于点P,Q;
O 'A '
(2)作射线②_______;
第27讲
题型
尺规作图— 题型突破
返回题型清单
返回栏目导航
尺规作图
1.(2022·石家庄模拟)已知,在△ABC中,AB=AC,根据以下各图所保留的
作图痕迹,一定能使点O到△ABC三边距离相等的是( D )
1
2
3
4
5
第27讲
尺规作图— 题型突破
返回题型清单
返回栏目导航
2.(2022·邯郸一模)如图,已知△ABC,用尺规按照下面步骤操作:
图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;

中考数学复习第七章图形与变换第26讲尺规作图

中考数学复习第七章图形与变换第26讲尺规作图

步骤
(1)以点 O 为圆心,任意长为半径作弧,交直线于
作直 过直线上 A,B 两点;
线l 的垂
一点 O 作 直线 l 的
(2)分别以点 A,B 为圆心,以大于12AB 的长为半径
线 垂线 MN 向直线两侧作弧,两弧分别交于点 M,N,作直线
MN,则直线 MN 即为所求垂线
(1)在直线异于点 P 的一侧取点 M;
第一部分 教材同步复习
17
【解答】 (1)如下图;(画法有多种,正确画出一种即可,以下几种画法仅供参
考)
四边形 ABCH 即为所求
四边形 ABDH 即为所求
四边形 ABHJ 即为所求
四边形 ABFH 即为所求
第一部分 教材同步复习
18
(2)如下图.(画法有两种,正确画出其中一种即可)四边形ANDF和四边形ACNF 均为所画的菱形.
∠α 的两边于点 P,Q;
(2)作射线 O′A′;
作一个角∠
(3)以 O′为圆心,OP 长为半径作弧,交 O′A′于
A′O′B′等
于∠α
点 M; (4)以点 M 为圆心,PQ 长为半径作弧交前弧于点 N;
(5)过点 N 作射线 O′B′,∠A′O′B′即为所求

图示
第一部分 教材同步复习
9
五种尺规作图
第一部分 教材同步复习
5
(4)如图,以AB为直径的⊙O交△ABC的BC,AC边于D,E两点, 在图中仅以没有刻度的直尺画出三角形的三条高.(简单叙述你的画 法)
解 : 如 图 , 连 接 AD , BE 交 于 点 G , 连 接 CG 并 延 长 交 AB 于 F.AD,BE,CF即为△ABC的高.
第一部分 教材同步复习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图示
适用情形 ①在已知角的内 部作到角两边距 离相等的点;② 作一个角的折痕 ,使得折叠后角 两边可重叠;③ 作三角形内切圆 圆心
类型
步骤
作线段的 垂直平分 线(已知线 段AB)
①分别以点A、B为圆心,大 于 A1B长为半径,在AB两
2 侧作弧,分别交于点M、N

②过点M、N作直线交AB于
点O,直线MN即为所求垂直
第4题图
第4题解图
类型四 作角的平分线(2017.7)
5. (2015陕西副题17题5分)如图,请用尺规在△ABC的边BC上找一点D,使得点D到 边AB、AC的距离相等.(保留作图痕迹,不写作法)
第5题图
第5题解图
6. (2017陕西17题5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点 D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保 留作图痕迹,不写作法)
为半径向直线两侧作弧,两弧分别交
(已知 线l上
于点M、N;
点P和
③过点M、N作直线,直线MN即为所
直线l)
求垂线
图示
适用情形
①已知底边上的 高线及腰长作等 腰三角形; ②已知半径长及 直线上一点,作 与直线相切的圆
续表
类型
步骤
①任意取一点M,使点M和点P在直
过一
线l的两侧;

