2020年中考数学总复习必备基础知识全套复习学案(全册完整版)

合集下载

初中数学中考总复习教案

初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。

6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。

第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。

7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。

2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)

2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)

范文2020年中考数学总复习初中数学全套基础知识复1/ 6习讲义(精心整理)2020 年中考数学总复习初中数学全套基础知识复习讲义(精心整理)第 1 课时实数的有关概念【知识梳理】 1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数. 2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6. 科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7. 大小比较:正数大于 0,负数小于 0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9. 平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a 那么这个数x 就叫做 a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互—◇◇ 1 ◇◇—为相反数;0 只有一个平方根,它是 0 本身;负数没有平方根. 10. 开平方:求一个数 a 的平方根的运算,叫做开平方. 11. 算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根,0 的算术平方根是 0. 12. 立方根:一般地,如果一个数 x 的立方等于 a,即 x3=a,那么这个数 x 就叫做 a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0 的立方根是 0. 13. 开立方:求一个数 a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例 1.下列运算正确的是() A. 3 3 B. (1)1 3 C. 9 3 3 例 2. 2 的相反数是() D. 3 27 3 A. 2 B. 2 C. 2 2 D. 2 2 例 3.2 的平方根是() A.4 B. 2 C. 2 D. 2 例 4.《广东省 2009 年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示正确的是()A. 7.261010 元 C. 0.7261011 元 B. 72.6109 元 D. 7.261011 元—◇◇ 2 ◇◇—3/ 6例 5.实数 a,b 在数轴上对应点的位置如图所示,则必有() b 1 0 a 1 0 例5图 A. a b 0 B. a b 0 C. ab 0 例 6.(改编题)有一个运算程序,可以使: D.a 0 b a ⊕ b = n ( n 为常数)时,得( a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】 1.计算1 2 3 的结果是() A. 1 6 B. 1 6 C. 1 8 2. 2 的倒数是() A. 1 2 B. 1 2 C. 2 3.下列各式中,正确的是() D. 1 8 D. 2 A. 2 15 3 B. 3 15 4 C. 4 15 5 D.14 15 16 4.已知实数 a 在数轴上的位置如图所示,则化简 |1 a | a2 的结果为() A.1 B. 1 C.1 2a a 1 0 1 D. 2a1 第 4 题图 5.2 的相反数是( A. 2 B. 2 ) C. 1 2 D. 12 —◇◇3 ◇◇—6.-5 的相反数是____,- 1 的绝对值是____, 42 =_____. 27.写出一个有理数和一个无理数,使它们都是小于-1 的数 .8.如果( 2) 1,则“ ”内应填的实数是() 3 A. 3 2 B. 2 3 C. 2 3 D. 3 2 第 2 课时实数的运算【知识梳理】 1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数. 3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与 0 相乘,积仍为 0. 4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0 除以任何非 0 的数都得 0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a、b 为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数) —◇◇ 4 ◇◇—5/ 6【思想方法】数形结合,分类讨论【例题精讲】例 1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午 4 点至 5 点,初二年级 240 名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的 3 倍,参加音乐活动人数是参加美术活动人数的 2 倍,那么参加美术活动的同学其有____________名. 例 2.下表是 5 个城市的国际标准时间(单位:时)。

2020中考数学复习全套教案(知识梳理+经典例题+专项训练+解析)(全34套)

2020中考数学复习全套教案(知识梳理+经典例题+专项训练+解析)(全34套)

2020中考数学复习全套教案(知识梳理+经典例题+专项训练+解析)(全34套)专题01有理数的运算专题知识回顾1.有理数:整数和分数统称有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧<-≥=)0a (a )0a (a a 4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1⇔ a a 1a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.6.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).7.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).8.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.9.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .10.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.无意义即0a 11.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .12.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;13.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.14.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.15.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.16.混合运算法则:先乘方,后乘除,最后加减.【例题1】(2019•江苏苏州)5的相反数是( )A .B .C .D .1515-55-【答案】D【解析】考察相反数的定义,简单题型.5的相反是为。

2020年中考数学一轮综合复习同步讲义全套精品版

2020年中考数学一轮综合复习同步讲义全套精品版

1、 2
C. 0
、 1 、2
a ,则和这个自然数相邻的下一个自然数是(
A. a 1
B. a 2 1
C. a2 1
14. 有一个数值转换器,原理如下:
D.1
、2

D. a 1
当输入的 x=64 时,输出的 y 等于(
A.2
B.8

C.
32
D.
22
15. 把下列各数以最快的速度写成科学记数法的形式。
① 12 000 000=
4.( - 2) 2 的算术平方根是 (
× 106 L )
C.3.2
× 105 L
D.3.2
× 104 L
A. 2
B.
±2
C.
5. “ 4 的平方根是 25
2 ”可用数学式子表示为( 5
A. 4
2
B.
25 5
42
C.
25 5
-2
D.

42
D.
25 5
2
4
2
25 5
6. 9 的平方根是(
) A.3
B. ± 3
C. 把数 50430 保留 2 个有效数字得 5. 0× 104.
D. 用四舍五入得到的近似数 8.1780 精确到 0. 001
11. 全世界人民踊跃为四川汶川灾区人民捐款,到
6 月 3 日止各地共捐款约
表示捐款数约为 __________元.(保留两个有效数字)
423.64 亿元,用科学记数法
B.1
+3
C.2
+3
D.2
精选文档
3+ 1
精选文档
9. 如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交

沪科版2020年九年级数学中考复习学案 第一单元 数与式

沪科版2020年九年级数学中考复习学案   第一单元    数与式

1沪科版2020中考九年级数学复习学案第一单元 数与式(含答案)一、涵盖章节第一章 有理数 第二章 整式 第六章 实数 第八章 整式乘法与因式分解 第九章 分式 第十六章 二次根式 第二十三章 解直角三角形(特殊角三角函数值) 二、涵盖内容1、正数与负数、相反数、绝对值、倒数的概念(1)正数与负数:负数是在正数前面加一个“-”号;0既不是正数也不是负数。

数轴上0右为正,0左为负。

(2)相反数:只有符号不同的两个数;0的相反数是0;数a 的相反数是a ,这里a 可以是正数、负数或0. (3)绝对值:在数轴上,一个数的绝对值表示这个数到原点的距离;一个正数绝对值是它本身;一个负数绝对值是它的相反数;0的相反数是0。

{0)(0)(a a a a a ≥-=<(4)倒数:两个数的乘积为1,这两个数互为倒数(正数的倒数仍是正数;负数的倒数是负数;0没有倒数)。

2、有理数大小比较:(1)正数大于0,0大于负数,正数大于负数; (2)两个负数比较大小,绝对值大的反而小 3、有理数运算:(1)加法法则; (2)减法法则; (3)乘法法则; (4)除法法则;4、科学记数法与近似数:±a ×10n; 其中1≤a <10;n 等于原数的整数位数减去1.(万是4次方,亿8次方) 5、代数式(1)用加、减、乘、除及乘法运算符号把数或表示数的字母用连接起来的式子;“×”可以写成“·”或“不写”;数字与字母,数字在前;同字母相乘写成幂的形式;数字与数字相乘,“×”不能省略;除法写成分数。

(2)整式(分母不含字母)包含单项式与多项式;单项式的系数与次数;多项式的项与次数。

(3)同类项:字母相同,且字母指数相同;整式的加减实质就是合并同类项。

6、平方根、算术平方根、立方根的概念与计算(1)一个正数的平方根有两个,它们互为相反数;平方根是平方的逆运算。

(2)0的平方根是0,即:0=±;0的算术平方根是00=;负数没有平方根(3)正数的立方根是正数;负数的立方根是负数;0的立方根是0;立方根是立方的逆运算。

备考2020中考数学一轮专题复习学案:专题13一次函数的图象与性质(含答案)

