全数字锁相环原理及应用
基于FPGA的全数字锁相环设计与实现
基于FPGA的全数字锁相环设计与实现一、前言全数字锁相环(Digital Phase-Locked Loop,简称DPLL)是一种数字电路设计技术,可实现同步数字信号的调制和解调。
基于FPGA的全数字锁相环设计与实现,是一个极为重要的课题。
它可以有效地提高数字电路的性能,使得数字系统具有更优越的特性,并可广泛应用于数字电路的设计、数字信号的处理等领域。
二、DPLL 的体系结构DPLL是由相频检测器、滤波器、数字控制振荡器和时钟输出等多个部分组成的。
其中,相频检测器、滤波器和数字控制振荡器通常被集成到FPGA的内部,而时钟输出则需要通过FPGA的普通I/O口与市场上常见的外部输出设备相结合。
三、数字锁相环的工作原理数字锁相环的工作原理基于一个反馈循环系统,其中参考振荡器的频率与输入信号会被比较,然后通过差错检测网络来确定缺陷。
如果这些信号频率不匹配,则通过调整数字控制振荡器的频率来达到匹配。
然后,系统会根据输出信号和参考信号的相位差异来调整数字控制振荡器的频率,并通过PLL的反馈路径传输至输入端,进而得到和参考信号相同频率的输出信号。
四、数字锁相环的应用数字锁相环在通信领域有着广泛的应用,如数据码隆、数字调制、同步检测等;在数字领域,数字锁相环主要应用于数字信号处理、频谱分析、信噪比提高等方面;在电子仪器领域,数字锁相环可以被应用于测量领域、噪声分析、频率合成等方面。
五、基于FPGA的数字锁相环的设计数字锁相环的设计是一项非常复杂的工作,其中需要解决的问题主要有相频检测、低通滤波、数字控制振荡器的设计和时钟输出等方面。
在基于FPGA的数字锁相环设计过程中,可以采用很多不同的方法和技术来解决这些问题。
在数字锁相环的设计中,相频检测器是极其关键的部分,其主要功能是检测输入信号与数字控制振荡器的频率是否匹配。
其中,相频检测器常用的方式有两种:一是通过比较输入信号和数字控制振荡器的频率来实现;二是通过测量输入信号和数字控制振荡器的相位差来实现。
锁相环原理及应用
锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。
它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。
在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。
目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。
一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。
图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。
因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。
所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。
在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。
当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。
因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。
2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。
一种新型PID控制的全数字锁相环的设计与实现.
一种新型PID控制的全数字锁相环的设计与实现锁相环是一种能够跟踪输入信号相位的闭环自动控制系统,广泛应用于信号处理、时钟同步、倍频、频率综合等领域。
它根据输入信号和反馈信号的相位差来调整压控振荡器的输出频率,最终达到输入信号频率和输出信号频率相等,输入信号和输出信号保持恒定的相位差。
传统的PI控制器可以消除稳态误差,保证锁定精度,但是对阻尼有不利影响。
在PI控制器中引入微分项可以改善响应速度和阻尼,保证了锁定时间,但不能减少稳态误差,因此本文提出积分分离PID控制,能够大大改善响应时间和阻尼并减少稳态误差,从而保证了锁相精度和锁相时间。
1 电路结构与工作原理1.1 全数字锁相环电路结构快速全数字锁相环的系统框图如图1所示。
鉴相器采用JK触发器,该鉴相器结构简单,鉴相范围为±π,能够满足一般工程的需要。
由于鉴相器输出的是二值高低脉冲,后需接数字滤波器来平滑其中的起伏,消除噪声和干扰脉冲的影响。
一般数字序列滤波器有两种:N 先于M序列滤波器和随机徘徊滤波器,数字滤波器不是环路滤波器,它是无惰性的,加在环路中不影响环路的阶数,仅起到滤噪抗干扰的作用。
本文采用随机徘徊滤波器。
环路滤波器采用PID控制器,能够很好地控制环路相位校正的速度和精度,相对于文献[1]的PI控制器具有更好的特性。
数字压控振荡器采用可变模的分频器。
M分频器对输出信号进行分频,以使环路得到相应的倍频信号。
1.2 电路工作原理鉴相器比较输入信号和输出信号的相位差,产生一误差高低电平脉冲序列pha。
该脉冲的宽度和输入、输出信号的相位误差是成比例的。
K序列滤波器对相位误差信号进行量化,又可以消除输入信号噪声和干扰脉冲的影响。
当pha为高电平时,K序列滤波器对fO进行加计数,当计数器溢出时,一方面向环路滤波器产生一加脉冲i,同时对计数器进行复位,重新计数。
相反,当pha 为低电平时,K序列滤波器对fO进行减计数,当计数器减为零时,一方面向环路滤波器产生一减脉冲d,同时对计数器进行复位,重新计数。
锁相环原理及应用PLL
锁相环原理及应用PLL(Phaze Locked Loop)锁相环自1932年问世以来,其应用领域遍及频率相位跟踪控制的各个领域,如通信、雷达、航天、测量、电视、控制等。
