汽轮机原理-汽轮机级内损失和级效率
汽轮机原理 第一章
目前常见的复速级内总的反动度 值约在5%~15%之间。
图1-23 带反动度的复速级的热力过程线
复速级的轮周功:复速级的轮周功等于两列动叶 上产生的机械功之和。
Wu Wu Wu u c1 cos1 c2 cos2 c1cos1 c2cos2
➢ β 的大小与喷嘴的进口状态( 、 p0* v0* )、压力比εn和蒸汽的 绝热指数κ有关。
Gn Gnc
k
2
1
2
k n
k 1
nk
k 1
2 k 1 k 1
1
0.546 n 1
n 0.546
三、蒸汽在喷嘴斜切部分中的膨胀
汽轮机弯曲型渐缩叶栅通道,在喉部后形成斜切出口通道,将此称为 斜切部分。它的存在极大地改变了叶栅通道的流动特性。
极限膨胀压力比 1d
k
1d
p1d p0
2 k1
k 1
sin 1
2k k1
汽流偏转角
sin 1 1
sin
1
ccr c1t
cr 1t
图1-13 蒸汽在喷嘴斜切部分的膨胀
第三节 蒸汽在动叶中的流动
圆周速度: u dmn
60
相对速度:W1、W2
绝对速度:C1、C2
➢ 进口速度三角形 ➢ 出口速度三角形
➢ 叶栅流道:喷嘴叶栅和动叶栅的安
装角s和s、喷嘴叶栅和动叶栅的 叶型进口几何角0g和0g、喷嘴叶 栅和动叶栅的叶型出口几何角1g和 1g、喷嘴出口汽流角1和动叶出口 汽流角2等
喷嘴叶栅和动叶栅的几何参数
喷嘴叶栅结构尺寸:
汽轮机
1.速度比和最佳速比:将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c1的比值定义为速度比,轮周效率最大时的速度比称为最佳速度比。
2.假想速比:圆周速度u与假想全级滞止理想比焓降都在喷嘴中等比熵膨胀的假想出口速度的比值。
3.汽轮机的级:汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。
4.级的轮周效率:1kg蒸汽在轮周上所作轮周功与整个级所消耗的蒸汽理想能量之比5.临界压比:汽流达到音速时的压力与滞止压力之比。
6.级的相对内效率:级的相对内效率是指级的有效焓降和级的理想能量之比。
7.喷嘴的极限膨胀压力:随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力8.级的反动度:动叶的理想比焓降与级的理想比焓降的比值。
表示蒸汽在动叶通道内膨胀程度大小的指标。
9.级的部分进汽度:装有喷嘴的弧段长度与整个圆周长度的比值。
10.热耗率:每生产1kW.h电能所消耗的热量。
11.轮发电机组的汽耗率:汽轮发电机组每发1KW·h电所需要的蒸汽量。
12.汽轮机的极限功率:在一定的初终参数和转速下,单排气口凝汽式汽轮机所能发出的最大功率。
13.汽轮机的相对内效率:蒸汽实际比焓降与理想比焓降之比。
14.汽轮机的绝对内效率:蒸汽实际比焓降与整个热力循环中加给1千克蒸汽的热量之比。
15.汽轮发电机组的相对电效率和绝对电效率:1千克蒸汽所具有的理想比焓降中最终被转化成电能的效率称为汽轮发电机组的相对电效率。
1千克蒸汽理想比焓降中转换成电能的部分与整个热力循环中加给1千克蒸汽的热量之比称为绝对电效率。
16.轴封作用及组成:减少蒸汽损失,防止蒸汽外逸空气内漏。
端轴封和与它相连的管道和附属设备组成轴封系统。
17.什么是汽轮机的最佳速比:轮周效率最大时的速度比称为最佳速度比。
18.滑压运行:汽轮机的进汽压力随外界的负荷增减而上下“滑动”。
19.汽轮机的工况图及工况图作用:汽轮机发电机组的功率与汽耗量间的关系曲线。
汽轮机原理名词解释
汽轮机的级: 汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。
级的余速损失: 汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,称余速损失滑销系统: 保证汽缸定向自由膨胀,保持汽缸与转子中心位置一致汽耗微增率: 每增加单位功率需多增加的汽耗量。
迟缓率: 1n 、2n 分别表示在机组同一功率下的最高和最低转速0n 时汽轮机的额定转速压比: 喷嘴后的压力与喷嘴前的滞止压力之比速度系数: :在喷嘴出口处蒸汽的实际速度比理论速度速比: 动叶圆周速度u 与喷嘴出口速度c1之比x1=u/c1。
最佳速比: 轮周效率最大时的速度比称为最佳速度比。
反动度: 动叶的理想比焓降与级的理想比焓降的比值。
表示蒸汽在动叶通道内膨胀程度大小的指标。
