人教版数学高一古典概率模型中的巧思妙解
古典概型高一数学人教A版必修第二册第十章概率
因此
P(B)=
=
.
(3)采用有放回简单随机抽样从中任取2个球,用(x,y)表示样本
点,x表示给甲的小球编号,y表示给乙的小球编号.则样本空间
Ω={(a,a),(a,b),(a,c),(a,d),(a,e),(b,a),(b,b),(b,c),(b,d),(b,e),(c,a),
(c,b),(c,c),(c,d),(c,e),(d,a),(d,b),(d,c),(d,d),(d,e),(e,a),(e,b),(e,c),
间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件
()
A的概率 P(A)= =
.其中,n(A)和n(Ω)分别表示事件A和
()
样本空间Ω包含的样本点个数.
3.做一做:(1)育才中学举行高一广播体操比赛,共10个队参赛,
为了确定出场顺序,学校制作了10个出场序号供大家抓阄,则
高一(1)班抽到出场序号小于4的概率是(
23.3
1.82
20.9
(1)从该小组身高低于1.80的同学中任选2人,设事件M=“选到
的2人身高都在1.78以下”,求事件M的概率;
(2)从该小组同学中任选2人,设事件N=“选到的2人的身高都在
1.70以上且体重指标都在区间[18.5,23.9)内”,求事件N的概率.
分析:用列举法表示试验的样本空间及事件M,N,注意这两问
内画一点P,有无数个点,所以不满足“有限性”;第④个概率模
型也不是古典概型,因为硬币不均匀,因此两面出现的可能性
不相等.故选A.
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的概率模型之一,它涉及到对已知的随机试验的多种可能结果和其对应概率的求解。
在高中数学必修三中,古典概型的解题技巧是学生必须掌握的一部分内容。
下面将介绍几种常见的古典概型解题技巧。
1. 直接计数法直接计数法是指通过对试验结果的数量进行计数,从而求解概率。
该方法一般适用于试验结果较少且容易确定的情况。
有5个小球,其中2个红色,3个蓝色,求从中任意抽取2个小球,抽到两个红色小球的概率。
按照直接计数法,我们可以将这个问题转化为从5个小球中抽取2个小球的问题,同时我们知道其中2个小球是红色的。
我们可以计算红色小球和非红色小球的组合数,然后除以所有小球的组合数来求解概率。
2. 互补事件法互补事件法是指通过求解事件的互补事件概率来求解事件的概率。
互补事件是指与事件A互补的事件,即事件A不发生的事件。
对于互补事件,其概率加上事件的概率必然等于1。
有一个盒子中有3个红球和2个蓝球,从中任意抽取一个球,求抽到一个红球的概率。
按照互补事件法,我们可以将该事件的互补事件定义为抽到一个蓝球的事件。
我们可以先求解抽到一个蓝球的概率,然后用1减去该概率来求解抽到一个红球的概率。
3. 排列组合法排列组合法是指通过排列组合的知识来求解概率。
它适用于试验结果较多且不易直接计数的情况。
有8个字母a,b,c,d,e,f,g,h,从中任意抽取3个字母,求抽取的三个字母都是元音字母的概率。
按照排列组合法,我们可以先计算所有情况的数量,即从8个字母中任意抽取3个字母的组合数,然后计算抽取的三个字母都是元音字母的情况数量,并将其除以所有情况的数量来求解概率。
4. 事件的分解法通过掌握以上几种古典概型解题技巧,可以帮助高中数学学生更好地理解和应用古典概型,在解决实际问题时能够灵活运用这些技巧,提高解题能力。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中非常重要的一个知识点,同时也是考试中经常出现的题型。
古典概型是指在某个事件中,样本空间中的每个元素都有相同的概率出现。
在古典概型题中,常见的几种问题包括排列、组合、分配等,不同类型的问题需要使用不同的解题技巧。
下面我们将介绍一些古典概型问题的解题技巧。
一、排列问题的解题技巧排列是指n个不同元素按照一定顺序取出r个,这个过程叫做排列。
对于排列问题,我们可以使用以下几种解题技巧:1. 直接计算法:当n和r较小的时候,我们可以直接利用排列的定义来进行计算。
有5张纸牌,要从中取出3张纸牌进行排列,共有5*4*3=60种排列方法。
2. 公式法:当n和r较大的时候,直接计算可能会比较麻烦,可以使用排列的公式进行计算。