点作已 ②以点P为圆心,PM长为半径作弧
为所求角
图示
适用情形
②过三角形边上 一点,作一条直 线使得其所分得 三角形与原三角 形相似
类型
步骤
①以点O为圆心,适当长为半径作 弧,分别交OA、OB于点N、M; 作已知角的 ②分别以点M、N为圆心,大于 平分线(已 1 MN长为半径作弧,两弧在 2 知∠AOB) ∠AOB的内部相交于点P; ③作射线OP,OP即为所求角平分 线
典例“串”考点
例 在△ABC中,AB>AC,请用尺规按要求作图.(保留作图痕迹,不写作法).
(1)请用尺规作图法求作BC上的高线.
例题图①
例题解图①
(2)请用尺规作图法在平面内求作一点P,使得四边形ABPC为平行四边形.
例题图②
例题解图②
பைடு நூலகம்
(3)请用尺规作图法在AB上求作一点Q,使得△CAQ∽△BAC.
第6题图
第6题解图
类型五 过直线外一点作已知直线的垂线(5年2考)
7. (2018陕西17题5分)如图,已知:在正方形ABCD中,M是BC边上一定点,连接 AM.请用尺规作图法,在AM上求作一点P,使△DPA∽△ABM.(不写作法,保留 作图痕迹)
第7题图
第7题解图①
第7题解图②
8. (2016陕西17题5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条 直线,使其将△ABC分成两个相似的三角形.(保留作图痕迹,不写作法)
图示
适用情形 ①已知三边作三 角形; ②作圆的六等分 点 ①作已知角一边 的平行线(即作 已知角的同位角 或内错角);
类型
步骤
作一个角等 于已知角(已 知∠α)
③以点O′为圆心,OP长为半径 作弧,交O′A于点M; ④以点M为圆心,PQ长为半径 作弧,交步骤③中的弧于点N;
⑤过点N作射线O′B,∠AO′B即
平分线
图示
适用情形 ①过三角形顶点作一条 直线平分三角形面积; ②作到已知两点距离相 等的点; ③已知底边及腰长,作 等腰三角形; ④作三角形外接圆圆心
续表
类型
步骤
①以点P为圆心,适当长为半径向点P
过一
两侧的直线上作弧,分别交直线l于点
点作已
A、B;
知直线 点P 的垂线 在直
②分别以点A、B为圆心,大于 12AB长
第2题图
第2题解图
类型二 作一个角等于已知角
3. (2016陕西副题17题5分)如图,已知锐角△ABC,点D是AB边上的一定点,请用 尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可, 保留作图痕迹,不写作法)
第3题图
第3题解图
类型三 作一条线段等于已知线段
4. (2018陕西副题17题5分)如图,已知正方形ABCD,请用尺规作图法,在边BC上 求作一点P,使∠PAB=30°.(保留作图痕迹,不写作法)
P
知直线 ,交直线l于点A、B;
的垂线

③分别以点A、B为圆心,大于
1 AB

2
(已知
长为半径作弧,交于点M同侧的点N
线l
点P和


直线l)
④过点P、N作直线,直线PN即为所
求垂线
图示
适用情形
①过直线外一点作与直 线相切的圆; ②过直角三角形顶点作 垂线,使得到的两个三 角形相似; ③已知直线外同侧两点A 、B,在直线上找一点P ,使得PA+PB最小
1. (2015陕西17题5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将 △ABC分成面积相等的两部分.(保留作图痕迹,不写作法)
第1题图
第1题解图
2. (2019陕西17题5分)如图,在△ABC中,AB=AC,AD是BC边上的高,请用尺 规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)
第27课时 尺规作图
考点 1 尺规作图
类型
步骤
作一条线段 ①作射线OP;
等于已知线 ②以点O为圆心,线段a的长为
段(已知线段 半径作弧,交射线OP于A,OA
a)
即为所求线段
作一个角等 于已知角(已 知∠α)
①在∠α上以点O为圆心,适当 长为半径作弧,分别交∠α的两 边于点P、Q; ②作射线O′A;
例题图③
例题解图③
(4)请用尺规作图法在AB上求作一点M,使得AM+CM=AB.
例题图④
例题解图④
(5)若AD⊥BC于点D,请用尺规作图法在线段AD上求作一点O,使得以点O为圆 心的圆与AB、BC相切.
例题图⑤
例题解图⑤
陕西5年真题、副题“明”考法
命题点 1 尺规作图(必考,均需要转化为基本尺规作图) 类型一 作线段的垂直平分线(5年2考)
第8题图
第8题解图①
第8题解图②
第8题解图③
9. (2019陕西副题17题5分)如图,已知∠AOB,点M在边OA上.请用尺规作图法求 作⊙M,使⊙M与边OB相切.(保留作图痕迹,不写作法)
第9题图
第9题图
相关文档
最新文档