轮周效率: 1kg 蒸汽在轮周上所作的轮周功Wu 与整个级所消耗的蒸汽理想能量Eo 之比。
轮周功率: 单位时间内蒸汽推动叶轮旋转所作出的机械功。
轮周损失: 喷嘴出口气流的实际比焓值h1与理想比焓值h1t 之差速度变动率:汽轮机空负荷时对应的最大转速nmax 和额定负荷时所对应的最小转速nmin 之差与与汽轮机额定转速n0之比凝汽器冷却倍率: 进入凝汽器的冷却水量与进入凝汽器的蒸汽量的比值称为凝汽器的冷却倍率。
表明冷却水量是被凝结蒸汽量的多少倍又称循环倍率M=Dw/Dc级按照不同角度的分类:按能量转换特点分为纯冲动级、冲动级、反动级、复速级等几种汽轮机的两大作用原理及其特点:冲动作用原理 冲动力推动动叶做功。
特点:蒸汽只在喷嘴中膨胀。
反动作用原理反动力推动动叶做功。
特点:蒸汽在喷嘴、动叶都膨胀。
1.级的临界状态(蒸汽在膨胀流动过程中,在汽道某一截面上达到当地声速的气流速度称为临界速度。
这时汽流所处的状态称为临界状态,汽流的参数称为临界参数。
)2.滞止状态(气体在流动的过程中,因受到某种物体的阻碍,而流速降低为零的过程称为绝热滞止过程,此时气体的状态为滞止状态)3.切部分的作用及膨胀条件:导向作用和膨胀作用;条件:叶栅后的压力P1小于临界压力P1c 大于极限膨胀压力P1d (P1d< P1<P1c )4.多级汽轮机的特点:(1整机功率较大2每级承担的焓降较小,各级都可以在最佳速比下工作3利用重热现象,余速利用4多级汽轮机相对内效率,绝对内效率明显提高5多级汽轮机单位功率的投资降低)提高单机功率的途径:(多缸、多排气口、提高初温初压、双轴、降低转速)(1)、提高新蒸汽参数、降低终参数;(2)采用高强度、低质量密度的合金材料;(3)采用多排气口;(4)采用低转速;(5)提高机组的相对内效率;(6)采用给水回热循环;(7)采用中间再热循环。
《汽轮机原理》
b 高速夹带消耗功;
c 水珠速度低,打击叶栅背弧 d 过冷现象,凝结滞后
17
(2)解决办法 :
a 采用去湿装置; 捕水槽、捕水室等, 以减少蒸汽中的水分。 b 提高叶片本身的抗 湿能力. 在动叶片进汽边背弧
加焊硬质合金、电火
花处理等。
18
(3) 经 验 公 式 :
' △hx (1 x m )hu
△ht
Gt
G
hu'
式 中 , G ------ 级 流量; kg/s
hu ' ------ 级的 轮周有效比焓降,kJ/kg ;
hu '=ht* (hnξ hbξ hc2 hl h )
16
6 .
湿 汽 损 失
(1)产 生 原 因 :
a 凝结,减少作功;
3 k1dxa f 2.3 10 sin 1ls 3
△h f f P t
级的理想功率
Pt
7
4, 部 分 进 汽 损 失
采用部分进汽,就产生了部分
进 汽 损 失 , 由 “ 鼓 风” 损 失 和
“斥汽”损失两部分所组成的。 “鼓 风” 损 失 发生在不装喷嘴的弧段上,有停滞的蒸汽。 “ 斥 汽 损 失 ” 发生在装有喷嘴的进汽弧段内,有停滞蒸汽的动叶转到进汽 弧段时,从喷嘴出来的汽流吹这部分蒸汽。 在喷嘴 出口端 的A点存 在着漏 汽;而 在B 点 又存在 着抽吸 作用 减少部分进汽损失:增加部分进汽度。要选择合适的部分进汽度。
30
(2)沿叶高相对节距不同所引起的损失:
偏 离最 佳 的 相 对 节 距 ,造 成 效 率 下 降 。
(3) 轴向间隙中汽流径向流动所引起的损失:
汽轮机原理思考题1
汽轮机原理思考题11.汽轮机有那些⽤途,我国的汽轮机是如何进⾏分类的,其型号和型式如何表⽰?汽轮机的⽤途:把蒸汽的热能转化为机械能⽤于发电;除此之外,还⽤于⼤型舰船的动⼒装备,并⼴泛作为⼯业动⼒源,⽤于驱动⿎风机、泵、压缩机等设备。
汽轮机的分类:A、按做功原理分类:冲动式汽轮机、反动式汽轮机。
B、按热⼒过程特性分类:凝汽式汽轮机、背压式汽轮机、调整抽汽式汽轮机、中间再热式汽轮机。
C、按蒸汽压⼒分类:低压汽轮机,新汽压⼒1.2~2MPa中压汽轮机,新汽压⼒2.1~4.0MPa⾼压汽轮机,新汽压⼒8.1~12.5MPa超⾼压汽轮机,新汽压⼒12.6~15.0MPa亚临界压⼒汽轮机,新汽压⼒15.1~22.5MPa超临界压⼒汽轮机,新汽压⼒⼤于22.1MPa超超临界压⼒汽轮机,新汽压⼒27MPa以上或蒸汽温度超过600/620℃汽轮机的型号表⽰:我国制造的汽轮机的型号有三部分。
第⼀部分:由汉语拼⾳表⽰汽轮机的形式(如表⼀),由数字表⽰汽轮机的容量(MW);第⼆部分:⽤⼏组由斜线分隔的数字分别表⽰新蒸汽参数、再热蒸汽参数、供热蒸汽参数等;第三部分:⼚家设计序号。