排列的计算公式为Anr=n!/(n-r)!,其中n!表示n的阶乘。
3. 分类讨论法:有些排列问题并不是直接套用公式就能解决的,这时我们可以采用分类讨论的方法。
从A、B、C、D四个字母中取出3个字母进行排列,可以分为以A开头的排列、以B开头的排列、以C开头的排列和以D开头的排列四种情况来进行讨论计算。
3. 排列与组合的关系:有时候我们需要求解组合问题,但是可以先通过排列问题进行计算,再通过排列与组合的关系进行转化。
从A、B、C、D四个字母中取出3个字母进行组合,可以先求出排列的个数,再通过排列与组合的关系计算出组合的个数。
1. 划分法:当分配的元素数目是不受限制的时候,我们可以使用划分法进行计算。
划分法是指将n个不同的元素分成r份,每份可以有0个或者多个元素,然后按照不同的划分方法进行计算。
2. 公式法:有些分配问题可以通过公式进行计算,例如将n件商品分给r个人,每个人可以得到不同数目的商品,可以使用分配的公式进行计算。
3. 排列组合法:有些分配问题可以通过排列组合的方法进行计算,例如将n个人分配到r个小组中,可以先通过排列计算出所有可能的分配情况,再通过组合计算出符合条件的分配情况。
古典概率模型中的巧思妙解
古典概率模型中的巧思妙解发表时间:2011-08-18T21:00:24.437Z 来源:《学习方法报教研周刊》2011年47期作者:胡斌[导读] 多以选择题、填空题形式出现,但也不排除应用题的形式,所以对于这一部分内容要熟练灵活的掌握.云南永善一中古典概型在高考试题中具有一定的灵活性、机动性,一般对随机事件的考察,常常结合选修中排列、组合的知识进行考察,多以选择题、填空题形式出现,但也不排除应用题的形式,所以对于这一部分内容要熟练灵活的掌握. 例1. 甲、乙二人参加法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人一次各抽取一题,问:甲、乙二人至少有一个抽到选择题的概率是多少?解:甲、乙二人一次各抽取一题基本事件的总数是10×9=90.基本解法:利用分类计数原理只有甲抽到了选择题的事件数是:6×4=24;只有乙抽到了选择题的事件数是:6×4=24;甲、乙同时抽到选择题的事件数是:6×5=30. 故甲、乙二人至少有一个抽到选择题的概率是24+24+30/90=.巧思:基本解法利用的是分类计数原理,从正面入手,考虑情况比较多,“正难则反”,不妨换个角度,考虑其反面即利用其对立事件反而会简单明了.妙解:利用对立事件事件“甲、乙二人至少有一个抽到选择题”与事件“甲、乙两人都未抽到选择题”是对立事件. 事件“甲、乙二人都未抽到选择题”的基本事件个数是4×3=12;故甲、乙二人至少有一个抽到选择题的概率是1-=1-=.例2. 现有一批产品共有10件,其中8件为正品,2件为次品,如果从中一次取3件,求3件都是正品的概率?解:基本解法:这种抽取可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)=≈0.467.巧思:对于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误,上面就是按无顺序抽样进行的,那有顺序抽样是否会简单一些呢?妙解:把上面的抽样看作是不放回有顺序抽样可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件是正品”,则事件B包含的事件总数为8×7×6=336,所以P(B)=≈0.467. 农村中学信息技术与数学学科整合的误区及对策。
古典概型问题的求解技巧
高考数学复习点拨:古典概型问题的求解技巧古典概型问题的求解技巧山东尹征曹贤波解决古典概型问题的关键是分清基本事件总数n与事件A中包含的结果数m,而这往往会遇到计算搭配个数的困难.因此,学习中有必要掌握一定的求解技巧.一、直接列举把事件所有发生的结果逐一列举出来,然后再进行求解.例1 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两个,求下列事件的概率.(1)取出的两球都是白球;(2)取出的两球一个是白球,另一个是红球.分析:首先直接列举出任取两球的基本事件的总数,然后分别列举求出两个事件分别含有的基本事件数,再利用概率公式求解.