备考2020中考数学一轮专题复习学案:专题13一次函数的图象与性质(含答案)

备考2020中考数学一轮专题复习学案专题13 一次函数的图像与性质考试说明:1.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式.2.会画一次函数的图象,能结合图象讨论这些函数的增减变化.3.理解正比例函数概念、图象、性质.4.通过讨论一次函数与二元一次方程组的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.思维导图:知识点一:一次函数的概念知识梳理:【命题点一】一次函数的定义【典例1】函数y=(2m–1)x3m–2+3是一次函数,则m的值为_________.【答案】1【解析】∵函数y=(2m–1)x3m–2+3是一次函数,∴3m–2=1,2m–1≠0.∴m=1.故答案为1.【变式训练】1.(2019•梧州)下列函数中,正比例函数是()A.y=﹣8x B.y=8xC.y=8x2D.y=8x﹣42.要使函数y=(m–2)x n–1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=0知识点二:一次函数的图像知识梳理:正比例函数y=kx(常数k≠0)的图象一条经过原点与点(1,k)的直线.一次函数y=kx+b(k,b 是常数,k≠0)的图象一条与y轴交于点(0,b),与x轴交于点(–bk,0)的直线.其中b叫做直线在y 轴上的截距,截距不是距离,是直线与y 轴交点的纵坐标,截距可正,可负,也可为0.【技巧】画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(–bk,0)两点.一次函数图象的平移直线y=kx+b(k≠0,b≠0)可由直线y=kx(k≠0)向上或向下平移得到.当b>0时,将直线y=kx向上平移b个单位长度,得到直线y=kx+b;当b<0时,将直线y=kx向上平移|b|个单位长度,得到直线y=kx+b.【命题点二】一次函数的图象【典例2】函数y=2x–2的图象大致是()A.B.C.D.【答案】C【解析】∵函数y=2x–2,∴函数y=2x–2经过点(1,0),(0,–2).故选C.【变式训练】1.(2019•包头)正比例函数y=kx的图象如图所示,则k的值为()A.–43B.43C.–34D.342.若b<0,则一次函数y=–x+b的图象大致是()A.B.C.D.【命题点三】一次函数图象上点的坐标【典例3】【2019•锦州】如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.14B.12C.2 D.4【答案】A【解析】∵在一次函数y=2x+1中,当x=0时,y=1,当y=0时,x=0.5,∴OA=0.5,OB=1.∴△AOB的面积=0.5×1÷2=14.故选A.【点拨】由一次函数的解析式分别求出点A和点B的坐标,即可作答.【考试方向】主要考查一次函数与坐标轴交点坐标以及三角形的面积公式.【变式训练】3.(2019•陕西)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.24.(2019•天津)直线y=2x﹣1与x轴的交点坐标为_________.【命题点四】直线的平移【典例4】【2019•梧州】直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣1【答案】D【解析】直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1﹣2=3x﹣1.故选D.【点拨】直接利用一次函数平移规律进而得出答案.【考试方向】主要考查一次函数图象与几何变换,正确记忆平移规律是解题关键.【变式训练】5.(2019•陕西)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)6.(2019•邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2知识点三:一次函数图像的性质知识梳理:函数k,b的值大致图象经过的象限函数的性质【命题点五】正比例函数图象的性质【典例5】【2019•大庆】正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】A【解析】∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,且与y轴的负半轴相交.故选A.【点拨】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【考试方向】主要考查一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).【变式训练】1.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.–2 C.4 D.–42.(2019•本溪)函数y=5x的图象经过的象限是_________.【命题点六】一次函数图象的性质【典例6】【2019•潍坊】当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是_________.【答案】1<k<3【解析】y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0.∴k>1,k<3.∴1<k<3.故答案为1<k<3.【点拨】根据一次函数y=kx+b,k<0,b<0时图象经过第二、三、四象限,可得2﹣2k<0,k﹣3<0,即可求解.【考试方向】本题考查一次函数图象与系数的关系;掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.【变式训练】3.(2019•广安)一次函数y =2x ﹣3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四4.(2019•成都)已知一次函数y =(k ﹣3)x +1的图象经过第一、二、四象限,则k 的取值范围是_________. 知识点四: 一次函数与方程、不等式知识梳理:【命题点七】一次函数与二元一次方程组【典例7】【2019•贵阳】在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1,y −k 2x =b 2的解是_________.【答案】{x =2,y =1【解析】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组{y −k 1x =b 1,y −k 2x =b 2的解是{x =2,y =1.故答案为{x =2,y =1. 【变式训练】1.已知直线l 1:y =–3x +b 与直线l 2:y =–kx +m 在同一坐标系中的图象交于点(1,–2),那么方程组{3x +y =b ,kx +y =m的解是( ) A .{x =1,y =−2B .{x =1,y =2C .{x =−1,y =−2D .{x =−1,y =22.若以二元一次方程x +2y –b =0的解为坐标的点(x ,y )都在直线y =–12x +b –1上,则常数b =( ) A .12 B .2 C .–1 D .1【命题点八】一次函数与一元一次不等式【典例8】【2019•遵义】如图所示,直线l 1:y =32x +6与直线l 2:y =–52x +–2交于点P (–2,3),不等式32x +6>–52x +–2的解集是( )A .x >–2B .x ≥–2C .x <–2D .x ≤–2【答案】A【解析】由图象可知,当x >–2时, 32x +6>–52x +–2.∴不等式32x +6>–52x +–2的解集是x >–2.故选A . 【变式训练】3.(2019•黔东南州)如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为_________.4.(2019•烟台)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c的解为_________.参考答案知识点11.【答案】A【解析】A 、y =﹣8x ,是正比例函数,符合题意;B 、y =8x ,是反比例函数,不合题意;C 、y =8x 2,是二次函数,不合题意;D 、y =8x ﹣4,是一次函数,不合题意.故选A .2.【答案】C【解析】∵函数y =(m –2)x n –1+n 是一次函数,∴m –2≠0,n –1=1.∴m ≠2,n =2.故选C . 知识点21.【答案】B【解析】由图知,点(3,4)在函数y =kx 上,∴3k =4,解得k =43.故选B .2.【答案】C【解析】∵一次函数y =–x +b 中,k =–1<0,b <0,∴一次函数的图象经过二、三、四象限.故选C .3.【答案】A【解析】∵正比例函数y =﹣2x 的图象经过点O (a ﹣1,4),∴4=﹣2(a ﹣1),解得:a =﹣1.故选A .4.【答案】(12,0)【解析】根据题意知,当直线y =2x ﹣1与x 轴相交时,y =0.∴2x ﹣1=0,解得x =12. ∴直线y =2x +1与x 轴的交点坐标是(12,0).故答案为(12,0). 5.【答案】B【解析】由“上加下减”的原则可知,将函数y =3x 的图象向上平移6个单位长度所得函数的解析式为y =3x +6.∵此时与x 轴相交,则y =0,∴3x +6=0,即x =﹣2,∴点坐标为(﹣2,0),故选B .6.【答案】B【解析】∵将直线l 1向下平移若干个单位后得直线l 2,∴直线l 1∥直线l 2,∴k 1=k 2,∵直线l 1向下平移若干个单位后得直线l 2,∴b 1>b 2,∴当x =5时,y 1>y 2,故选B .知识点31.【答案】B【解析】把x =m ,y=4代入y =mx 中,可得m =±2.∵y 的值随x 值的增大而减小,∴m =–2.故选B .2.【答案】一、三【解析】函数y =5x 的图象经过第一、三象限.故答案为:一、三.3.【答案】C【解析】∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限.故选C.4.【答案】k<3【解析】y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3.故答案为k<3.知识点41.【答案】A【解析】∵直线l1:y=–3x+b与直线l2:y=–kx+m在同一坐标系中的图象交于点(1,–2),∴方程组{3x+y=b,kx+y=m的解是{x=1,y=−2.故选A.2.【答案】B【解析】∵以二元一次方程x+2y–b=0的解为坐标的点(x,y)都在直线y=–12x+b–1上,直线解析式乘以2得2y=–x+2b–2,变形为2y+x–2b+2=0,∴–b=–2b+2,解得b=2.故选B.3.【答案】x<4【解析】∵一次函数y=ax+b(a、b为常数,且a>0)的图象如图所示,经过点A(4,1),且函数值y 随x的增大而增大,∴不等式ax+b<1的解集为x<4.故答案为x<4.4.【答案】x≤1【解析】点P(m,3)代入y=x+2,得m=1,∴P(1,3).结合图象可知x+2≤ax+c的解为x≤1.故答案为x≤1.。