2.汽轮机课程研究的主要内容有那些,如何从科学研究及⼯程应⽤的不同⾓度学习该课程?研究内容:(1)绪论:本课程的主要内容及在⽣产实践中的应⽤;国内外汽轮机的展及应⽤;汽轮机的型式、分类及型号;汽轮机装置及现代⼤型单元制机组的概念;本课程的学习要求及学习⽅法。
(2)汽轮机级的⼯作原理:⼀元流动的⼏个主要⽅程及应⽤;蒸汽在喷嘴及动叶中的流动、速度三⾓形及计算;级的轮周功率和轮周效率;级内损失和级的相对内效率;级的热⼒设计原理。
(3)多级汽轮机:多级汽轮机的⼯作过程及其特点;进、排汽机构的流动阻⼒损失;汽轮机及其装置的经济性评价指标;轴封及其系统;轴向推⼒及平衡;汽轮机的极限功率及其影响因素。
(4)汽轮机变⼯况特性:喷嘴变⼯况时流量与压⼒的关系;级与级组的变⼯况特性;配汽⽅式对汽轮机变⼯况运⾏经济性和安全性的影响;滑压运⾏经(5)汽轮机的凝汽设备:凝汽设备的⼯作原理及任务;凝汽器的真空与传热;凝汽器的结构布置;抽⽓器;凝汽器变⼯况。
第一章 汽轮机级的工作原理-第五节 级内损失和级的相对内效率
第五节 级内损失和级的相对内效率一、级内损失除前面讨论的级内轮周损失即喷嘴损失n h δ、动叶损失b h δ和余速损失2c h δ之外,级内还有叶高损失l h δ、扇形损失h θδ、叶轮摩擦损失f h δ、部分进汽损失e h δ、漏汽损失h δδ和湿汽损失x h δ。
必须指出,并非各级都同时存在以上各项损失,如全周进汽的级中就没有部分进汽损失;采用转鼓的反动式汽轮机就不考虑叶轮摩擦损失;在过热蒸汽区域工作的级就没有湿汽损失;采用扭叶片的级就不存在扇形损失。
本节所讨论的各项级内损失,目前尚难以完全用分析法计算,多数是采用在静态和动态试验的基础上建立的经验公式计算。
随试验条件的不同,计算损失的公式也不同。
下面主要介绍国内计算级内损失的常用公式。
1.叶高损失l h δ叶高损失又称为端部损失,其产生的物理原因及影响因素在上节已经分析过。
它实质上是属于喷嘴和动叶的流动损失。
工程上为了方便.把它单独分出来计算。
叶高损失l h δ主要决定于叶高l 。
当叶片高度很高时,l h δ可以忽略不计。
叶高必须大于相对极限高度,否则l h δ将急剧增加。
叶高损失常用下列半经验公式计算:l h δ=u ah l ∆ (1.5.1)式中 a ——试验系数,单列级a =1.2(未包括扇形损失)或a =1.6(包括扇形损失),双列级a =2;u h ∆——不包括叶高损失的轮周有效比焓降,即u h ∆=0th ∆—n h δ—b h δ—2c h δ,/kJ kg ;l ——叶栅高度,单列级为喷嘴高度,双列级为各列叶栅的平均高度,mm 。
叶高损失也可以用以下半经验公式计算: l ξ=21ana x l (1.5.2)即 l h δ= l ξ0E (1.5.3) 式中 1a ——试验系数,单列级1a =9.9,双列级1a =27.6; n l ——喷嘴高度,mm 。
2.扇形损失h θδ汽轮机级中实际应用的是环列叶栅,如图1.5.1(a)所示。
《汽轮机》八、级内损失和效率
级的相对内效率 i
级的有效焓降与级的理想能量之比
i
hi E0
E0
hn
hb
h
hvf
hp E0
ht
hx
(1 2 )hc2
级的内功率
Pi
Gh
*
ti
Dh *t i
3600
不考虑余速利用
h-s图
Pf G
摩擦损失与 G成v 反比 ,高压级的摩擦损失大 低压级的小
摩擦损失与蒸汽流量成反比 ,小机组摩擦损失大
低负荷或空负荷,应监视排汽温度
(四)部分进汽损失
喷嘴连续部满整个圆周,这种进汽方式称为全周进汽
喷嘴布置在某个弧段内,这种进汽方式称为部分进汽 装有喷嘴的弧长与整个圆周之比,称为部分进汽度
e zntn
影响:均使级效率降低,影响汽轮机运行的经济性
(一)叶栅损失 喷嘴损失和动叶损失统称为叶栅损失 叶栅的几何参数
叶片的横截面形状称为叶型。其周线称为型线。
平均直径dm 、 叶片高度l 、 叶栅节距t、叶型宽度B、叶型弦长b
出口边厚度Δ、安装角 s、 s(叶栅额线与弦长之间的夹角)
叶型进口角 0g 、 1g(叶型中弧线在前缘点的切线与叶栅前额线之间的夹角 )
(1)两个级的平均直径接近相等;
(2)下一级的喷嘴进汽方向应与上一级的动叶排汽方向一致;
余(速3不)能两被级利之用间的级距离应尽可能小,而且在此间隙内汽流不发生扰动。
(1)调节级; (2)级后有抽汽口的级; (3)部分进汽度和平均直径突然变化的级; (4)最末一级。
二、级的相对内效率和内功率
级的有效焓降 hi
采取的措施: 2 1
第六节汽轮机级内损失及级效率.