解:设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的方法数,即是从4个白球中任取两个的方法数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为:;(2)从袋中的6个球中任取两个,其中一个是红球,而另一个为白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个. ∴取出的两个球一个是白球,另一个是红球的概率为:.二、巧用图表由于古典概型问题中基本事件个数有限,故通过图表可以形象,直观地解决这类问题.例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球,求摸出2个黑球的概率. 分析:运用集合中的Venn图直观分析.解:如图所示,所有结果组成的集合U含有6个元素,故共有6种不同的结果.U的子集A有3个元素,故摸出2个黑球有3种不同的结果. 因此,摸出2个黑球的概率是:.三、逆向思维对于较复杂的古典概型问题,若直接求解有困难时,可利用逆向思维,先求其对立事件的概率,进而再求所求事件的概率.例3 同时抛掷两枚骰子,求至少有一个5点或6点的概率. 分析:直接求解,运算较繁,而利用对立事件求概率则很简捷.解:至少有一个5点或6点的对立事件是:没有5点或6点.因为没有5点或6点的结果共有16个,而抛掷两枚骰子的结果共有36个,所以没有5点或6点的概率为:.至少有一个5点或6点的概率为.四、活用对称性例4 有A,B,C,D,E共5人站成一排,A在B的右边(A,B可以不相邻)的概率是多少?解析:由于A,B不相邻,A在B的右边和B在A的右边的总数是相等的,且A在B的右边的排法数与B在A的右边的排法数组成所有基本事件总数,所以A在B的右边的概率是.。
人教版数学高一-人教A必修三 3.2一道古典概型题的多种解法
一道古典概型题的多种解法山东省枣庄市第二中学(277400)牛爱玲古典概型是一种重要的概率模型,它具有两个明显的特征:一是试验结果的有限性,二是每个结果出现的等可能性. 求解古典概型问题要按下面的3个步骤进行:1. 阅读题意,判断问题类型. 为此弄清三个问题:第一,该试验的结果是否为等可能事件;第二,该试验的基本事件共有多少个;第三,事件A是什么.2. 设出事件A(或B、C等),分别求出基本事件的个数n和所求事件A中所包含的基本事件的个数 m. 如果基本事件的个数比较少,可用列举法将基本事件一一列出,然后再求m、n.这是一个形象、直观的方法,但列举时应按某种规律列举,做到不重不漏.3. 利用公式 P(A)=,求出事件A的概率.【例题】同时抛掷两枚骰子,求至少有一个5点或6点的概率.【思考与分析】由于抛一枚质地均匀的骰子,哪个点朝上是等可能的,所以该试验的结果是等可能事件. 又因为结果是有限的,故为古典概型.解法1:(直接法)同时抛掷两枚骰子,可能的结果如下表:由表可知,该试验共有36个不同的结果,其中事件A:“至少含有一个5点或6点”的结果有20个,所以至少有一个5点或6点的概率为P(A)=.解法2:(间接法)事件A:“至少有一个5点或6点”的对立事件是“没有5点和6点”.从表中可知,没有5点和6点的结果共有 16种,没有5点和6点的概率为.所以至少有一个5点或6点的概率是P(A)=解法3:(分解法)记事件A=“含有点数5的”,事件B=“含有点数6的”,显然A、B不是互斥事件,所以至少有一个5点或6点的概率是P(A∪B)=P(A)+P(B)-P(A∩B)【小结】本题用了三种方法,一是直接法即列表法,二是间接法,即利用对立事件的概率公式P(A)=1-P(A)求解,三是转化为几个事件的和,利用概率的加法公式P(A∪B)=P(A)+P(B)-P(A∩B)求解.。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧高中数学必修三中的古典概型是概率论中的重要内容之一,也是考试中的常见题型,解题技巧的掌握对于我们正确解题非常重要。
下面将介绍几种解题技巧。
一、排列与组合排列与组合是古典概型中常见的几个基本概念,掌握好它们对于解题非常有帮助。
1. 排列:将若干个不同的元素按照一定的顺序排列成一列,这个过程称为排列。
例如:从字母A、B、C中任取三个字母,按顺序排列,共有3的阶乘种。
2. 组合:从n个不同元素中任取m个,不考虑顺序,这个过程称为组合。
例如:从字母A、B、C中任取两个字母,不考虑顺序,共有3个组合。