随着集成技术的发展,其应用的重要性已成为从事检测、通信、控制工作人员非常重要的应用工具手段,成为电子设备中常用的一种基本部件。
鉴于上述情况,非常有必要学习和掌握这门技术。
它是什么器件有如此大的威力呢?锁相环:是一个闭环的相位控制系统,它跟踪输入信号的相位,并自动锁定。
实现对输入信号频率和相位的自动跟踪。
它跟踪固定频率的输入信号时无频差,跟踪信号的相位时(锁相控制)精度很高;跟踪信号的频率变化的输入信号时(收音机)精度也很高。
它对输入信号恰似一个窄带跟踪滤波器,能够跟踪淹没在噪声之中的微弱信号。
鉴于上述种种独特功能,它在电子设备中越来越广泛地被采用。
它的窄带跟踪滤波和低门限特性,使它成为从噪声中检测调频调相合调幅信号的最佳方法之一。
§1 锁相环工作原理一、组成:锁相环由三个基本部件组成:鉴相器(PD)、低通滤波器(LF)和压控振荡器(VCO)构成。
与相敏检测器的不同之处在于参考信号由输出的信号闭环形成。
1.鉴相器:是一个相位比较环节,它把输入信号与压控振荡器输出信号的相位进行比较,产生对应两信号相位差的误差电压。
是两信号相位差鉴相器特性可以是多种多样的,有正弦形、方波、三角形、锯齿形特性。
它的电路有各种形式,主要有两类:1)相乘器电路2)序列电路:它的输出电压是输入信号过零点与反馈电压过零点之间时间差的函数。
这类鉴相器的输出只与波形的边沿有关,适用于方波,通常用电路构成。
2.低通滤波器(环路):具有低通特性,滤除中的变频成分和噪声,以保证环路要求的性能,增加环路的稳定性,产生对应的一个直流控制电压。
常用的环路滤波器有:RC积分滤波器、无源比例积分滤波器和有源比较积分滤波器3.VCO(Voltage Controlled Oscillator):它是一个电压—频率转换器,由控制产生相应频率,使其频率朝着输入信号的频率靠拢,由于相位负反馈的作用直至消除频差实现环路锁定。
全数字锁相环设计1
全数字锁相环设计1全数字锁相环设计锁相的概念是在19世纪30年代提出的,而且很快在电子学和通信领域中获得广泛应用。
尽管基本锁相环的从开始出现几乎保持原样,但是使用不同的技术制作及满足不同的应用要求,锁相环的实现对于特定的设计还是蛮大的挑战。
锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,已经成为各种电子设备中必不可少的基本部件。
随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。
锁相环技术在众多领域得到了广泛的应用。
如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。
传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的锁相环相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。
随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,全数字锁相环必然会在其中得到更为广泛的应用。
因此,对全数字锁相环的研究和应用得到了越来越多的关注。
传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。
对于高阶全数字锁相环,其数字滤波器常常采用基于DSP的运算电路。
这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip)的设计带来一定困难。
另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列滤波器、先N后M序列滤波器等。
这些电路通过对鉴相模块产生的相位误差脉冲进行计数运算,获得可控振荡器模块的振荡控制参数。
由于脉冲序列低通滤波计数方法是一个比较复杂的非线性处理过程,难以进行线性近似,因此,无法采用系统传递函数的分析方法确定锁相环的设计参数。
不能实现对高阶数字锁相环性能指标的解藕控制和分析,无法满足较高的应用需求。
第7章数字锁相环
第7章 数字锁相环
《锁相技术》
图7-11 数字环路滤波器一般形式
第7章 数字锁相环
3. 数字压控振荡器(DCO)数字压控振荡器的基本组 成如图7-13所示。它由频率稳定的信号钟、计数器与 比较器组成,其输出是一取样脉冲序列,脉冲周期受数字 环路滤波器送来的校正电压控制。前一个取样时刻的 校正电压将改变下一个取样时刻的脉冲时间的位置。 DCO在环路中又被称为本地受控时钟或本地参考时钟 信号。
第7章 数字锁相环
《锁相技术》
图7-2 触发器型鉴相器
第7章 数字锁相环
(2) 奈奎斯特速率抽样鉴相器。该型鉴相器组成如 图7-3所示。模数变换器(A/D)的抽样率按带通信号的取 样定理选择,以使取样后信号含有充分的输入信号相 位信息。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-3 奈奎斯特速率抽样鉴相器
图7-15 超前—滞后数字锁相环基本组成 《锁相技术》
第7章 数字锁相环
一、电路组成与说明 电路实例是数字通信中常用的一种简单的超前—滞 后位同步环路,未用序列滤波器,电路组成如图7-16所示。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-16 位同步数字环组成电路
第7章 数字锁相环
二、环路位同步原理 图7-18为图7-16方案内各点的波形图,这里为分析 简便,以均匀变换的数字脉冲序列作为输入信号,它与随 机的数字脉冲序列作用下环路取得位同步的原理是一 样的。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-7 简单二元鉴相器
第7章 数字锁相环