在叶型的前驻点;ci 0, pi p0*, 所以:P 1 在叶型的出口:pi p1, 使P 0
P 加速膨胀;P 气流扩压;
跨叶片流面:叶片流道进口截面与以透平轴为轴心的 圆柱面相交,其相交线为一圆弧,通过该圆弧的流线 组成一个流面,此流面称为跨叶片流面。
在驻点处 p =1。过驻点, 速度很快增加, p 相应的较快 下降。在叶背部,由于驻点后
0.436 103
sdnln
sin
a1
1 v
( ca )3 100
s — 级的流量系数,由实验求得,一般取s 0.94。
若dn
d,ln
l则:
f
2.3103 k1dxa3
sin a1ls
在汽轮机的高压级中,由于比容较小,摩擦损失Pf 较大,
而在低压级中,比容很大,Pf 很小,通常可以忽略不计。
_ +
_ +
_
+
_
+
U
在这个横向压力梯度作用 下,附面层内的气流便产 生自叶腹到叶背的横向运 动。根据流动的连续条件, 在靠近端部附面层外的气 流又会产生由背面向腹面 的横向补偿运动。这种在 流道端部产生的气流横向 运动称端部二次流。讨论 端部损失的主要因素是叶 片的相对高度,相对高度越 大,分配到每单位高度的 损失就越小,反之就越大。
(四) 叶轮摩擦损失hf(续)
p35
这种摩擦损失包括两方面内容:
1)由于蒸汽间的速度差,造成蒸汽分子间的相互牵制和 蒸汽与金属壁面的摩擦,要消耗掉叶轮的部分有用功;
2)靠近叶轮两侧的蒸汽随叶轮一起旋转,产生离心力, 做向外的径向流动;靠近壁面的蒸汽自然向下流动以
填补叶轮附近的空隙,这样,在叶轮的子午面上就产
1.5 汽轮机级内损失和级效率
3、叶轮摩擦损失 (1)叶轮两侧及围带表面的粗糙度引起的摩 擦损失 叶轮在汽室中作高速旋转时,由于蒸汽粘性, 由叶轮表面至汽缸壁的间距上蒸汽微团的圆周速 度是不同的,即存在速度梯度,因此产生叶轮轮
面与蒸汽及蒸汽之间的摩擦。
3、叶轮摩擦损失 (2)子午面内的涡流运动 引起的损失 靠近叶轮轮面侧的蒸汽质点 随叶轮一起转动时,受到离心力
作用,沿径向向外流动。
靠近隔板处的蒸汽质点的旋
转速度小,自然要向旋转中心处
流动以保持蒸汽的连续性。于是, 在叶轮两侧的汽室中就形成了涡:
a1 2 l xa ln 即hl l E0
a1 ——试验系数。单列级=9.9,为双列级为27.6.