2020年中考数学复习全套课件

2020年中考数学复习全套课件

子,B叫做分母.
2.分式有意义:在分式中,当 分母B≠0 时,分式有意义;当 分母B=0 时,分式没有意 义.
3.分式的值为零:分式的值为零的条件是分子A=0,而分母B≠0.
4.有理式:整式和分式统称为有理式.
知识点2:分式的性质(约分、通分)
知识点3:分式的运算
1.分式的乘、除法:
———— 2.分式的乘方:
类项.
知识点3: 整式的运算
1.整式的加减:整式的加减实际上是 合并同类项 .
2.整式的乘除 平方差公式:
=_________
3.乘法公式
完全平方公式:
___________
知识点4:幂的运算
1.am·an= am+n (m,n都是正整数). 2.(ab)n= anbn (n是正整数). 3.(am)n= amn (m,n都是正整数).
1.实数的运算顺序是先算乘方 、开方
,再算乘除 ,最后算
加减 .如果有括号,先算小括号内的 ,再算中括号内的 ,最后算大括号内的 .
按从左到右的同顺级序运算应
.
2.零1 指数幂的意义:a0=
(a≠0).
3.负整数指数幂的意义:a-p= (a≠0,p为整数). 4.正数的任何次幂都为正数 ,负数的奇次幂为负数 ,负数的偶次幂为正数 .
数学思想方法 规律探索题 动手操作与方案设计 实际应用型问题 图形运动型问题 代数几何综合题
数学
第一篇 知识系统复习 第一章 数与式
• 第一节 实数的有关概念和运算
• 第二节 整式与因式分解
• 第三节 分式
• 第四节 数的开方 二次根式
• 重难点突破一
2020/3/14
数、式的综合计算题

2020中考数学第一轮复习教案(实数、整式、分式、根式)

2020中考数学第一轮复习教案(实数、整式、分式、根式)

第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数有限小数或无限循环数2、按实数的正负分类:实数考点一:无理数的识别。

A .πB .5C .0D .-1对应训练、下列各数中,3.14159,,0.131131113…,-π,17-,无理数的个数有( ) A .1个 B .2个C .3个D .4个考点二、实数的有关概念。

例2、如果+30m 表示向东走30m ,那么向西走40m 表示为( ) A .+40mB .-40mC .+30mD .-30m例3、( 2018•资阳)16的平方根是( )⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨⎧ ⎩ ⎨ ⎧⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数负分数 零 正整数 整数 有理数 无限不循环小数⎧⎨⎩⎧⎨⎩正数正无理数零负有理数负数A.4B.±4C.8D.±8例4、(2018•铁岭)-2的绝对值是()A.2B.-2C.22D.-222.(2018•盐城)如果收入50元,记作+50元,那么支出30元记作()A.+30 B.-30 C.+80 D.-80 3.(2018•珠海)实数4的算术平方根是()A.-2 B.2 C.±2 D.±4 4.(2018•绵阳)2的相反数是()A.2B.22C.-2D.-225.(2018•南京)-3的相反数是;-3的倒数是。

6.(2018•湘西州)-2013的绝对值是.7.(2018•宁波)实数-8的立方根是.考点三:实数与数轴。

例5 (2018•广州)实数a在数轴上的位置如图所示,则|a-2.5|=()A.a-2.5B.2.5-a C.a+2.5D.-a-2.5对应训练8.(2018•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b|C.-a<b D.a+b<0考点四:科学记数法。

2020春人教版九年级数学下册:全册中考知识点梳理(共27讲)

2020春人教版九年级数学下册:全册中考知识点梳理(共27讲)

第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解一、知识清单梳理第3讲分式二、知识清单梳理第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组) 四、知识清单梳理第6讲一元二次方程五、知识清单梳理第7讲分式方程六、知识清单梳理第8讲一元一次不等式(组)七、知识清单梳理知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲平面直角坐标系与函数八、知识清单梳理知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x 轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O九、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0 (1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;一次函数本身并没有最值,但在实际问题中,自变量的取值y=k2x+b y=k1x+b(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质十、知识清单梳理知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE >S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质十一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7 .开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-. x=2ba-,y最大=244ac ba-.3.系数a、a决定抛物线的开口方当a>0时,抛物线开口向上;某些特殊形式代数式的符号:第13讲二次函数的应用十二、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线十三、知识清单梳理第15讲一般三角形及其性质十四、知识清单梳理知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角. 7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示 如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形十五、 知识清单梳理知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.21P COBAPCO BADABC abcDABC abc第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例1. 比例 线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a cb d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理 (1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OB OD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAEDCBAFEDC BAFE DC B AFE DC B A6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形十七、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;。

2020中考复习教案 (最新修改)

2020中考复习教案 (最新修改)

2020年中考数学复习教案任课老师____________初三数学总复习课时安排一、第一阶段复习内容与课时安排(共50课时)以知识的纵向关系为线索,实现知识的第一覆盖.二、第二阶段复习(约18课时)以知识的横向关系为线索实现知识的第二覆盖,建议专题为:1、选择填空2、归纳猜想3、探索开放4、图表信息5、阅读理解6、操作设计7、实践应用8、几何与代数综合三、第三阶段复习:模拟练考实现知识的第三覆盖。