图 7-8 上 的 中 相 积 分 — 抽 样 — 清 除 电 路 是 用 来 判 断 DCO输出与码元转换边沿之间相位关系的。例如,中相 积分区间跨在从正到负的两个码元之间,而积分结果为 正,说明DCO时钟超前;积分结果为负,说明DCO时钟滞 后;积分结果为零,相位准确对准。
全数字锁相环原理及应用
全数字锁相环原理及应用2011年11月18日摘要:锁相环是一种相位负反馈系统,它能够有效跟踪输入信号的相位。
随着数字集成电路的发展,全数字锁相环也得到了飞速的发展。
由于锁相精度和锁定时间这组矛盾的存在使得传统的全数字锁相环很难在保证锁定时间的情况下保证锁定精度。
鉴于此,本文对一些新结构的全数字锁相环展开研究,并用VHDL语言编程,利用FPGA仿真。
为解决软件无线电应用扩展到射频,即射频模块软件可配置的问题和CMOS工艺中由于电压裕度低、数字开关噪声大等因素,将射频和数字电路集成在一个系统中设计难度大的问题,本文尝试提出数字射频的新思路。
全数字锁相环是数字射频中最重要的模块之一,它不仅是发射机实现软件可配置通用调制器的基础,还是为接收机提供宽调频范围本振信号的基础。
本文针对数字射频中的数字锁相环的系统特性以及其各重要模块进行了研究。
关键词:全数字锁相环;锁定时间;锁定精度;PID控制;自动变模控制;数控振荡器;时间数字转换器;数字环路滤波器;FPGA;Principle and Application of all-digital phase-locked loopAbstract: Phase-Locked Loop is a negative feedback system that can effectively track the input signal’s phase. With the development of digital integrated circuits, all-digital phase-locked loop has also been rapidly developed. Because of the contradiction between the existence of phase-locked precision and phase-locked time, it makes the traditional all-digital phase-locked loop difficult to ensure the lock time meanwhile as well as phase-locked precision. So some new structures of all-digital phase-locked loop are analyzed in this paper and programmed in VHDL language with simulation under FPGA.In order to extend the application from radio to RF, which including RF modules software configurable problems and the difficulty to integrate RF and digital circuit in one system due to some factors contain the low voltage and large noise of the digital switches etc. This paper will try to put out a new thought for digital RF. All-digital phase-locked loop is one of the most important modules in digital RF. It is not only the foundation of transmitter which can be realized by software configurable general modulator, but also the foundation of receiver which can be provided wide range of local vibration signal. This paper particularly makes a study of the system character of tall-digital phase-locked loop and its vital modules.Keywords: ADPLL; Locked time; Locked precision; PID control; Auto modulus control; DCO;TDC; Digital Loop Filter; 1. 引言锁相环路是一种反馈控制电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
数字锁相环原理
数字锁相环原理数字锁相环(Digital Phase-Locked Loop,简称数字PLL)是一种广泛应用于通信、控制系统中的数字信号处理器。
它可以实现信号的频率和相位同步,对于数字通信系统中的时钟恢复、频率合成、信号解调等功能起着至关重要的作用。
本文将介绍数字锁相环的基本原理及其在通信系统中的应用。
数字锁相环由相位比较器、数字控制振荡器(DCO)、数字滤波器和锁定检测器组成。
其中,相位比较器用于比较输入信号和反馈信号的相位差,产生一个误差信号;数字控制振荡器根据误差信号调整输出频率;数字滤波器用于滤除噪声和抖动;锁定检测器用于检测数字锁相环是否已经锁定。