l n ——喷嘴高度。
2、扇形损失 由于汽轮机的叶栅是安装在叶轮上的,呈环形。
汽流参数和叶片几何参数(节距、进汽角)沿叶高是
变化的。
环形叶栅,图1.5.1,与直叶栅相比的特点:
(a)叶栅的相对节距不是常数,从内径向外径 成比例的增加,平均直径处为最佳,其它都偏离最佳 值,叶型损失系数都大于最小值,带入额外的流动损 失。
t 1t d b lb t 0.6 Gn 1 m 2t d nln sin 1
t
t
——动叶顶部间隙的流量系数
t ——动叶顶部的反动度
——动叶顶部的当量间隙
(4)叶顶漏汽损失计算
Gt ' ht hi Gl
经验公式计算:
1 z t ' ht hi 2 sin 1
汽轮机原理-1-3
三、蒸汽作用在动叶上的作用力
¾蒸汽受力 v Fp
+
v Fb
=
mav
=
m cr2 − cv1 τ
= G(cv2
− cv1 )
¾叶片受力 −
v Fb
=
v Fp
− mav
=
v Fp
− m cr2 − cv1 τ
=
v Fp
+ G(cv1
− cv2 )
¾轮周力 Fu = G(c1 cosα1 + c2 cosα 2 )
¾按热力特性分类 ¾凝汽式 ¾背压式 ¾调节抽汽式 ¾抽汽背压式 ¾中间再热式 ¾混压式
汽轮机的分类
¾ 按主蒸汽压力分类 ¾ 低压: 0.12~1.5MPa ¾ 中压:2~4MPa ¾ 高压:6~10MPa ¾ 超高压:12~14MPa ¾ 亚临界压力:16~18MPa ¾ 超临界压力:>22.1MPa ¾ 超超临界压力:>32(27)MPa
6~10%﹐许多国家常用的单机功率为300~600兆瓦。
¾ 汽轮机发展方向
增大单机功率 提高热经济性
¾ 增大单机功率 ¾ 提高初参数,降低终参数 ¾ 采用一次中间再热 ¾ 采用燃汽—蒸汽联合循环 ¾ 采用集中控制 ¾ 发展核能电站汽轮机
汽轮机发展方向
三、汽轮机的分类
¾ A.按级数分 ¾ B.按工作原理分 ¾ C.按热力特性分 ¾D. 按进汽参数分 ¾E. 按汽流方向分 ¾ F.按用途分 ¾ G.按汽缸数目分 ¾ H.按工作状态分 ¾ I.按布置方式分
¾动叶的理想比焓降 ∆hb ¾动叶的滞止理想比焓降 ∆hb*
¾动叶出口的实际速度 w2
¾动叶速度系数 ψ = w2 / w2t
汽轮机的工作原理(2)
或
蒸汽对动叶片的总作用力Fb为:
Fb Fu2 Fz2
⒉ 轮周功率
• 概念:单位时间内蒸汽推动叶轮旋转所作 出的机械功称为轮周功率。 注意点:1kg蒸汽产生的轮周功Wu等于 级的轮周有效比焓降Δhu。 • 计算式
hnζ
1 2 1 2 2 * (c1t c1 ) c1t (1 2 ) (1 2 )hn 2 2
喷嘴损失与喷嘴理想焓降之比称为喷嘴能量损失系数,用 n 表示
n
hn
h
* n
1
2
• 影响速度系数的因素有:喷嘴高度、叶型、汽 道形状、表面粗糙度、前后压力等。 • 速度系数与叶高的关系曲线如下图:
2、级内能量转换过程:
具有一定压力、温度的蒸汽通过汽轮机的级时,首 先在静叶栅通道中得到膨胀加速,将蒸汽的热能转化为 高速汽流的动能,然后进入动叶通道,在其中改变方向 或者既改变方向同时又膨胀加速,推动叶轮旋转,将高 速汽流的动能转变为旋转机械能。
3、冲动级:
当汽流通过动叶通道时,由于受到动叶通道形状的限制 而弯曲被迫改变方向,因而产生离心力,离心力作用于叶 片上,被称为冲动力。这时蒸汽在汽轮机的级所作的机械 功等于蒸汽微团流进、流出动叶通道时其动能的变化量。 而这种级称为冲动级。
4、反动级:
当汽流通过动叶通道时,一方面要改变方向,同时还要 膨胀加速,前者会对叶片产生一个冲动力,后 者会对叶片 产生一个反作用力,即反动力。蒸汽通过这种级,两种力 同时作功。通常称这种级为反动级。
hb
二、级的反动度
蒸汽在动叶通道内膨胀时的理想 焓降hb, 和在整个级的滞止理想焓 降ht* 之比,即
汽轮机级内损失及级效率
v • 影响叶轮摩擦损失的因素:圆周速度u、蒸汽的比容、 v 级的平均直径dm及流量等。其中 沿流动方向变化 p f p f v 大;低压级 v 小; 最大,高压级 小, 大, • 反动级无叶轮,没有叶轮摩擦损失。 • 减小叶轮摩擦损失的措施: • (1)尽量减小叶轮与隔板间腔室的容积,即减小叶 轮与隔板间的轴向距离; • (2)尽可能提高叶轮表面的光洁度。
hl
l
hu
式中 a-试验系数,单列级a=1.2(不包括扇形损失)或 a =1.6(包括扇形损失),双列级a=2; 为 叶栅高度,对单列级为喷嘴高度,对双列级为各级叶栅 l 平均高度,mm。 a 2 l 1 xa 叶高损失也可用下列半经验公式计算: ln hl l E0 式中 a1-试验系数,单列级a1=9.9,双列级a1=27.6;
lb 0 .7 d b h E0
2
由此可见,扇形损失与径高比 比。 θ越小,ζθ越大,扇形损失越大。
db l
b
平方成反
一般当θ >8~12时,采用等截面直叶片,存在着扇 形损失,但加工方便;当θ <8~12时,为适应汽流参数 沿叶高的变化,采用扭叶片,虽加工复杂,但避免了 扇形损失。