第一章 数与式 第1讲 实数及其运算1.实数的有关概念(1)数轴:规定了__原点__,__正方向__和__单位长度__的直线叫做数轴,数轴上所有的点与全体__实数__一一对应.(2)相反数:只有__符号__不同,而__绝对值__相同的两个数称为互为相反数.a ,b 互为相反数⇔a +b =__0__.(3)倒数:1除以一个不等于零的实数所得的__商__,叫做这个数的倒数.a ,b 互为倒数⇔ab =__1__. (4)绝对值:在数轴上,一个数对应的点离原点的__距离__,叫做这个数的绝对值.|a |=⎩⎪⎨⎪⎧ a ,(a >0)0 ,(a =0) -a W.(a <0)|a |是一个非负数,即|a |__≥0__. (5)科学记数法概念:科学记数法就是把一个数表示成__±a ×10n __(1≤a <10,n 是整数)的形式.a 值的确定:1≤a <10;n 等于原数的整数位数减1;对于带计数单位的科学记数法,先把计数单位转化为数字表示,再用科学记数法表示.如1亿=1×108,1万=1×104.(6)平方根,算术平方根,立方根:如果x 2=a ,那么x 叫做a 的平方根,记作;正数a 的正的平方根,叫做这个数的算术平方根;如果x 3=a ,那么x 叫做a 的立方根,记作2.实数的分类按实数的定义分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎨⎧ ⎭⎪⎬⎪⎫正整数零自然数负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数根据需要,我们也可以按符号进行分类,如:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数正无理数零负实数⎩⎪⎨⎪⎧负有理数⎩⎪⎨⎪⎧负整数负分数负无理数3.零指数幂,负整数指数幂任何非零数的零次幂都等于1,即__a 0=1(a ≠0)__;任何不等于零的数的-p 次幂,等于这个数p次幂的倒数,即__a -p =1ap (a ≠0,p 为正整数)__.4.实数的大小比较(1)数轴比较法:数轴上的两个数__右__边的数总比__左__边的数大.(2)符号比较法:正数>0>负数;两个正数,绝对值大的较__大__;两个负数,绝对值大的较__小__.(3)平方比较法:a >b >0⇔a >b .(4)差值法比较:(1)a -b >0⇔a >b ;(2)a -b <0⇔a <b ;(3)a -b =0⇔a =b . 5.实数的运算实数的运算顺序是先算__乘方和开方__,再算__乘除__,最后算__加减__,如果有括号,先算__小括号__,再算__中括号__,最后算__大括号__,同级运算应__从左到右依次进行__.数形结合思想数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思想策略.“数无形,少直观;形无数,难入微.”数形结合思想可以使问题化难为易、化繁为简.分类讨论思想分类讨论思想是“化整为零,各个击破,再积零为整”的数学策略,分类注意按一定的标准进行;分类既不能遗漏,也不能交叉重复.化归思想化归也称转化,是指将未知的、陌生的、复杂的问题通过演绎归纳转化为已知的、熟悉的、简单的问题,从而使问题顺利解决的数学思想,关键是确定合理、可行的转化目标,掌握基本的方法步骤.五种大小比较方法实数的大小比较常用以下五种方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大.(2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小. (3)差值比较法:设a ,b 是两个任意实数,则:a -b >0⇒a >b ;a -b =0⇒a =b ;a -b <0⇒a <b .(4)倒数比较法:若1a >1b,a >0,b >0,则a <b .(5)平方比较法:∵由a >b >0,可得a >b ,∴可以把a 与b 的大小问题转化成比较a 和b 的大小问题.1.(2018·陕西)﹣的倒数是( ) A .B .C .D .2.(2017·陕西)计算:21()12--=( )A .54-B .14-C .34- D .03.(2014·陕西)4的算术平方根是( B ) A .-2 B .2 C .±2 D .16 4.(2013·陕西)下列四个数中最小的数是( A )A .-2B .0C .-13D .55.(2012·陕西)如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作( A ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃6.(2014·陕西)计算:(-13)-2=__9__.7.(2014·陕西)用科学计算器计算:31+3tan 56°≈__10.02__.(结果精确到0.01) 8.(2013·陕西)计算:(-2)3+(3-1)0=__-7__. 9.(2013·陕西)比较大小:8cos 31°__>__35.(填“>”“=”“<”) 10.(2018·陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0实数的分类【例1】 (2013·湖州)实数π,15,0,-1中,无理数是( A )A .πB .15C .0D .-1【点评】 判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:(1)化简后含π(圆周率)的式子;(2)含根号且开不尽方的数;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.1.(1)(2013·安顺)下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数有( B )A .1个B .2个C .3个D .4个 (2)(2012·河北)下列各数中,为负数的是( B )A .0B .-2C .1D .12实数的运算【例2】 (2014·重庆)计算:4+(-3)2-20140×|-4|+(16)-1.解:原式=2+9-1×4+6=11-4+6=13【点评】 实数运算要严格按照法则进行,特别是混合运算,注意符号和顺序是非常重要的.科学记数法【例3】 (2014·资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( A )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克【点评】 (1)科学记数法一般表示的数较大或很小,所以解题时一定要仔细;(2)科学记数法写出这个数后可还原成原数进行检验.3.(2014·内江)一种微粒的半径是0.00004米,这个数据用科学记数法表示为( C )A .4×106B .4×10-6C .4×10-5 D .4×105与实数相关的概念【例4】 (2014·河北)-2是2的( B )A .倒数B .相反数C .绝对值D .平方根 【点评】 (1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)两个非负数的和为0,则这两个数分别等于0.4.(2012·凉山)若x 是2的相反数,|y|=3,则x -y 的值是( D ) A .-5 B .1 C .-1或5 D .1或-5数轴【例5】 (2014·呼和浩特)实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是( D )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c5.(2014·宁夏)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( D )A .a +b =0B .b <aC.ab>0 D.|b|<|a|实数的大小比较【例6】(1)(2014·绍兴)比较-3,1,-2的大小,下列判断正确的是( A )A.-3<-2<1 B.-2<-3<1C.1<-2<-3 D.1<-3<-2(2)(2014·河北)a,b是两个连续整数,若a<7<b,则a,b分别是( A )A.2,3 B.3,2 C.3,4 D.6,8【点评】实数的大小比较要依据数值特点来灵活运用比较大小的几种方法来进行.6.(1)(2014·珠海)比较大小:-2__>__-3.(2)比较2.5,-3,7的大小,正确的是( A )A.-3<2.5<7 B.2.5<-3<7C.-3<7<2.5 D.7<2.5<-3教学反思:第2讲整式及其运算本节考查的知识点有整式的运算,在2012年的选择题中考查积的乘方,解决此类题,必须牢固掌握幂的运算的方法.由上表可知,我省近三年的中考试题中有关整式及其运算的考查明显有所淡化,由于其是中考需要掌握的知识,因此在2019年可能会考查到其相关知识,因此在复习中也不容忽视.1.代数式及求值(1)概念:用__基本运算符号(加、减、乘、除、乘方、开方等)__把数或表示数的__字母__连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示数的字母将它数学化的过程;(3)代数式的值:用__具体数__代替代数式中的字母,按运算顺序计算出的结果叫代数式的值;(4)代数式求值的步骤:(1)代入数值(注意利用整体代入思想,简化运算);(2)计算.2.单项式:由__数与字母__或__字母与字母__相乘组成的代数式叫做单项式,所有字母指数的和叫做__单项式的次数__,数字因数叫做__单项式的系数__.单独的数、字母也是单项式.3.多项式:由几个__单项式相加__组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个__多项式的次数__,其中不含字母的项叫做__常数项__.4.整式:__单项式和多项式__统称为整式.5.同类项:多项式中所含__字母__相同并且__相同字母的指数__也相同的项,叫做同类项;所有的常数项都是同类项.6.幂的运算法则(1)同底数幂相乘:__a m·a n=a m+n(m,n都是整数,a≠0)__;(2)幂的乘方:__(a m)n=a mn(m,n都是整数,a≠0)__;(3)积的乘方:__(ab)n=a n·b n(n是整数,a≠0,b≠0)__;(4)同底数幂相除:__a m÷a n=a m-n(m,n都是整数,a≠0)__.7.整式加减整式加减的实质是合并同类项.把多项式中同类项的系数相加,合并为一项,叫做合并同类项,其法则是:几个同类项相加,把它们的系数相加,所得的结果作为系数,字母和字母的__指数__都不变.8.整式乘法单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式.单项式乘多项式:m(a+b)=__ma+mb__;多项式乘多项式:(a +b)(c +d)=__ac +ad +bc +bd__. 9.