复习固体物理习题与思考题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
晶体结构 思 考 题
1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为()33/4R , 一个晶胞包含两个原子, 一个原子占的体积为()2/3/43R ,单位体积晶体中的原子数为()33/4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为()32/4R , 一个晶胞包含四个原子, 一个原子占的体积为()4/2/43R , 单位体积晶体中的原子数为()3
2/4/4R . 因此, 同体积的体心和面心立方晶体中的原子数之比为2/323
⎪⎪⎭⎫ ⎝⎛=0.272.
2. 解理面是面指数低的晶面还是指数高的晶面?为什么?
[解答]
晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.
3. 基矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为何种结构? 若=3a ()k j +2a +i 23a , 又为何种结构? 为什么?
[解答]
有已知条件, 可计算出晶体的原胞的体积
23
321a =⨯⋅=a a a Ω.
由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量
=-=13a a u 2a ()k j i ++-,
=-=23a a v 2a
()k j i +-,
=-+=321a a a w 2a
()k j i -+.
w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基
矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为体心立方结构.
若
=3a ()k j +2a +i 23a ,
则晶体的原胞的体积
23
321a Ω=⨯⋅=a a a ,
该晶体仍为体心立方结构.
4. 与晶列[l 1l 2l 3]垂直的倒格面的面指数是什么?
[解答]
正格子与倒格子互为倒格子. 正格子晶面(h 1h 2h 3)与倒格式=h K h 11b +h 22b +h 33b 垂直, 则倒格晶面(l 1l 2l 3)与正格矢=l R l 11a + l 22a + l 33a 正交. 即晶列[l 1l 2l 3]与倒格面(l 1l 2l 3) 垂直.
5. 在结晶学中, 晶胞是按晶体的什么特性选取的?
[解答]
在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.
6.六角密积属何种晶系? 一个晶胞包含几个原子?
[解答]
六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.
7.面心立方元素晶体中最小的晶列周期为多大? 该晶列在哪些晶面内?
[解答]
周期最小的晶列一定在原子面密度最大的晶面内. 若以密堆积模型, 则原子面密度最大的晶面就是密排面. 由图 1.9可知密勒指数(111)[可以证明原胞坐标系中的面指数也为(111)]是一个密排面晶面族, 最小的晶列周期为2/2a . 根据同族晶面族的性质, 周期最小的晶列处于{111}面内.
8. 在晶体衍射中,为什么不能用可见光?
[解答]
晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长
应小于1010-米. 但可见光的波长为7.6−4.0710-⨯米, 是晶体中原子间距的1000倍. 因
此, 在晶体衍射中,不能用可见光.
9. 高指数的晶面族与低指数的晶面族相比, 对于同级衍射, 哪一晶面族衍射光弱? 为什么?
[解答]
对于同级衍射, 高指数的晶面族衍射光弱, 低指数的晶面族衍射光强. 低指数的晶面族面间距大, 晶面上的原子密度大, 这样的晶面对射线的反射(衍射)作用强. 相反, 高指数的晶面族面间距小, 晶面上的原子密度小, 这样的晶面对射线的反射(衍射)作用弱. 另外, 由布拉格反射公式
λθn sin 2=hkl d 可知, 面间距hkl d 大的晶面, 对应一个小的光的掠射角θ. 面间距hkl d 小的晶面, 对应一个大的光的掠射角θ. θ越大, 光的透射能力就越强, 反射能力就越弱.
10. 温度升高时, 衍射角如何变化? X 光波长变化时, 衍射角如何变化?
[解答]
温度升高时, 由于热膨胀, 面间距hkl d 逐渐变大. 由布拉格反射公式
λθn sin 2=hkl d
可知, 对应同一级衍射, 当X 光波长不变时, 面间距hkl d 逐渐变大, 衍射角θ逐渐变小.所以温度升高, 衍射角变小.
当温度不变, X 光波长变大时, 对于同一晶面族, 衍射角θ随之变大.
第2章晶体的结合
思考题
1.是否有与库仑力无关的晶体结合类型?
[解答]
共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.
2.如何理解库仑力是原子结合的动力?
[解答]
晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.
3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?
[解答]
自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.
原子的动能与原子间的相互作用势能之和为晶体的内能.
在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.
4.原子间的排斥作用取决于什么原因?
[解答]
相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.
5.原子间的排斥作用和吸引作用有何关系? 起主导的范围是什么?
[解答]
在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力
缺一不可. 设此时相邻原子间的距离为0r, 当相邻原子间的距离r>0r时, 吸引力起主导作用; 当相邻原子间的距离r<0r时, 排斥力起主导作用.
6.共价结合为什么有“饱和性”和“方向性”?
[解答]
设N为一个原子的价电子数目, 对于IV A、V A、VI A、VII A族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就是共价结合的“饱和性”.
共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的“方向性”.
7.共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?
[解答]
共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交