数字锁相环的工作原理可以简单描述为,首先,输入信号经过频率除法器和相位频率检测器,产生一个误差信号;然后,误差信号经过数字滤波器滤除噪声,再经过数字控制振荡器产生输出信号;最后,输出信号经过反馈回到相位比较器,形成闭环控制。
在闭环控制下,数字锁相环可以实现输入信号和输出信号的频率和相位同步。
数字锁相环在通信系统中有着广泛的应用。
在数字调制解调中,数字锁相环可以实现信号的时钟恢复和频率合成,保证接收端对发送端信号的准确解调;在频率合成器中,数字锁相环可以实现高稳定性的频率合成,满足通信系统对频率精度的要求;在通信系统中,数字锁相环还可以用于时钟同步和信号重构等功能。
总之,数字锁相环作为一种重要的数字信号处理器,在通信系统中有着广泛的应用。
它通过闭环控制实现输入信号和输出信号的频率和相位同步,保证了通信系统的稳定性和可靠性。
随着通信技术的不断发展,数字锁相环的应用范围将会更加广泛,对于提高通信系统的性能起着至关重要的作用。
通过本文的介绍,相信读者对数字锁相环的原理及其在通信系统中的应用有了更深入的了解。
数字锁相环作为一种重要的数字信号处理器,其原理简单而又实用,对于提高通信系统的性能有着重要的意义。
希望本文能对读者有所帮助,谢谢阅读!。
数字锁相环介绍
数字锁相环试验讲义一、锁相环的分类模拟、数字如何定义?何谓数字锁相环。
是指对模拟信号进行采样量化之后(数字化)的“数字信号”的处理中应用的锁相环,还是指的对真正的“数字信号”如时钟波形进行锁定的锁相环?二、数字锁相环的实际应用欲成其事,先明其义。
现代数字系统设计中,锁相环有什么样的作用。
1)在ASIC设计中的应用。
主要应用领域:窄带跟踪接收;锁相鉴频;载波恢复;频率合成。
例一:为了达到ASIC设计对时钟的要求,许多工程师都在他们的设计中加入了锁相环(PLL)。
PLL有很多理想的特性,例如可以倍频、纠正时钟信号的占空比以及消除时钟在分布中产生的延迟等。
这些特性使设计者们可以将价格便宜的低频晶振置于芯片外作为时钟源,然后通过在芯片中对该低频时钟源产生的信号进行倍频来得到任意更高频率的内部时钟信号。
同时,通过加入PLL,设计者还可以将建立-保持时间窗与芯片时钟源的边沿对齐,并以此来控制建立-保持时间窗和输入时钟源与输出信号之间的延迟。
2)在信号源产生方面的应用例二:由于无线电通信技术的迅速发展,对振荡信号源的要求也在不断提高。
不但要求它的频率稳定度和准确度高,而且要求能方便地改换频率。
实现频率合成有多种方法,但基本上可以归纳为直接合成法与间接合成法(锁相环路)两大类。
3)无线通信领域的实际应用例三:GSM手机的频率系统包括参考频率锁相环,射频本振锁相环、中频本振锁相环。
广义的数字锁相环包括扩频通信中的码跟踪。
三、数字锁相环的基本原理一般数字锁相环路的组成与模拟锁相环路相同,即也是由相位检波器、环路滤波器和本地振荡器等基本部件构成,但这些部件全部采用数字电路。
具体来说数字锁相环由:数字鉴相器、数字环路滤波器、NCO和分频器组成。
四、实际应用中的数字锁相环的实现方法PLL的结构和功能看起来十分简单,但实际上却非常复杂,因而即使是最好的电路设计者也很难十分顺利地完成PLL的设计。
在实际应用中,针对数字信号或数字时钟的特点,数字锁相环多采用超前滞后型吞吐脉冲的锁相环路来实现。
锁相环技术原理及其应用
锁相环技术原理及其应用一、锁相环技术原理1.1 基本概念锁相环(Phase-Locked Loop,PLL)是一种调节电路,能够通过控制其输出信号相位与参考信号相位之间的差值,使输出信号频率与参考信号频率一致,并且其输出信号相位与参考信号精确同步。
锁相环可以用于频率合成、时钟恢复、数字信号处理、射频通信等领域。
1.2 工作原理锁相环主要由相位比较器、低通滤波器、时钟发生器、可变增益放大器和电压控制振荡器等组成。
其中,相位比较器的作用是将参考信号和反馈信号进行比较,然后得到相位误差信号。
低通滤波器的作用是将相位误差信号进行平滑处理,得到直流误差信号。
时钟发生器的作用是产生参考信号。
可变增益放大器的作用是将误差信号放大后作为电压控制振荡器的控制电压。
电压控制振荡器的作用是产生锁相环输出信号,并且通过调节电压来控制输出信号的频率和相位。
1.3 稳定性分析锁相环的稳定性与参考信号的稳定性和相位比较器的带宽以及低通滤波器的截止频率等因素有关。
稳定性分析主要是评估锁相环输出信号的频率精度和相位噪声。
二、锁相环技术应用2.1 频率合成频率合成是利用锁相环技术将一个较低频率信号转换为高频率信号。
其中,参考信号是一个较低频率信号,产生参考信号的时钟发生器经过倍频器将参考信号的频率增加到所需的合成频率,然后经过相位比较器和滤波器控制电压控制振荡器的输出频率。
频率合成广泛应用于通信、广播、雷达、卫星导航等领域。
2.2 时钟恢复时钟恢复是一种将时钟信号从数据信号中恢复出来的技术。
锁相环可以通过将数据信号作为反馈信号,将时钟信号从数据信号中恢复出来。
时钟恢复广泛应用于数字通信和数字音频领域。
2.3 数字信号处理锁相环可以通过将输入信号与锁相环输出信号相比较,将输入信号变换的频率和相位误差降到很小,从而使输入信号的相位和频率与输入信号一致。
锁相环广泛应用于数字信号处理,例如数字滤波器、数字混频器、数字降噪器等。
2.4 射频通信锁相环在射频通信中的应用非常广泛,主要用于频率合成、时钟恢复等领域。
锁相环原理及应用
锁相环原理及应用嘿,朋友们!今天咱来聊聊锁相环原理及应用,这可有意思啦!你看啊,锁相环就像是一个超级有耐心的协调大师。
它能让两个本来不太合拍的东西,变得和谐一致,就好比让两个舞步不太协调的人慢慢找到节奏,一起跳出优美的舞蹈。
锁相环主要由相位比较器、环路滤波器和压控振荡器这几个部分组成。
相位比较器就像是一双敏锐的眼睛,时刻盯着输入信号和反馈信号的相位差异。
环路滤波器呢,则像一个温柔的缓冲器,把那些比较器发现的小波动给抚平啦。
而压控振荡器,那可是关键角色呀,它能根据滤波器的调整,乖乖地改变自己的频率和相位,努力去和输入信号保持一致。