乘法公式(1)平方差公式:__(a +b)(a -b)=a 2-b 2__; (2)完全平方公式:__(a±b)2=a 2±2ab +b 2__. 10.整式除法单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.一座“桥梁”用字母表示数是从算术过渡到代数的桥梁,是后续学习的基础,用字母表示数能够简明地表示出事物的规律及本质特征.只有借助字母,才能把一些数量规律及数量更简洁、准确地表示出来.用字母表示数:(1)注意字母的确定性;(2)注意字母的任意性;(3)注意字母的限制性.二种思维方法法则公式既可正向运用,也可逆向运用.逆向运用和灵活变式运用既可简化计算,又能进行较复杂的代数式的大小比较.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.三种数学思想(1)观察、比较、归纳、猜想的数学思想 观察才能获取大量信息,成为智慧的源泉,比较才能发现信息的异同;通过归纳使共同点浮出水面,总结归纳的结果获得猜想、有所发现,这就是归纳的思想,也是数学发现的重要方法.(2)整体思想在进行整式运算或求代数式值时,若将注意力和着眼点放在问题的整体结构上,把一些紧密联系的代数式作为一个整体来处理.借助“整体思想”,可以拓宽解题思路,收到事半功倍之效.整体思想最典型的是应用于乘法公式中,公式中的字母a 和b 不仅可以表示单项式,也可以表示多项式,如(x -2y +z)(x +2y -z)=[x -(2y -z)][x +(2y -z)]=x 2-(2y -z)2=x 2-4y 2+4yz -z 2.(3)数形结合思想在列代数式时,常常能遇到另外一种类型的题:给你提供一定的图形,通过对图形的观察探索,搜集图形透露的信息,并根据相关的知识去列出相应的代数式,也能用图形验证整式的乘法和乘法公式.(2018·陕西)下列计算正确的是( ) A .a 2•a 2=2a 4B .(﹣a 2)3=﹣a 6C .3a 2﹣6a 2=3a 2D .(a ﹣2)2=a 2﹣4(2012·陕西)计算(-5a 3)2的结果是( D )A .-10a 5B .10a 6C .-25a 5D .25a 6同类项的概念及合并同类项【例1】 若-4x a y +x 2y b =-3x 2y ,则a +b =__3__.【点评】 (1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.1.(1)(2012·毕节)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)2010的值为( C )A .2010B .-2010C .1D .-1 (2)(2014·济宁)化简-5ab +4ab 的结果是( D ) A .-1 B .a C .b D .-ab整式的混合运算及求值【例2】 (2014·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54乘法公式【例3】 (2013·义乌)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.解:(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b) (2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形: ①a 2+b 2=(a +b)2-2ab ; ②a 2+b 2=(a -b)2+2ab ; ③(a +b)2=(a -b)2+4ab ; ④(a -b)2=(a +b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.3.(1)整式A 与m 2-2mn +n 2的和是(m +n)2,则A =__4mn__. (2)(2014·广州)已知多项式A =(x +2)2+(1-x)(2+x)-3. ①化简多项式A ;②若(x +1)2=6,求A 的值.解:①A =(x +2)2+(1-x)(2+x)-3=x 2+4x +4+2-2x +x -x 2-3=3x +3 ②(x +1)2=6,则x +1=±6,∴A =3x +3=3(x +1)=±3 6 教学反思:第3讲 因式分解本节考查的知识点是因式分解,主要是用提公因式法和完全平方公式法来分解,且都稳定在填空题第12题考查,分值为3分,本节知识考查主要以基本技巧、基本计算为主.预计在2019年的陕西中考中,仍会主要考查利用提公因式法和公式法进行因式分解,题型仍会稳定在填空题的第12题来考查,分值为3分.解决此类题,必须牢固掌握分解因式的方法,复习中应引起重视.1.因式分解把一个多项式化成几个__整式__积的形式,叫做因式分解,因式分解与__整式乘法__是互逆运算. 2.基本方法(1)提取公因式法:ma +mb -mc =__m(a +b -c)__.公因式的确定:⎩⎪⎨⎪⎧系数:取各项整数系数的最大公约数字母:取各项相同的字母指数:取各相同字母的最低次数(2)公式法:运用平方差公式:a 2-b 2因式分解整式乘法(a +b)(a -b);运用完全平方公式:a 2±2ab +b 2因式分解整式乘法(a±b)2.3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么必须先提取公因式;(2)如果各项没有公因式,那么尽可能尝试用公式法来分解;(3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;(4)注意因式分解中的范围,如x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内因式分解.分解彻底作为结果的代数式的最后运算必须是乘法;要分解到每个因式都不能再分解为止,每个因式的内部不再有括号,并且同类项合并完毕,若有重因式应写成幂的形式.这些统称分解彻底.思考步骤多项式的因式分解有许多方法,但对于一个具体的多项式,有些方法是根本不适用的.因此,拿到一道题目,先试试这个方法,再试试那个办法.解题时思考过程建议如下:(1)提取公因式;(2)看有几项;(3)分解彻底.在分解出的每个因式化简整理后,把它作为一个新的多项式,再重复以上过程进行思考,试探分解的可能性,直至不可能分解为止.变形技巧当n为奇数时,(a-b)n=-(b-a)n;当n为偶数时,(a-b)n=(b-a)n.1.(2014·陕西)因式分解:m(x-y)+n(x-y)=__(x-y)(m+n)__.2.(2012·陕西)分解因式:x3y-2x2y2+xy3=xy(x-y)2.提取公因式法分解因式【例1】阅读下列文字与例题:将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:a2+2ab+ac+bc+b2=__(a+b)(a+b+c)__.【点评】(1)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(2)当某项正好是公因式时,提取公因式后,该项应为1,不可漏掉;(3)公因式也可以是多项式.1.(1)多项式ax2-4a与多项式x2-4x+4的公因式是__x-2__.(2)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( D )A.m+1B.2m C.2D.m+2(3)分解因式:(x+y)2-3(x+y).解:(x+y)2-3(x+y)=(x+y)(x+y-3)运用公式法分解因式【例2】(1)①(2014·东营)3x2y-27y=__3y(x+3)(x-3)__;②(2014·邵阳)将多项式m2n-2mn+n因式分解的结果是__n(m-1)2__.(2)分解因式:①(2014·黄冈)(2a+1)2-a2=__(3a+1)(a+1)__;②(2014·淄博)8(a2+1)-16a=__8(a-1)2__.2.分解因式:(1)9x2-1;(2)25(x+y)2-9(x-y)2;(3)(2012·临沂)a-6ab+9ab2;(4)(2013·湖州)mx2-my2.解:(1)9x2-1=(3x+1)(3x-1)(2)25(x+y)2-9(x-y)2=[5(x+y)+3(x-y)][5(x+y)-3(x-y)]=(8x+2y)(2x+8y)=4(4x+y)(x+4y)(3)a-6ab+9ab2=a(1-6b+9b2)=a(1-3b)2(4)mx 2-my 2=m(x 2-y 2)=m(x +y)(x -y)综合运用多种方法分解因式【例3】 给出三个多项式:12x 2+x -1,12x 2+3x +1,12x 2-x ,请你选择其中两个进行加法运算,并把结果分解因式.解:(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x(x +4);(12x 2+x -1)+(12x 2-x)=x 2-1=(x +1)(x -1);(12x 2+3x +1)+(12x 2-x)=x 2+2x +1=(x +1)2【点评】 灵活运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.3.(1)(2014·武汉)分解因式:a 3-a =a(a +1)(a -1);(2)(2014·黔东南州)分解因式:x 3-5x 2+6x =__x(x -3)(x -2)__; (3)分解因式:(x +2)(x +4)+x 2-4;解:(x +2)(x +4)+x 2-4=(x +2)(x +4)+(x +2)(x -2)=(x +2)(x +4+x -2)=(x +2)(2x +2)=2(x +2)(x +1)(4)在实数范围内分解因式:m 4-9.解:m 4-9=(m 2+3)(m 2-3)=(m 2+3)(m +3)(m -3)因式分解的应用【例4】 (2014·河北)计算:852-152=( D )A .70B .700C .4900D .7000【点评】 利用因式分解,将多项式分解之后整体代入求值.4.(1)(2014·徐州)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于__-2__.(2)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( C ) A .等腰三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 (3)(2014·北京)已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值.解:原式=x 2-2xy +y 2+1=(x -y)2+1,把x -y =3代入,原式=3+1=4 教学反思:第4讲 分式及分式方程陕西近几年对分式及其运算的考查主要有三种:一是分式化简;二是分式化简求值;三是解分式方程,题型为解答题,且稳定在第17题,分值为5分,一般分式化简题会与分式化简求值题或解分式方程题轮换考查,试题也较为简单,难度不大,切记解分式方程后要验根.