二、古典概型的解题步骤古典概型的解题步骤可以分为以下几个步骤:1. 明确问题与假设条件:首先要明确问题的描述和假设条件,理解题意非常重要。
例如:某班有男生10名,女生8名,从中随机选出两名学生,求出两名学生都是男生的概率。
2. 确定事件:根据问题的描述和假设条件,确定所求事件。
例如:确定所求事件为“从10个男生中选出两个男生”,记为A事件。
3. 确定样本空间:确定样本空间,即实验的所有可能结果的集合。
例如:由于是从10个男生中选出两个男生,所以样本空间为所有可能的组合数,记为S={C(10,2)}。
4. 确定事件A发生的可能数:确定事件A发生的可能数,即满足所求事件的有利组合数。
例如:由于是从10个男生中选出两个男生,所以有利组合数为C(10,2)。
5. 求解所求事件的概率:根据概率的定义,求解所求事件的概率。
例如:所求事件的概率为P(A)=有利组合数/样本空间。
1. 从n个人中随机选出m个人的概率。
解题思路:根据排列与组合的知识,所求事件的概率为C(n,m)/C(n,m)。
3. 从一扑克牌中随机取出一张牌,结果是红桃的概率。
解题思路:所求事件的概率为红桃的数量/总的牌的数量。
四、注意事项在解题过程中,要注意以下几个问题:1. 明确问题的假设条件,理解题意非常重要。
2. 注意样本空间的确定,样本空间是实验中所有可能结果的集合。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中的一个重要内容,通常包括排列、组合和分组的相关知识。
在解题过程中,我们可以采用一些技巧来辅助理解和解决问题。
1. 计数原则在解决排列和组合问题时,经常会用到计数原则。
计数原则是指如果一个实验有m种可能的结果,第二个实验有n种可能的结果,则这两个实验连在一起共有m*n种可能的结果。
在古典概型中,我们可以利用计数原则来简化复杂的问题,将问题逐步分解为几个简单的实验,然后再将它们的结果相乘得到最终的结果。
2. 排列的解题技巧排列是指从n个不同元素中取出r个元素,按一定的顺序排成一列的不同排列数。
在解决排列问题时,我们可以先确定有多少种选择元素的方式,然后再确定这些选择的元素有多少种排列方式。
对于排成一排的问题,我们可以先确定有多少种不同的元素可以选择,然后再确定这些元素可以排列的方式,最后相乘得到总的排列数。
3. 组合的解题技巧组合是指从n个不同的元素中取出r个元素的不同组合数。
在解决组合问题时,我们可以利用减法原则来简化问题。
减法原则指的是,如果一个实验包含有m种结果,并且有n种结果不合法,那么合法的结果数等于m-n。
在组合问题中,我们可以先确定有多少种选择元素的方式,然后再确定其中有多少种不合法的选择方式,最后用减法原则得到合法的结果数。
4. 分组的解题技巧分组是指将n个不同的元素分成r组的不同分组方式。
在解决分组问题时,我们可以利用排列和组合的知识来辅助理解。
分组问题可以看成是先将n个元素排成一列,然后再在这些元素之间加上r-1个隔板,最后将其中的分组方式看成是在这些元素和隔板中选择r-1个位置,并且将这些位置放上隔板。
这样就可以用组合数来求出分组的方式。
5. 确定权重在古典概型的问题中,有时候我们需要确定每个元素的权重,并且根据权重来求出最终的结果。
确定权重通常可以通过分情况讨论、排列组合的知识和实际问题的特点来得到。
通过确定权重,我们可以简化问题,并且找到最优的解决方式。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧概率论是数学中的一个重要分支,而“古典概型”是其中的基础概念之一。
在高中课程中,学生需要学习古典概型的概念、基本公式及其在实际问题中的应用。
本文将介绍一些古典概型的解题技巧,供学生参考。
一、古典概型的定义和公式古典概型是指试验所有可能的结果都是等可能发生的概率问题。
具体来说,古典概型要求试验的结果具有以下两个特点:1.试验的所有结果都是确定的;2.试验的每个结果发生的可能性相等。
对于一个具有n个等可能结果的试验,其中发生某一事件A的可能性为:P(A)=m/n其中m为事件A包含的有利结果数。
这个公式是古典概型的基础公式。
二、解题技巧1.画出样本空间对于一个古典概型问题,首要任务是确定样本空间。
样本空间是指试验中可能发生的所有结果的集合。
一个简单的技巧是画出样本空间的图形。