那锁相环都有啥用呢?哎呀,用处可多啦!在通信领域,它就像个默默无闻的幕后英雄。
比如说,手机信号的接收和发送,没有锁相环可不行呢。
它能让手机准确地锁定信号频率,让我们能清晰地通话、流畅地上网。
再想想那些高级的音响设备,锁相环在里面也发挥着大作用呢!它能让声音更加稳定、清晰,不会有那种让人不舒服的杂音。
就好像给声音穿上了一件合身的衣服,让它变得更加好听。
还有啊,在一些精密的测量仪器中,锁相环也是不可或缺的。
它能让测量结果更加准确可靠,就像给测量加上了一把精准的锁。
咱就说,这锁相环是不是很神奇?它就像一个小小的魔法盒子,里面蕴含着大大的能量。
它能让各种电子设备变得更加出色,给我们的生活带来那么多的便利。
而且啊,随着科技的不断发展,锁相环的应用也会越来越广泛。
说不定以后我们生活中的方方面面都离不开它呢!难道你不觉得这很令人期待吗?总之呢,锁相环原理虽然有点复杂,但它的应用真的是无处不在。
我们享受着它带来的便利,却可能都没意识到它的存在。
所以啊,大家可得好好了解了解它,感受一下这个小小的东西背后的大魅力呀!。
锁相环基本原理及其应用
锁相环及其应用所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简称环路,通常用PLL表示。
锁相环路是由鉴相器(简称PD)、环路滤波器(简称LPF或LF)和压控振荡器(简称VCO)三个部件组成闭合系统。
这是一个基本环路,其各种形式均由它变化而来PLL概念设环路输入信号v i= V im sin(ωi t+φi)环路输出信号v o= V om sin(ωo t+φo)——其中ωo=ωr+△ωo通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。
PLL构成由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。
PLL原理从捕捉过程→锁定A.捕捉过程(是失锁的)a.φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。
b.φe(t)由鉴相器产生误差电压v d(t)=f(φe)完成相位误差—电压的变换作用。
v d(t)为交流电压。
c. vd(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生控制角频差△ω0,使ω0随ωi变化。
B.锁定(即相位稳定)a.一旦锁定φe(t)=φe∞(很小常数)v d(t)= V d(直流电压)b.ω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。
ωr为VCO固有振荡角频率。
)锁相基本组成和基本方程(时域)各基本组成部件鉴相器(PD)数学模式v d(t)=A D sinφe(t)相位模式环路滤波器(LPF)数学模式v c(t)=A F(P)v d(t)相位模式压控振荡器(VCO)数学模式相位模式环路模型相位模式:指锁相环(PLL)输入相位和输出相位的反馈调节关系。
相位模型:把鉴相器,环路滤波器和压控振荡器三个部件的相位模型依次级联起来就构成锁相相位模型。
一文让你彻底明白“什么是锁相环PLL及其工作原理”
一文让你彻底明白“什么是锁相环PLL及其工作原理”锁相环(Phase-Locked Loop,简称PLL)是一种广泛应用于通信、数据传输、时钟同步等领域的电子电路。
它在这些应用中起着重要的作用,可以解决信号同步、频率合成、相位调制等问题。
本文将详细介绍什么是锁相环、它的工作原理,以及一些常见的应用场景。
一、什么是锁相环锁相环是一种反馈控制系统,通过比较输入信号的相位与参考信号的相位之间的差异来调整输出信号的相位和频率,使得输出信号与参考信号保持相位和频率的一致。
原理上,锁相环通过不断采样输入信号,并将其与参考信号进行比较,然后根据比较结果调整输出信号的相位和频率。
通过这种方式,锁相环可以将输入信号的频率和相位稳定在与参考信号一致的状态下。
一般来说,锁相环由锁相检测器、低通滤波器、电压控制振荡器和频率分割器等主要组成。
二、锁相环的工作原理1. 锁相检测器(Phase Detector):锁相检测器是锁相环的核心部分。
它用于比较输入信号的相位差异,并产生一个误差信号。
常见的锁相检测器有相位比较器、采样比较器等。
相位比较器将输入信号和参考信号进行比较,并输出一个高电平或低电平的信号,表示输入信号相位与参考信号的相位关系。
2. 低通滤波器(Low Pass Filter):低通滤波器用于平滑锁相检测器输出的误差信号,减小噪声的影响。
它通过将误差信号经过滤波器,然后输出平滑后的信号给电压控制振荡器。
3. 电压控制振荡器(Voltage-Controlled Oscillator,简称VCO):电压控制振荡器是锁相环的另一个关键组件。
它的输出频率与输入电压成线性关系,即输出频率随着输入电压的变化而变化。
通过改变电压控制振荡器的输入电压,即通过低通滤波器输出的信号,可以调整输出信号的频率,从而使得输出信号与参考信号的频率一致。
4. 频率分割器(Frequency Divider):频率分割器用于将电压控制振荡器的输出频率分割成较低的频率。
8.5 集成锁相环电路4046 原理及其应用_信号发生电路原理与实用设计_[共14页]
信号发生电路原理与实用设计◆ 240 ◆图8.4.1 全数字锁相环的组成框图DLF 的作用是消除鉴相器输出的相位误差信号中的高频成分,保证环路的性能稳定,实际上可用一变模可逆计数器(模数为K )来实现。
K 变模可逆计数器根据相差信号P 进行加减运算。
当P 为高电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号D 给脉冲加减电路;当P 为低电平时,计数器进行减运算,如果结果为零,只输出借位脉冲信号D 给脉冲加减电路。