• (二)扇形损失
• 1、产生原因: • ①环形叶栅的节距、圆周速度及蒸汽参数均沿叶高发生变化。 即这些数值均偏离了平均直径处的设计值,蒸汽流过时会增 加流动损失。 • ②在等截面直叶片级的轴向间隙中,汽流还会径向流动引起 损失。这些损失统称为扇形损失。
(a)环形叶栅的节距变化;(b)平面叶栅
2、计算扇形损失的经验公式:
G p
p Ap c1 p
v1t
G p G
p Ap
s25汽轮机级内损失及级效率解析知识讲解
图1.5.3 部分进汽时采用护罩的示意图 1-动叶片;2-护罩;3-叶轮;4-汽缸
(2)斥汽损失 发生在装有喷管的进汽弧段内。
hs
s
ce
1 e
Sn dn
xa
斥汽损失的计算:
s
ce
1 Sn e dn
xa
hs sE0
S -n-喷管组数;c e --与级型有关的系数,单列级 ce 0.012;
双列级 ce 0.01;6
• 反动级无叶轮,没有叶轮摩擦损失。
• 减小叶轮摩擦损失的措施: • (1)尽量减小叶轮与隔板间腔室的容积,即
减小叶轮与隔板间的轴向距离; • (2)尽可能提高叶轮表面的光洁度。
• (四) 部分进汽损失 h e
部分进汽:将喷管布置在隔板的部分圆周上,使蒸汽沿部分圆 弧进汽的方式。 采用部分进汽的原因:使叶栅高度不小于15mm。 部分进汽度:安装喷管的弧段长度与整个圆周长的比值,即
• 2、叶高损失计算:叶高损失常用下列半经验公式
计算。
hl
a l
hu
式中 a-试验系数,单列级a=1.2(不包括扇形损失)或
a =1.6(包括扇形损失),双列级a=2;
l为 叶栅高度,对单列级为喷嘴高度,对双列级为各级叶栅
平均高度,mm。 叶高损失也可用下列半经验公式计算:
l
a1 ln
x
2 a
hl lE 0
• 1、隔板漏汽损失
• (1) 产生原因:隔板中心孔与主轴之间存在间隙, 且间隙前后的蒸汽存在压差,产生漏汽,引起损失。
• (2)计算公式
Gp
pApc1p
v1t
pAp
2hn* v1t Zp
hp
Gp G
第二章§6级内损失和级效率
浙江大学热工与动力系统研究所
Institute of Thermal Science and Power Systems
一、级内损失
(一)流动损失
扇形损失 h 讨论是平面叶栅,实际是环形叶栅,其节距 t 、圆周速度 u 随叶 高 lb 有所不同,会偏离最佳值。2 2 l 1 能量损失系数: 0.7 b 0.7 d b h E0 能量损失: 式中: lb -动叶高度 db -动叶平均直径 E0 -级理想能量 余速损失 hc 2
ht 1.72 r1.4
lb E0
浙江大学热工与动力系统研究所
Institute of Thermal Science and Power Systems
一、级内损失
(五)湿汽损失
湿汽损失 hx 损失产生原因: ①过饱和损失 (过冷损失) ②摩擦阻力损失 ③制动损失 ④扰流损失 ⑤工质损失
Institute of Thermal Science and Power Systems
二、级的相对内效率
浙江大学热工与动力系统研究所
Institute of Thermal Science and Power Systems
二、级的相对内效率
级的相对内效率(级效率):
* hi ht hn hb hl h h f he h hx hc 2 ri E0 ht* 1 hc 2
浙江大学热工与动力系统研究所
Institute of Thermal Science and Power Systems
汽轮机级的工作原理
级的相对内效率:级的有效焓降△hi与级 的理想能量E0之比。
ri
hi E0
级的内功率:由级的有效焓降和蒸汽流
ห้องสมุดไป่ตู้量来确定,即
pi
Dhi 3600
1、冲动作用原理 当一运动物体碰到另外一个运动速度比其
低的物体时,就会受到阻碍而改变其速度,同 时给阻碍它的物体一个作用力,这个作用力被 称为冲动力。冲动力的大小取决于运动物体的 质量以及速度的变化。质量越大,冲动力越大; 速度变化越大,冲动力也越大。受到冲动力作 用的物体改变了速度,该物体就做了机械功。
复速级:由固定的喷管、导叶和安装在同一叶轮上的
两列动叶组成的级称为复速级。
3、调节级和非调节级
(1)调节级:通流面积能随负荷改变的级,如喷管 调节的第一级。
(2)非调节级:通流面积能不随负荷改变的级,可 以全周进汽,也可以部分进汽。
复速级
复速级由喷管、导叶和两列动叶 组成。蒸汽在喷管膨胀后,进入 第一列动叶作功,流出第一列动 叶时速度还相当大。用一列导叶 改变蒸汽流动方向后进入第二列 动叶继续作功。
在动叶内,把蒸汽具有的动能和热能机械功 作用力:
①由静叶出口的高速蒸汽冲击动叶产生冲动力Fi ②动叶内蒸汽继续膨胀,产生一个反动力Fr
三、反动度和级的类型
(一)汽轮机的反动度
蒸汽在动叶通道内膨胀时
的理想焓降hb, 和在整个
级的滞止理想焓降ht* 之比,
即
m
hb ht*
m
hb hn* hb
(汽轮机原理)第四讲级内损失与级相对内效率
什么会影响级内损失?