由近几年的陕西中考考情分析可得,分式化简、分式化简求值或解分式方程在2019年仍有可能考查,且仍会稳定在第17题,分值为5分,故对本节的知识在复习中应多加练习,做到不失分.1.分式的基本概念(1)形如__AB(A ,B 是整式,且B 中含有字母,B ≠0)__的式子叫分式;(2)当__B ≠0__时,分式A B 有意义;当__B =0__时,分式A B 无意义;当__A =0且B ≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__AB=A ×MB ×M ,A B =A÷MB÷M (M 是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.用式子表示:a b =-a -b =-a -b=--a b ;-a b =a-b =-a b .(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac__.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc__. (4)分式的乘方: (a b )n =__a nb n (n 为正整数)__. 4.最简分式(1)概念:如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式.(2)寻找最简公分母的方法:①取各分式的分母中系数的最小公倍数;②各分式的分母中所有字母或因式都要取到;③相同字母(或因式)的幂取指数最大的;④所得的系数的最小公倍数与各分母(或因式)的最高次幂的积即为最简公分母.5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.分式方程(1)定义:分母中含有__未知数__ 的方程;(2)解法:分式方程――→转化去分母__整式方程__――→解方程求出解――→代入最简公分母检验得出分式方程的解;(3)增根:使最简公分母为0的根. 规律总结:(1)如何由增根求参数的值: a .将原方程化为整式方程;b .将增根代入变形后的整式方程,求出参数的值. (2)检验分式方程的根是否为增根的方法: a .利用方程的解的定义进行检验;b .将解得的整式方程的根代入最简公分母,看计算结果是否为0,若不为0就是原方程的根;若为0则为增根,必须舍去.一个思想类比是一种在不同对象之间,或者在事物与事物之间,根据它们某些相似之处进行比较,通过联想和预测,推出它们在其他方面也可能相似,从而去建立猜想和发现规律的方法.通过类比可以发现新旧知识的相同点,利用已有的知识来认识新知识,分式与分数有许多类似的地方,因此在分式的学习中,要注意与分数进行类比学习理解.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.三个防范(1)“分母中含有未知数”是分式方程与整式方程的根本区别,也是判断一个方程是否为分式方程的依据.(2)去分母时,不要漏乘没有分母的项;解分式方程的重要步骤是检验.(3)分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解.分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.(2018·陕西)化简:(﹣)÷.(2017·陕西)解方程:32133x x x +-=-+.1.(2014·陕西)先化简,再求值:2x 2x 2-1-x x +1,其中x =-12.解:原式=2x 2(x +1)(x -1)-x (x -1)(x +1)(x -1)=x (x +1)(x +1)(x -1)=x x -1,当x =-12时,原式=-12-12-1=132.(2013·陕西)解分式方程:2x 2-4+xx -2=1.解:去分母得:2+x(x +2)=x 2-4,整理得:2+x 2+2x =x 2-4,解得:x =-3,经检验得,x =-3是原分式方程的根3.(2012·陕西)化简:(2a -b a +b -ba -b )÷a -2b a +b.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a +ba -2b=2a 2-2ab -ab +b 2-ab -b 2(a -b )(a -2b )=2a 2-4ab(a -b )(a -2b )=2a (a -2b )(a -b )(a -2b )=2aa -b分式的概念,求字母的取值范围【例1】 (1)(2014·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1(2)(2014·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(2013·广州)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的四则混合运算【例2】 (2014·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x=2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.2.(1)(2014·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(2014·娄底)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x-3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例3】 (2014·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,须舍去.3.(1)(2014·德州)分式方程x x -1-1=3(x -1)(x +2)的解是( D )A .x =1B .x =-1+ 5C .x =2D .无解(2)(2014·巴中)若分式方程x x -1-m1-x=2有增根,则这个增根是__x =1__.(3)(2014·新疆)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解 教学反思:第5讲 二次根式及其运算由上表可知,我省近三年的中考试题中有关二次根式的考查明显有所淡化,但由于其是中考需要掌握的内容,而且经常会和实数的相关运算结合进行考查,因此在2019年的中考试题可能会考查到其相关知识,在复习中不容忽视.1.二次根式的概念式子叫做二次根式. 2.二次根式的性质 (1)(a)2=__a(a ≥0)__.(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a >0) ; 0(a =0) ; -a (a <0) W.3.二次根式的运算(1)(2)二次根式的乘法:a·b =;(3)二次根式乘法的反用:ab(4)二次根式的除法:a b =;(5)二次根式除法的反用:a b =. 4.最简二次根式运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足两个条件: (1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.5.二次根式的估值二次根式的估算,一般采用“夹逼法”确定其值所在范围.即可确定这个二次根式在哪两个整数之间.“双重非负性”算术平方根a 具有双重非负性,一是被开方数a 必须是非负数,即a ≥0;二是算术平方根a 的值是非负数,即a ≥0.算术平方根的非负性主要用于两方面:(1)某些二次根式的题目中隐含着“a ≥0”这个条件,做题时要善于挖掘隐含条件,巧妙求解; (2)若几个非负数的和为零,则每一个非负数都等于零. 两个防范(1)求a 2时,一定要注意确定a 的大小,应注意利用等式a 2=|a|,当问题中已知条件不能直接判定a 的大小时就要分类讨论;(2)一般情况下,我们解题时,总会习惯地把重点放在探求思路和计算结果上,而忽视了一些不太重要、不直接影响求解过程的附加条件和隐含条件.要特别注意,问题中的条件没有主次之分,都必须认真对待.求值问题“五招”(1)巧用平方;(2)巧用乘法公式;(3)巧用配方;(4)巧用换元;(5)巧用倒数.二次根式概念与性质【例1】 (1)等式2k -1k -3=2k -1k -3成立,则实数k 的范围是( D )A .k >3或k <12B .0<k <3C .k ≥12D .k >3(2)已知a ,b ,c 是△ABC 的三边长,试化简:(a +b +c )2+(a -b -c )2+(b -c -a )2+(c -a -b )2.解:原式=|a +b +c|+|a -b -c|+|b -c -a|+|c -a -b|=(a +b +c)+(b +c -a)+(c +a -b)+(a +b -c)=2a +2b +2c【点评】 (1)对于二次根式,它有意义的条件是被开方数大于或等于0;(2)注意二次根式性质(a)2=a(a ≥0),a 2=|a|的区别,判断出各式的正负性,再化简.1.(1)(-2)2的平方根是;9的算术平方根是__3__;__-4__是-64的立方根.(2)(2014·达州)二次根式-2x +4有意义,则实数x 的取值范围是( D ) A .x ≥-2 B .x >-2 C .x <2 D .x ≤2二次根式的运算【例2】 (1)(2014·济宁)如果ab >0,a +b <0,那么下面各式:①a b =a b,②a b ·ba =1,③ab÷a b=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③(2)计算:24-32+23-216.解:原式=26-126+136-136=326【点评】 (1)二次根式化简,依据ab =a·b(a ≥0,b ≥0),a b =ab(a ≥0,b >0),前者将被开方数分解,后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即可将其移到根号外;(2)二次根式加减,即化简之后合并同类二次根式.2.(1)(2012·安顺)计算327的结果是( D )A .±33B .33C .±3D .3 (2)(2012·福州)若20n 是整数,则正整数n 的最小值为__5__.(3)(2014·抚州)计算:27-3=. 教学反思:第二章 方程与不等式 第6讲 一次方程与方程组陕西中考对本节知识主要考查二元一次方程组的解法,从陕西近三年的考查来看,只在2016第21题第(2)问考查过,但本节内容是解决其他问题的基础,而且其是中考需要掌握的内容,尤其是对一次方程或一次方程组的解法,必须牢固掌握,预计在2019年的中考试题仍可能会考查到其相关知识,难度不会太大,考生在复习中不容忽视.1.定义(1)含有未知数的__等式__叫做方程; (2)只含有__一个__未知数,且含未知数的项的次数是__一次__,这样的整式方程叫做一元一次方程; (3)含有两个未知数,且含未知数的项的次数为1,这样的整式方程叫做二元一次方程;。