当f o 等于f i 或只有随机干扰脉冲时,计数器加减的数目基本相等,计数结果在初始值处上下徘徊,不会产生进位和借位脉冲,滤除因随机噪声引起的相位抖动。
计数器根据输出结果生成控制DCO 动作的控制指令。
K 变模可逆计数器的模值K 对DPLL 的性能指标有很大的影响。
K 的取值可根据输入信号的相位抖动而定,加大模值K ,有利于提高DPLL 的抗噪能力,但是会导致较大的捕捉时间和较窄的捕捉带宽;减小模值K 可以缩短捕捉时间,扩展捕捉带宽,但是降低了DPLL 的抗噪能力。
适当选取K 值可以确定DPLL 的转换速度。
数控振荡器(DCO )在数字锁相环中所处的地位相当于模拟锁相环路中的电压控制振荡器。
在数字锁相环设计中使用的数控振荡器是一种可变模式分频器,它的输出是调整可变分频器的模值N ,该值的大小会随着每个f i 周期内(f i =1时)鉴相输出进行调整。
当其为高电平时,将可变分频模值N 增大,以调整分频输出使之相位滞后;当其输出为低电平时,将可变分频模值N 减小,以调整分频输出使之输出相位提前。
如果数字环路滤波器既没有控制脉冲信号D 输出,则分频模值N 将保持不变,经N 分频后的f o 信号相位和f i 信号相位处于同步状态。
N 分频器是一个简单的除N 计数器,它对脉冲加减电路的输出脉冲再进行N 分频,得到整个环路的输出信号f o 。
因为f o = CLK/2N = f c ,因此通过改变分频值N 可以得到不同的环路中心频率f c 。
锁相环原理及应用
锁相环原理及应用锁相环(Phase-Locked Loop,PLL)是一种电子电路,主要用于调整频率和相位,使其与输入信号同步,并用来提供高精度的时钟和频率合成。
锁相环的原理是通过不断比较参考信号和输出信号的相位差,并通过反馈控制来调整输出信号的频率和相位,使输出信号与参考信号保持稳定的相位关系。
锁相环通常由相位比较器、低通滤波器、控制电压发生器、振荡器等组成。
锁相环的工作过程可以简单描述为以下几个步骤:1.相位比较:输入信号与参考信号经过相位比较器,比较它们之间的相位差。
2.滤波调整:比较结果经过低通滤波器,得到一个控制电压,该控制电压用于调整振荡器的频率和相位。
3.振荡器反馈:通过控制电压调整振荡器的频率和相位,使输出信号与参考信号保持稳定的相位关系。
4.输出信号:输出信号作为锁相环的输出,可以用于时钟同步、频率合成等应用。
锁相环具有许多应用。
以下是一些常见的应用案例:1.时钟同步:在数字系统中,锁相环常用于同步时钟信号,确保各个子系统的时钟一致,避免数据传输错误和时序问题。
2.频率合成:通过锁相环可以将一个低频信号合成为一个高频信号,常用于通信系统、雷达、音视频处理等领域。
3.相位调制和解调:锁相环可以用于实现相位调制和解调,常用于无线通信系统和调制解调器等。
4.频率跟踪和捕获:锁相环可以自动跟踪输入信号的频率变化并调整输出信号的频率,用于跟踪和捕获频率变化较快的信号。
锁相环的优点是可以实现高精度的频率和相位调整,对于精密测量、通信系统等需要高稳定性、高精度的应用非常重要。
然而,锁相环也存在一些局限性,比如锁定时间相对较长,对噪声和干扰较敏感,需要合适的滤波器和设计来提高性能。
综上所述,锁相环是一种基于反馈控制的电子电路,通过比较输入信号和参考信号的相位差来调整输出信号的频率和相位。
它在时钟同步、频率合成、相位调制解调、频率跟踪捕获等应用中起到重要作用。
锁相环的原理和应用对于理解和设计高精度的电子系统非常关键。
数字锁相环原理应用
数字锁相环原理及应用.全数字锁相环结构及原理数字锁相环的结构数字锁相环的一般组成如下图1所示,由数字鉴相器(DPD, Digital Phase Detector) >数字环路滤波器(DLF, Digital Loop Filter) >数字压控振荡器(DCO, Digital Control Oscillator)三部分组成。
图1 数字锁相环路的基本结构(1)数字环路鉴相器(DPD)数字鉴相器也称采样鉴相器,是用来比较输入信号与压控振荡器输出信号的相位,它的输出电压是对应于这两个信号相位差的函数。
它是锁相环路中的关键部件,数字鉴相器的形式可分为:过零采样鉴相器、触发器型数字鉴相器、超前一滞后型数字鉴相器和奈奎斯特速率取样鉴相器。
(2)数字环路滤波器(DLF)数字环路滤波器在环路中对输入噪声起抑止作用,并且对环路的校正速度起调节作用。
数字滤波器是一种专门的技术,有各种各样的结构形式和设计方法。
引入数字环路滤波器和模拟锁相环路引入环路滤波器的U的一样,是作为校正网络引入环路的。
因此,合理的设讣数字环路滤波器和选取合适的数字滤波器结构就能使 DPLL满足预定的系统性能要求。
(3)数字压控振荡器(DCO)数控振荡器,乂称为数字钟。
它在数字环路中所处的地位相当于模拟锁相环中的压控振荡器(VCO)。
但是,它的输出是一个脉冲序列,而该输出脉冲序列的周期受数字环路滤波器送来的校正信号的控制。
其控制特点是:前一采样时刻得到的校正信号将改变下一个采样时刻的脉冲时间位置。
全数字锁相环工作原理全数字锁相环的基本工作过程如下:(1)设输入信号Ui(t)和本振信号(数字压控振荡器输出信号)uo(t)分别是正弦和余弦信号,他们在数字鉴相器内进行比较,数字鉴相器的输出是一个与两者间的相位差成比例的电压ud(t)。
(2)数字环路滤波器除数字鉴相器输出中的高频分量,然后把输出电压uc(t) 加到数字压控振荡器的输出端,数字压控振荡器的本振信号频率随着输入电圧的变化而变化。
基于FPGA的全数字锁相环的设计与实现
基于FPGA的全数字锁相环的设计与实现一、本文概述本论文聚焦于基于现场可编程门阵列(FieldProgrammable Gate Array, FPGA)技术设计与实现全数字锁相环(AllDigital PhaseLocked Loop, ADPLL)的研究工作。