1
淤积和腐蚀
在引导喷嘴和叶片中,容易有沉积物和腐蚀产生,导致能量散失。
2
运行温度和压力
在高温高压的状况下,机械能易发生热和氧化损伤,这可能导致更频繁的故障和 更高的损失。
3
设计和制造质量
级部件制造过程中的偏差和不完美将导致级内摩擦和更高的损失。
什么会影响级相对内效率?
叶片的状态
叶片在精度、强度和硬度方面的变化可能使效率 下降。
气流流速
该因素会影响热量和动力的流动,从而影响级内 工作情况。
转子系统的设计和制造质量
这些因素对于维持精度和减少积碳是关键的。
明确的调节策略
指定和实施适当的维护和调整策略可以帮助最大 化效率。
小结与建议
理解级内损失和级相对内效率的基本概念是确保减少能耗的关键因素之一。在操作中,定期检查机器以查 找与级损失和效率相关的问题,并及时修复故障或更改操作策略。为了最大化效率,应考虑采用新技术和 更好的维护实践。
(汽轮机原理)级内损失与 级相对内效率
在汽轮机性能参数中,级内损失和级相对内效率是其中一些关键指标。本次 演示将探讨这些主题并介绍有用的应用建议。
什么是级内损失?
1 定义
简而言之,级内损失指的是在汽轮机引导喷 咀和移动叶片等部件中发生的能量损失。这 些损失会减少总体输出功率,降低汽轮机效 率。
2 分类
级内损失可以分为静止和运动两种。静止级 内损失是指能量损失由固定部件引起,而运 动级内损失则由移动部件引起。
什ห้องสมุดไป่ตู้是级相对内效率?
定义
简单来说,级相对内效率是汽轮机性能的另一个关 键指标。它是级效率和理想效率之比,其中级效率 是级输出功率和输入功率之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 部分进汽损失 he
(1) “鼓风”损失 发生在没有喷嘴叶片的 弧段内。动叶通过这一弧段时,要象鼓风机 一样把滞留在这一弧段内的蒸汽鼓到出汽边 而耗功。
(2)“斥汽损失” 发生在安装有喷嘴叶片的弧段内。动叶片由非工作 区进入工作区弧段时,动叶通道中滞留的蒸汽要靠工作区弧段中喷嘴喷 出的主流蒸汽将其吹出,要消耗轮周功。 另外,如图由于叶轮作高速旋转,这样,在喷嘴出口端的A点存在着漏 汽;而在B点又存在着抽吸作用,将一部分蒸汽吸入动叶通道,干扰主 流,同样会引起损失。这样就形成了斥汽损失 。
一 . 级内损失
2.扇形损失 h
(1)原因 环形叶片导致非平均直径处偏离设计工况 (2)计算式:
h E0 ( k J / k g )
பைடு நூலகம்
0.7( 1 )2
径高比 db / lb越 小 ,扇形损失越大
(3)办法 当 > 10 ~ 12 时 , 级 应 该 采 用 等 截 面 直 叶 片 。等 截 面 直 叶 片 的 设 计 和 加 工 都 比 较 容 易 , 但 存 在 着 扇 形 损 失 ; 当 <10的级, 则应采用扭 叶片 。
v1t
p Ap
2hn* v1t z p
( 2)动叶顶漏汽量的计算
Gt
t AtCt
v2t
et (db
lb )t
v2t
2t ht*
11
2.6 汽轮机级内损失和级效率
一 . 级内损失
5.漏汽损失 h
( 3)隔板损失计算
hp
Gp G
hi*
Ap An Z p
hn
( 4 )叶顶漏汽损失计算
ht
Gt G
hi'
12
2.6 汽轮机级内损失和级效率
一 . 级内损失 6 .湿汽损失
蒸汽在汽轮机最后几级时便进入湿蒸汽区,这里将产生湿汽损失。产生湿 汽损失的原因在于:
( 1 )一部分蒸汽在膨胀加速过程中凝结成水滴,减少了作功蒸汽量;
( 2 )水滴不膨胀作功,反为高速汽流所夹带前进, 要消耗一部分轮周功 ; (3 )由于水滴前进速度低于蒸汽速度。这样,从动 叶进口速度三角形上分析,水滴从喷嘴中流出时,正 好打击动叶背弧,阻止动叶前进,减小了有用 功;而 水滴从动叶流出之后又打击下一级喷嘴的背弧。水滴 长期冲蚀片,使 叶片进口边背弧被打击成许多麻点, 严重时,会打穿叶片。