备考2020中考数学一轮专题复习学案:专题11平面直角坐标系(含答案)

备考2020中考数学一轮专题复习学案:专题11平面直角坐标系(含答案)

备考2020中考数学一轮专题复习学案专题11 平面直角坐标系考试说明:1.结合实例进一步体会用有序数对可以表示物体的位置.2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标.3.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形.4.能建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;在平面上,能用方向和距离刻画两个物体的相对位置.5.在平面直角坐标系中,能用坐标表示平移,通过研究平移与坐标的关系,体会数形结合的思想.思维导图:知识点一:平面直角坐标系知识梳理:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,取向右为正方向;概念竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点.关键点坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应的.【命题点一】坐标确定位置【典例1】【2019•白银】中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,–2),“马”位于点(4,–2),则“兵”位于点___________.【答案】(–1,1)【解析】如图所示,根据“帅”和“马”的位置,可得原点位置,则“兵”位于(–1,1).故答案为(–1,1).【变式训练】1.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,–1)和(–3,1),那么“卒”的坐标为_________.2.已知A(–2,1),B(–6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(_________,_________).知识点二:点的坐标知识梳理:【命题点二】点的坐标特征【典例2】【2019•株洲】在平面直角坐标系中,点A(2,–3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点A坐标为(2,–3),则它位于第四象限.故选D.【变式训练】1.(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点,若有一直线l通过点(–3,4)且与y 轴垂直,则l也会通过下列哪一点?()A.A B.B C.C D.D 2.(2019•济宁)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标___________.【命题点三】坐标的平移【典例3】【2019•枣庄】在平面直角坐标系中,将点A(1,–2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(–1,1)B.(–1,–2)C.(–1,2)D.(1,2)【答案】A【解析】∵将点A(1,–2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1–2=–1,纵坐标为–2+3=1.∴A′的坐标为(–1,1).故选A.【变式训练】3.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)4.(2019•海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A 落在点A1(–2,2)处,则点B的对应点B1的坐标为()A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)【命题点四】坐标的规律探究【典例4】【2019•菏泽】在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)【答案】C【解析】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选C.【变式训练】5.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n 次移动到A n.则△OA2A2018的面积是()A.504m2B.10092m2C.10112m2D.1009m26.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,–1),P5(2,–1),P6(2,0),…,则点P2017的坐标是___________.参考答案知识点11.【答案】(–2,–2)【解析】由题意,建立如图所示的平面直角坐标系,则“卒”的坐标为(–2,–2).故答案为(–2,–2).2.【答案】–1,1【解析】∵A(–2,1),B(–6,0),∴建立如图所示的平面直角坐标系,∴C(–1,1).故答案为–1,1.知识点21.【答案】D【解析】如图所示:有一直线L通过点(–3,4)且与y轴垂直,则L也会通过D点.故选D.2.【答案】(1,–2)(答案不唯一)【解析】∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),∴x>0,y<0.∴当x=1时,1≤y+4,解得0>y≥–3.∴y可以为:–2.∴写一个符合上述条件的点P的坐标可以为:(1,–2)(答案不唯一).故答案为(1,–2)(答案不唯一).3.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.4.【答案】C【解析】由点A(2,1)平移后A1(–2,2)可得坐标的变化规律是:左移4个单位,上移1个单位.∴点B的对应点B1的坐标为(–1,0).故选C.5.【答案】A【解析】由题意知OA4n=2n,∵2018÷4=504…2,∴A2018的纵坐标为2016+1=1009.∴A2A2018=1009–1=1008.2×1×1008=504 m2.故选A.则△OA2A2018的面积是126.【答案】(672,1)【解析】由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1),2016÷6=336,∴P6×336(2×336,0),即P2016(672,0).∴P2017(672,1).故答案为(672,1).。

中考数学考点知识复习教案

中考数学考点知识复习教案

中考数学考点知识复习教案一、教学目标1. 知识与技能:回顾和巩固中考数学的重要知识点,提高学生的数学素养。

2. 过程与方法:通过分类复习,引导学生自主探究,提升解题能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度。

二、教学内容1. 第一章:实数与代数1.1 有理数1.2 分数、小数和整数1.3 实数1.4 代数式2. 第二章:方程(一)2.1 线性方程2.2 一元一次方程2.3 不等式2.4 二元一次方程组3. 第三章:几何基础3.1 点、线、面的关系3.2 直线方程3.3 圆的性质3.4 三角形的性质4. 第四章:三角形与四边形4.1 三角形的证明4.2 三角形的解法4.3 四边形的性质4.4 平行四边形的性质5. 第五章:圆的方程与应用5.1 圆的标准方程5.2 圆的参数方程5.3 圆的方程的应用5.4 圆与三角形的综合问题三、教学方法1. 采用分类复习的方法,引导学生对重要知识点进行有针对性的学习。

2. 运用例题解析,让学生掌握解题技巧和方法。

3. 组织小组讨论,培养学生的合作意识和沟通能力。

4. 定期进行测试,了解学生掌握情况,及时调整教学策略。

四、教学评价1. 评价学生的知识掌握程度,包括基础知识、解题能力和思维能力。

2. 注重过程性评价,关注学生在学习过程中的表现和进步。

3. 鼓励学生自我评价,培养学生的自我监控和反思能力。

五、教学时间1. 每章内容安排2-3课时,共计10课时。

2. 每章课后安排1课时进行测试和反馈。

3. 教学时间可根据实际情况进行调整。

六、第五章:圆的方程与应用(续)5.5 圆与圆的位置关系5.6 圆与圆的相交问题5.7 圆与圆的内含问题5.8 圆与圆的外离问题七、立体几何7.1 空间点、线、面的关系7.2 平面几何与立体几何的联系7.3 三视图7.4 棱柱与棱锥7.5 球的性质与应用八、概率与统计8.1 概率的基本概念8.2 事件的相互独立性8.3 古典概型与几何概型8.4 统计量与数据分析8.5 概率与统计在实际问题中的应用九、函数(一)9.1 函数的基本概念9.2 一次函数与二次函数9.3 函数的图像与性质9.4 函数的零点与方程的解9.5 函数在实际问题中的应用十、数学思想与方法10.1 化归与转化的思想10.2 数形结合的方法10.3 分类讨论的方法10.4 方程的思想10.5 数学建模的方法十一、教学方法(续)11.1 针对第六章,采用案例分析法,让学生通过实际问题理解和掌握圆与圆的位置关系及应用。