例如,在一次抛硬币的试验中,样本空间为{正面,反面},可以通过画出一张抛硬币的图像来形象地表示出来。
2.确定事件A一旦确定了样本空间,就需要确定事件A。
事件A是指样本空间中发生某种结果的集合。
它通常是通过一些自然语言描述的。
在确定事件A时,需要明确其含义,确定其范围和有价值的信息。
3.计算概率一旦确定了事件A和样本空间,就可以使用古典概型的基础公式计算概率。
需要包括以下步骤:2.计算事件A的有利结果数;例如,在一次掷骰子的试验中,样本空间为{1,2,3,4,5,6},事件A是小于等于4的结果,有利结果数为4,因此:4.注意问题描述的精确性在解题过程中,需要注意问题描述的精确性。
有些问题并不是古典概型问题,而是其他概率问题,如条件概率、贝叶斯公式等。
因此,在解题时需要仔细阅读问题,理解问题所涉及的概念和知识点。
5.利用公式简化计算根据古典概型的基础公式,可以利用数学计算和逻辑推理来简化计算,例如通过分式的化简和比例的运用等。
同时,需要注意计算中的精度和舍入误差。
6.灵活应用法则古典概型涉及到的概率基本概念和公式被广泛应用于各个领域和实际问题中。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的一种概型,适用于试验的结果只有有限个、且每个结果发生的概率相等的情形。
在高中数学必修三中,我们学习了古典概型的基本概念和计算方法。
本文将介绍几种在解古典概型问题时常用的技巧。
一、加法原理在一些试验中,我们需要统计的实验结果并不是唯一的,而是可以通过不同的方法得到。
此时,可以使用加法原理求解。
加法原理的基本思想是:如果两个事件A、B互不干扰,即A事件的发生与B事件的发生无关,那么A、B两事件至少发生一个的概率等于两事件的概率之和,即P(A或B)=P(A)+P(B)。
例如,有6只红球和4只蓝球,从中任取一球,求取到的是红球或蓝球的概率。
此题实验结果可以是取到红球或蓝球,因此可以使用加法原理求解:P(红球或蓝球)=P(红球)+P(蓝球)=6/10+4/10=1。
需要注意的是,加法原理只适用于互不干扰的事件,如果A事件的发生与B事件的发生相关,则需要使用另外一种原理进行计算。
在一些试验中,我们需要统计若干个事件共同出现的概率。
此时,可以使用乘法原理进行计算。
乘法原理的基本思想是:如果试验中包含m个步骤,每个步骤有n1,n2,...,nm种不同的可能结果,且每个步骤的结果与其他步骤的结果无关,那么所有步骤的结果组合起来的总方案数为n1×n2×...×nm。
例如,从4个人中任选3位代表参加会议,求选出的代表组合中,甲、乙两人都参加的概率。
此题实验结果包括三个步骤:第一步,任选一名代表;第二步,从剩下的人中任选一名代表;第三步,从剩下的人中任选一名代表。
每个步骤的结果都对下一个步骤的结果没有影响,因此可以使用乘法原理求解:P(甲、乙都参加)=选甲的概率×选乙的概率×选第三人的概率=1/4×1/3×2/2=1/6。
三、排列组合在一些试验中,我们需要计算的实验结果具有一定的排列顺序或组合顺序,此时需要使用排列组合知识。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中的重要内容,也是我们生活中经常会用到的思维模式。
在解题时,可以运用一些特定的技巧来简化问题,提高解题效率。
下面就是古典概型的一些解题技巧,希望能帮助大家更好的掌握这一知识点。
一、排列组合原理在解古典概型的问题时,我们可以运用排列组合原理。
排列是指从n个不同元素中取出m个元素,按照一定的次序排成一列。
排列的计算公式是A(n,m) = n!/(n-m)!,其中“!”表示阶乘。
运用排列组合原理可以帮助我们简化问题,快速计算出结果,提高解题效率。
还可以将问题转化为排列或组合的形式,从而更容易求解。
二、分步计数法在解古典概型的问题时,我们可以运用分步计数法。
分步计数法是一种将问题分解成几个简单子问题,然后计算每个子问题的结果并求和的方法。
通过分解问题,我们可以更容易地求解复杂的古典概型问题。
当问题中存在多个步骤或多个子问题时,我们可以首先计算每个步骤或子问题的结果,然后将它们的结果相乘或相加,得到最终的解答。
这样可以大大简化问题,提高解题效率。
三、利用对立事件在解古典概型的问题时,我们可以运用对立事件的方法。
对立事件是指与某事件相对立的另一个事件。