全数字锁相环作为一种关键的信号处理模块,广泛应用于通信系统、雷达系统、高速数据采集、频率合成等领域,其性能直接影响到整个系统的稳定性和精度。
随着FPGA技术的发展,ADPLL在灵活性、集成度、可编程性及实时调整等方面展现出显著优势,成为现代电子系统中实现高精度频率合成与同步控制的理想选择。
本文旨在深入探讨基于FPGA平台构建全数字锁相环的理论基础、设计方案及关键技术,并通过实际工程实践验证其性能。
研究内容主要涵盖以下几个方面:理论背景与技术综述:对全数字锁相环的基本原理、组成结构以及工作模式进行全面阐述,对比分析其与传统模拟锁相环和混合信号锁相环的优缺点。
在此基础上,详细介绍FPGA技术的特点及其在ADPLL设计中的应用价值,为后续设计工作奠定理论基础。
系统架构与模块设计:详细阐述所设计的基于FPGA的全数字锁相环的整体架构,包括鉴相器(Phase Detector)、数字环路滤波器(Digital Loop Filter)、数控振荡器(Digitally Controlled Oscillator, DCO)等核心组件的设计思路与实现细节。
针对FPGA资源特性,优化各模块算法及硬件实现,确保其在有限逻辑资源下达到高性能指标。
关键算法与技术实现:探讨用于提升ADPLL性能的关键技术,如低噪声鉴相算法、快速锁定策略、频率牵引与抖动抑制技术等,并展示如何将其有效融入FPGA实现中。
同时,阐述如何利用FPGA的可编程特性实现实时参数调整与在线监控,增强系统的动态适应能力和故障诊断能力。
仿真验证与实验结果:通过高级硬件描述语言(HDL)对设计进行建模,并利用FPGA开发环境进行功能仿真与时序分析,验证设计的正确性和稳定性。
锁相环工作原理
锁相环工作原理引言概述:锁相环(Phase-Locked Loop,简称PLL)是一种常见的电子电路,用于同步信号的频率和相位。
它在通信系统、数字信号处理、时钟同步等领域被广泛应用。
本文将详细介绍锁相环的工作原理,包括基本原理、主要组成部分、工作过程以及应用场景。
一、基本原理:1.1 反馈环路:锁相环的核心是一个反馈环路,通过不断调整输入信号的频率和相位,使其与参考信号保持同步。
这个环路由比较器、低通滤波器和控制电路组成。
1.2 相位检测器:相位检测器用于比较输入信号和参考信号的相位差,产生一个误差信号。
根据误差信号的大小和方向,控制电路将调整输入信号的相位和频率。
1.3 数字控制:现代锁相环通常采用数字控制,通过数字控制器和数字控制电路,实现对反馈环路的精确控制。
数字控制还可以实现自适应调整,提高锁相环的性能。
二、主要组成部分:2.1 振荡器:振荡器是锁相环的基础,它产生一个参考信号,用于与输入信号进行比较。
常见的振荡器有晶体振荡器和压控振荡器,前者具有稳定的频率,适用于需要高精度的应用,而后者可以通过调节电压来改变频率,适用于需要频率可调的应用。
2.2 分频器:分频器用于将输入信号的频率降低到与参考信号相匹配的频率。
它可以将输入信号分成若干个相等的周期,用于和参考信号进行比较。
2.3 低通滤波器:低通滤波器用于滤除相位检测器输出中的高频噪声,保留误差信号中的低频成分。
它可以使锁相环的输出更加稳定。
三、工作过程:3.1 初始状态:锁相环初始状态下,输入信号和参考信号的频率和相位存在差异。
相位检测器会检测到相位差,并产生一个误差信号。
3.2 调整过程:控制电路根据误差信号的大小和方向,调整输入信号的相位和频率。
通过不断调整,误差信号逐渐减小,直到达到稳定状态。
3.3 稳定状态:当输入信号和参考信号的频率和相位完全一致时,锁相环进入稳定状态。
此时,输出信号与参考信号保持同步,相位差为零。
四、应用场景:4.1 通信系统:锁相环在通信系统中用于频率合成、时钟恢复和信号调制等方面。
全数字锁相环结构及工作原理
DPLL结构及工作原理一阶DPLL的基本结构如图1所示。
主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器四部分构成。
K变模计数器和脉冲加减电路的时钟分别为Mfc和2Nfc。
这里fc是环路中心频率,一般情况下M和N都是2的整数幂。
本设计中两个时钟使用相同的系统时钟信号。
图1 数字锁相环基本结构图鉴相器常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD),本设计中采用异或门(XOR)鉴相器。
异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差Фe=Фin-Фout,并输出误差信号Se作为K变模可逆计数器的计数方向信号。
环路锁定时,Se为一占空比50%的方波,此时的绝对相为差为90°。
因此异或门鉴相器相位差极限为±90°。
异或门鉴相器工作波形如图2所示。
图2 异或门鉴相器在环路锁定及极限相位差下的波形K变模可逆计数器K变模可逆计数器消除了鉴相器输出的相位差信号Se中的高频成分,保证环路的性能稳定。
K变模可逆计数器根据相差信号Se来进行加减运算。
当Se为低电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号CARRY给脉冲加减电路;当Se为高电平时,计数器进行减运算,如果结果为零,则输出一个借位脉冲信号BORROW给脉冲加减电路。
脉冲加减电路脉冲加减电路实现了对输入信号频率和相位的跟踪和调整,最终使输出信号锁定在输入信号的频率和信号上,工作波形如图3所示。
图3 脉冲加减电路工作波形除N计数器除N计数器对脉冲加减电路的输出IDOUT再进行N分频,得到整个环路的输出信号Fout。
同时,因为fc=IDCLOCK/2N,因此通过改变分频值N可以得到不同的环路中心频率fc。
DPLL部件的设计实现了解了DPLL的工作原理,我们就可以据此对DPLL的各部件进行设计。