中考数学总复习教案与学案人教版

中考数学总复习教案与学案人教版
(3)请学生总结本节课所学的实数运算规则,并用自己的语言进行阐述,形成一篇简短的总结性文章。
2.作业反馈:
(1)及时批改学生的作业,注意检查学生对实数运算规则的理解和运用情况。
(2)在批改过程中,对于学生的错误,要具体指出错误的原因,并给出改正的方法。
(3)对于作业中的优秀作品,要在课堂上进行表扬和展示,以激励其他学生努力学习。
3. 分层次教学,针对不同学生的掌握程度进行有针对性的辅导,确保每位学生都能在复习过程中查漏补缺,提高数学运算能力。
4. 提供充足的练习机会,通过大量的习题训练,帮助学生巩固所学知识,并能够灵活运用解决实际问题。
四、教学资源
1. 软硬件资源:教室内的多媒体设备,如投影仪、计算机等,用于展示PPT和教学视频。
在板书设计中,我会将实数运算的规则和运算律进行清晰的展示,通过列表和图示的方式,让学生能够一目了然地理解和记忆。同时,我会将实际问题的解决过程进行逐步展示,让学生能够跟随板书的引导,逐步掌握解决问题的方法。
六、教学资源拓展
(1)数学教材:《数学分析》、《高等数学》等书籍,可以帮助学生从更深层次理解实数运算的原理和应用。
(2)网络资源:人教版《中考数学总复习教案与学案》的在线资源,包括教材、习题和测试,可以为学生提供更多的学习资料和练习机会。
(3)数学期刊和论文:推荐学生阅读一些与实数运算相关的数学期刊和论文,以了解实数运算的前沿研究和应用领域。
2.拓展建议:为了让学生更好地利用拓展资源,提出以下建议:
(1)自主学习:鼓励学生利用课余时间自主学习拓展资源,加深对实数运算的理解和掌握。
(2)小组讨论:组织学生进行小组讨论,分享自己在拓展资源学习中的收获和感悟,互相促进,共同进步。
(3)实践应用:鼓励学生将拓展资源中学到的知识应用到实际问题中,通过解决实际问题来检验和巩固所学知识。

2020年中考数学总复习二十二个专题知识复习讲义(精华版)

2020年中考数学总复习二十二个专题知识复习讲义(精华版)

2020年中考数学总复习二十二个专题知识复习讲义(精华版)中考总复习1 有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a和-a互为相反数。

0的相反数是0。

a =-a所表示的意义是:一个数和它的相反数相等。

很显然,a =0。

- 1 -- 2 -4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。

a =|a |所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表示的意义是:一个数和它的倒数相等。

很显然,a =±1。

6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

7、乘方定义:求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

如:43421Λan n a a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n是正整数),这种记数方法叫做科学记数法。

小于-10的数也可以类似表示。

中考数学总复习教案(158页) 108

中考数学总复习教案(158页) 108

8.平行线的定义:在同一平面内.
的两条直线是平行线。
9.如果两条直线都与第三条直线平行,那么.这两条直线互相平行.
10.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错
角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这

个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,
的补角相等.如果∠A+∠C=180○,∠A+∠B=180°,则∠B ∠C.
⑥对顶角的性质:对顶角相等.
(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,
这条射线叫做这个角的平分线.
4.同一平面内两条直线的位置关系是:相交或平行
5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个
角.正
确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;
同旁内角要抓住“内部、同旁”. 6.平行线的性质:(1)两条平行线被第三条直线所截,
角相等, 角相等,
同旁内角互补.(2)过直线外一点
直线和已知直线平行.(3)
两条
平行线之间的距离是指在一条直线上
7.任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.
③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的
两个角叫做对顶角.
④互为余角的有关性质:①∠1+∠2=90° ∠1、∠2 互余;②同角或等角的
余角相等,如果∠l 十∠2=90○ ,∠1+∠3= 90○,则∠2
∠3.
⑤互为补角的有关性质:①若∠A +∠B=180○ ∠A、∠B 互补;②同角或等角
(一):【知识梳理】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学总复习必备基础知识全套复习学案(全册完整版)第一章 实数课时1.实数的有关概念【课前热身】1.2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .3.2的相反数是 .4.3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成22±=-.(3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题. 【典例精析】例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450 ”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴2--的倒数是( )A .2 B.12 C.12- D.-2 ⑵若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 ⑶如图,数轴上点P 表示的数可能是( )A.7B. 7-C. 3.2-D. 10-例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.0013- 2- 1- O 1 2 3P【中考演练】 1.-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= .2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,14,0,32,364,0.31,227,2π,2.161 161161…,(-2 005)0是无理数的是___________________________. 4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.51-的倒数是 ( )A .51- B .51 C .5- D .5 8.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或39.如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21± D .2 10.下列各组数中,互为相反数的是( )A .2和21B .-2和-21 C .-2和|-2| D .2和2111.16的算术平方根是( )A.4B.-4C.±4D.16 12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或214. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数ob a A BO-3课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(晋江)计算:=-13_______.3.(贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-= 6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )A. 5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-p a (其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行. 4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.【典例精析】 例1 计算:⑴20080+|-1|-3cos30°+ (21)3;⑵ 232(2)2sin 60---+.例2 计算:1301()20.1252009|1|2--⨯++-.输入x 输出y平方 乘以2 减去4若结果大于0否则﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--. 3.计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 12 4. 下列各式运算正确的是( )A .2-1=-21 B .23=6 C .22·23=26 D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( )A. 10 B .20 C .-30 D .186. 计算:⑴4245tan 21)1(10+-︒+--;⑵201()(32)2sin 3032---+︒+-;⑶ 01)2008(260cos π-++- .﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,…(1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________,(3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式 课时3.整式及其运算【课前热身】1. 31-x 2y 的系数是 ,次数是 .2.计算:2(2)a a -÷= .3.下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. 计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x - 5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b + 6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a 万元【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示 连接而成的式子叫做代数式. 2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做 .(3) 整式:与统称整式.4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类项. 合并同类项的法则是___.5. 幂的运算性质: a m·a n= ; (a m)n= ; a m÷a n=_____;(ab)n= .6. 乘法公式:(1) =bca;(2)(a+b)(a-b) +(d+))(=;(3) (a+b)2=;(4)(a-b)2= .7. 整式的除法⑴单项式除以单项式的法则:把、分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 若0a >且2x a =,3y a =,则x y a -的值为( ) A .1- B .1 C .23 D .32例2按下列程序计算,把答案写在表格内:⑴ 填写表格: 输入n 3 21 —2 —3 … 输出答案11…⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21;(2) 22(3)(2)(2)2x x x x +++--,其中13x =-.n平方+n÷n-n 答案【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.下列运算中,结果正确的是( ) A.633·x x x = B.422523x x x =+ C.532)(x x =D .222()x y x y +=+﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中2a =,1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .1111 2 11 3 3 11 4 6 4 1 .......................................ⅠⅡ1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++课时4.因式分解【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= . 3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】例1 分解因式:⑴(聊城)33222ax y axy ax y +-=__________________. ⑵3y 2-27=___________________. ⑶244x x ++=_________________. ⑷ 221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.分解因式2232ab a b a -+= . 6.将3214x x x +-分解因式的结果是 .7.分解因式am an bm bn +++=_____ _____;8. 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( ) A .bx ax b a x -=-)( B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.ba11.计算: (1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a、b、c是△ABC的三边,且满足24c2242=+,试a+abcb判断△ABC的形状.阅读下面解题过程:解:由24c2224=+得:a+bbac424c222=-①a-cbab()()()222b2222=-+②a-cbbaa即22c2+③ba=∴△ABC为Rt△。

相关文档
最新文档