移相电路原理及简单设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移相电路总结(multisim10仿真)2012.7.2
原来是导师分配的一个小任务,由于书中没有现在的电路,故查找各方面资料,发现资料繁多,故自己把认为重要的地方写下来,如有不足之处请多多指正。
1、 移相器:能够对波的相位进行调整的仪器
2、 原理
接于电路中的电容和电感均有移相功能,电容的端电压落后于电流90度,电感的端电压超前于电流90度,这就是电容电感移相的结果;
先说电容移相,电容一通电,电路就给电容充电,一开始瞬间充电的电流为最大值,电压趋于0,随着电容充电量增加,电流渐而变小,电压渐而增加,至电容充电结束时,电容充电电流趋于0,电容端电压为电路的最大值,这样就完成了一个充电周期,如果取电容的端电压作为输出,即可得到一个滞后于电流90度的称移相电压;
电感因为有自感自动势总是阻碍电路中变量变化的特性,移相情形正好与电容相反,一接通电路,一个周期开始时电感端电压最大,电流最小,一个周期结束时,端电压最小,电流量大,得到的是一个电压超前90度的移相效果;
3、 基本原理
(1)、积分电路可用作移相电路
(2)RC 移相电路原理
其中第一个图
此时,R:0→∞ ,则φ:
其中第二个图
此时,R:0→∞ ,则φ:
而为了让输出电压有效值与输入电压有效值相等
C
u i
u o
u i
u o
U I 图1 简单的RC 移相
1
U 2
U
图2 幅值相等
.
..2cb db U U U =-
(111)
1
1111R j RC j C U U U j RC R R j C j C ωωωωω
-=-=+++
12arctan RC
ω=
∠-
其中
211
U U =
=
22arctan()RC ϕω=-
4、 改进后的移相电路
一般将RC 与运放联系起来组成有源的移相电路。
图3 0~90°移相 图4 270°~360°移相
公式推导
()RC
tg C R k RC j C R U U j H U U U k U U RC j RC j U i o
o
i
ωϕωωωωωω1
11222222=
⎪⎭
⎫
⎝⎛"++=
===+=-
+
-+
由 ()wRC
tg C R k RC
j U U j H U U
U k U U RC j U i o o
i
-=⎪⎭
⎫
⎝⎛"+-=
===+=-
+
-+
ϕωωωω2221111 由
以上移相电路分别包括了整个360°的四个象限,在应用时还要注意其应用频率和元件参数的关系,参数选得不同,移相的角度就会不同,一般说来,在靠近某移相电路的极限移相角度附近,其元器件的选择是十分困难的。
以上每个电路调节的范围都局限在90°以内,要使其调节的范围增大,可以采用图7和图8的电路。
图7图8电路的传递方程推导都比较麻烦,我们仅对图7电路进行了推导,并将推导的
图5 90°~180°移相 图6 180°~270°
移相
图7 0~180°超前移相 图6 0~180°滞后移相
主要结果列出如下:
()()()(
)
(
)
2
222222222121k 1k 1C R RC j C R C R U U j H U U U U k U U R R R U U RC j RC j U i o O
i O i i
ωωωωωωω+--+=
==-=-+=+=-
+
-+
由
另外,可将各移相电路级联,组成0-360度移相电路。
5、 multisim10仿真
C1
10nF V110 Vrms
50 Hz 0°
XSC1
A
B C D G
T
31
R11MΩ
Key=A
55%
图9 RC 原理图及仿真结果
V1
10 Vrms 50 Hz 0°
C1
10nF
C210nF
XSC1
A
B
E x t T r i g ++
_
_
+_输出电压有效值与输入电压有效值相等R:0-无穷大 φ:0-(-180度)
R1
100kΩ
Key=A 50%
R2
100kΩ
Key=A
50%
3
2
1
图10 仅相移,幅值不变
U1A
LM358AD
3
2
4
81
C1
10nF
R3
100kΩ
Key=A
50%
V110 Vrms 50 Hz 0°
VCC
12V VEE -12V
XSC1
A
B C D G
T
R122kΩ
R210kΩ
4
VEE
VCC 20
36
图11 与运放组成的移相电路