DPLL 的四个主要部件中,异或门鉴相器和除N计数器的设计比较简单:异或门鉴相器就是一个异或门;除N计数器则是一个简单的N分频器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全数字锁相环原理及应用
摘要:首先介绍全数字锁相环的结构,及各个模块的作用,接着讲述全数字锁相环的工作原理,然后介绍在全数字锁相环在调频和解调电路、频率合成器中的应用。
关键字:全数字锁相环数字环路鉴相器数字环路滤波器数字压控振荡器
1.前言
锁相环(PLL,Phase Locked Loop)技术在众多领域得到了广泛的应用。
如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。
传统的锁相环由模拟电路实现,而全数字锁相环(ADPLL,All Digital Phase Locked Loop)与传统的模拟电路实现的PLL相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。
随着通讯技术、集成电路技术的飞速发展和系统芯片的深入研究,全数字锁相环将会在其中得到更为广泛的应用。
2.全数字锁相环结构及原理
图1 数字锁相环路的基本结构
(1)数字环路鉴相器(DPD)
数字鉴相器也称采样鉴相器,是用来比较输入信号与压控振荡器输出信号的相位,它的输出电压是对应于这两个信号相位差的函数。
它是锁相环路中的关键部件,数字鉴相器的形式可分为:过零采样鉴相器、触发器型数字鉴相器、超前—滞后型数字鉴相器和奈奎斯特速率取样鉴相器。
(2)数字环路滤波器(DLF)
数字环路滤波器在环路中对输入噪声起抑止作用,并且对环路的校正速度起调节作用。
数字滤波器是一种专门的技术,有各种各样的结构形式和设计方法。
引入数字环路滤波器和模拟锁相环路引入环路滤波器的目的一样,是作为校正网
络引入环路的。
因此,合理的设计数字环路滤波器和选取合适的数字滤波器结构就能使DPLL满足预定的系统性能要求。
(3)数字压控振荡器(DCO)
数控振荡器,又称为数字钟。
它在数字环路中所处的地位相当于模拟锁相环中的压控振荡器(VCO)。
但是,它的输出是一个脉冲序列,而该输出脉冲序列的周期受数字环路滤波器送来的校正信号的控制。
其控制特点是:前一采样时刻得到的校正信号将改变下一个采样时刻的脉冲时间位置。
全数字锁相环工作原理
全数字锁相环的基本工作过程如下:
(1) 设输入信号 u i(t) 和本振信号(数字压控振荡器输出信号)u o(t) 分别是正弦和余弦信号,他们在数字鉴相器内进行比较,数字鉴相器的输出是一个与两者间的相位差成比例的电压u d(t)。
(2) 数字环路滤波器除数字鉴相器输出中的高频分量,然后把输出电压u c(t) 加到数字压控振荡器的输出端,数字压控振荡器的本振信号频率随着输入电压的变化而变化。
如果两者频率不一致,则数字鉴相器的输出将产生低频变化分量,并通过低通滤波器使DCO的频率发生变化。
只要环路设计恰当,则这种变化将使本振信号u o(t) 的频率与数字鉴相器输入信号u i(t) 的频率一致。
(3)最后,如果本振信号的频率和输入信号的频率完全一致,两者的相位差将保持某一个恒定值,则数字鉴相器的输出将是一个恒定直流电压(忽略高频分量),数字环路滤波器的输出也是一个直流电压,DCO的频率也将停止变化,这时,环路处于“锁定状态”。
3.全数字锁相环的特点及应用
全数字化锁相环的共同特点
(1)电路完全数字化,使用逻辑门电路和触发器电路。
系统中只有“导通”和“截止”两种工作状态,受外界和电源的干扰的可能性大大减小,电路容易集成,易于制成全集成化的单片全数字锁相环路。
因而系统的可靠性大大提高。
(2)全数字锁相环路还缓和甚至消除了模拟锁相环路中电压控制振荡器(VCO)的非线性以及环路中使用运算放大器和晶体管后而出现的饱和及运算放大器和鉴相器的零漂等对环路性能的影响。
(3)数字锁相环路的环路部件甚至整个环路都可以直接用微处理机来模拟而实现。
(4)全数字锁相环路中,因模拟量转变为数字量所引入的量化误差和离散控制造成的误差,只要系统设计得当,均可以被忽略。
全数字化锁相环的在实际工程中的应用
目前,全数字锁相环路(A DPLL)已在数字通信、无线电电子学及电力系统自动化等领域中得到了极为广泛的应用。
A DPLL具有精度高、不受温度和电压影响、环路带宽和中心编程频率可调、易于构建高阶锁相环等优点。
随着集成电路技术的发展,不仅能够制成频率较高的单片集成锁相环路,而且可以把整个系统集成到一个芯片上去。
全数字锁相环在调频和解调电路中的应用
图3 调频电路框图
全数字锁相环在频率合成电路中的应用
在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。
但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合成技术,可以获得多频率、高稳定的振荡信号输出。
输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振信号频率小的称为锁相分频器电路。
锁相倍频和锁相分频电路组成框图如图4所示:
f i=Nf o
图4 锁相倍频分频电路组成框图
注:图中的N大于1时,为分频电路;当N小于1时为倍频电路。
4.总结
本文主要介绍了全数字锁相环的原理及在工程中应用,随着科技的发展,根据不同的需要,单片集成全数字锁相环的商用产品越来越多,它具有精度高、不受温度和电压影响、环路带宽和中心编程频率可调、易于构建高阶锁相环等优点。
应用变得越来越广泛。
参考文献
[1]Floyd M.Gardner著,姚剑清译.锁相环技术.北京:人民邮电出版社,2007.11
[2]黄智伟.锁相环与频率合成器电路设计.西安:西安电子科大学出版社,2008.1
[3]王杰敏.全数字锁相环的设计.通信电源技术,2009.03
[4]蒲晓婷.全数字锁相环的设计及分析.现代电子技术,2008.05。