hl
式中,a-—经 验 系 数 ,
a l
hu
a=1.2 (单列级,不含扇形损失);
a=1.6(单列级,含扇形损失);a=2 (双列级);
hu----- 不包括叶高损失的轮周有效焓降 ,
hu = ht* (hn hb hc2 )
l ----- 叶栅高度(mm)。
3
2.6 汽轮机级内损失和级效率
13
2.6 汽轮机级内损失和级效率
一 . 级内损失 6 .湿汽损失
湿汽损失通常用下面经验公式计算:
hx (1 X m )hu"
式 中 , X m ------ 级 的 平 均 蒸 汽 干 度 ;
hu"
ht* (hn hb hc2 hl h )
k1 (db
lb
)
2
(u 100
)3
1 v2t
, (k W)
式 中 , k :过热蒸汽,k=1,对于饱和蒸汽,k=1.2~1.3;
d 、l、u:级的平均直径、叶高、圆周速度;
v2t ------ 动叶出口蒸汽比容 。
6
2.6 汽轮机级内损失和级效率
叶轮摩擦损失也可用焓降来表示:
7
2.6 汽轮机级内损失和级效率
9
2.6 汽轮机级内损失和级效率
一 . 级内损失 h
5.漏汽损失
(1) 隔板漏汽损失 1)原因: a. 动静两部分的间隙; b. 压差的作用; c. 漏汽不但不作功反而干扰主流。 2)解决办法: 叶轮盘上开设平衡孔,让隔板漏汽从平衡孔漏出, 而不干扰主流 。
(2) 叶顶损失
原因:反动度的存在,动叶前后有压力差,有一部分蒸汽不通过动叶通道而
4
2.6 汽轮机级内损失和级效率
一 . 级内损失 3. 叶轮摩擦损失 h f
(1)原因 1)叶轮轮面与蒸汽的摩擦 2)蒸汽及蒸汽之间的摩擦 3)靠近叶轮轮面侧的蒸汽质点随叶轮一起转 动,在叶轮两侧的汽室中就形成了涡流运动
5
2.6 汽轮机级内损失和级效率
叶轮摩擦损失 可用以下经验公式计算:
N f
从叶顶间隙漏到级后。
10
2.6 汽轮机级内损失和级效率
一 . 级内损失
5.漏汽损失 h
漏汽损失是由于压力差和间隙的存在而引起的。减少漏汽损失、减小漏汽 量,就应该减小间隙面积和蒸汽压力差。通常采用齿形轴封来解决这一问 题。
漏汽量和漏汽损失计算方法如下:
( 1)隔板漏汽量的计算
G p
p ApC p
汽轮机原理 Principle of Steam Turbine
主讲老师:密腾阁
适用专业:能源与动力工程专业
2.6 汽轮机级内损失和级效率
汽轮机级内损失
喷嘴损失 动叶损失 余速损失 叶高损失 扇形损失 叶轮摩擦损失 部分进汽损失 漏汽损失 湿汽损失
hn
hb
hc 2
hl
h
h
he
f
hleak
hx
不是每一级都同时具有这些所有损失,而是根据具体情况分别分析计算其 不同的损失。如只有在部分进汽的级才有部分进汽损失,工作在湿蒸汽区 的级才有湿汽损失。
2
2.6 汽轮机级内损失和级效率
一 . 级内损失
1. 叶高损失
将喷嘴和动叶中与叶高有关的损失称为级的叶高损失或叫端部损失。当叶 片较短(一般说叶高l<12~15)时,叶高损失明显增加。这时,必须采用部 分进汽。叶高损失常用下面半经验公式计算 :
8
2.6 汽轮机级内损失和级效率
一 . 级内损失 4. 部分进汽损失 δhe
总的部分进汽损失由以上两部分所组成 ,即
he hw hs
而
hw
Be
1 e
(1
e
ec
)
xa3
E0
hs
0.11
B2l2 An
xau mht
上 三 式 中 , e ----- 部分进汽度; ec= 1- e ; E ----- 级 的 理 想 能 量;Xa ---级 的 速 度 比 ;Be -----系数,单列级:Be =0 . 15,双 列 级: Be=0.55;m------喷 嘴组数;B2、 L2 -----动叶片宽度和高度,e=1时,m=0