在古典概型中,我们可以利用对立事件的思维模式,简化问题,提高解题效率。
四、利用分组思想在解古典概型的问题时,我们可以运用分组思想。
分组思想是指将问题中的元素按照某种特定的规则进行分组,从而简化问题,提高解题效率。
五、利用概率加法和乘法规则在解古典概型的问题时,我们可以运用概率加法和乘法规则。
概率加法和乘法规则是指根据问题中的不同情况,运用加法或乘法规则来计算概率的方法。
概率加法规则是指当事件A和事件B互斥时,它们的概率之和等于它们的并集的概率。
概率乘法规则是指当事件A和事件B相互独立时,它们的概率之积等于它们的交集的概率。
利用概率加法和乘法规则可以帮助我们简化问题,快速计算出结果,提高解题效率。
通过将问题分解成不同情况,然后分别计算每种情况的概率,并用加法或乘法规则求解最终的概率。
人教版高中数学必修3第三章概率-《3.2.1古典概型》教案(3)
人教A版必修3《3.2.1古典概型》教学设计一、教材内容与内容解析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。
它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。
因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
二、目标与目标解析根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生观察比较、归纳问题的能力。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率, 渗透数形结合、分类讨论的思想方法。
③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生分析问题、解决问题的能力。
三、教学问题诊断分析在例1教学中,求古典概型中基本事件总数是难点,原因是由于前面没有学习排列组合知识,此时教师可引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了这一难点。
在本节课例2的教学中,学生往往不会讨论这个问题该在什么情况下可以看成古典概型,在例3的教学中,学生给出的答案可能会有两种,原因是有些问题中的每个基本事件不是等可能的。
因此古典概型的教学应让学生通过实例验证该试验是否满足古典概型的两个条件,这也是本节课的教学难点。
四、教学支持条件分析①教师方面:教师在课堂教学过程中,根据学生的实际水平,恰时恰点的提出问题,设置合理、有效的教学情境,让每一位学生参与课堂讨论,提供学生思考讨论的时间与空间。
②学生方面:学生之间的讨论与师生之间的交流是获取知识、提高能力最直接的途径。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧高中数学必修三中的古典概型是概率论中的一种重要概念,指由有限个实验所组成的样本空间中,每次实验的结果有限且唯一的实验。
这种类型的问题是概率论中常见且重要的一类问题,解题时可以运用一些特定的技巧和方法,下面就介绍几种常见的解题技巧。
1. 枚举法:对于一些简单的古典概型问题,可以通过枚举法来解决。
有一个有五个不同球的盒子,每个球都标有不同的数字(1、2、3、4、5)。
现从中任意取出两个球,则取球后得到的结果可以由所有可能的球的组合来确定。
通过枚举所有可能的球的组合(1与2、1与3...),可以求得问题的解。
2. 画树形图:对于复杂的古典概型问题,可以通过树形图的方式来解决。
树形图是一种图形化的表示方式,能够清晰地展示事件的发生过程和各种可能的结果。
通过绘制树形图,可以将事件的发生过程一目了然地展示出来,从而更加方便地求解问题。
3. 列举法:对于某些问题,可以通过列举法来解决。
列举法是指通过列举所有可能的情况,来求得问题的解。
某班级的学生有男生和女生两种性别,且男生有15人,女生有20人。
现在要从该班级中随机选取一人,求选取的是男生的概率。
通过列举男生和女生的所有情况,可以计算出男生被选中的概率。
4. 组合法:对于某些问题,可以使用组合法来解决。
组合法是指通过计算组合的个数来求得问题的解。
有10个球,其中5个红球,5个蓝球。
现从中任意取出3个球,求取得的3个球中有2个红球的概率。
通过计算10个球中选取3个球的组合数,以及选出2个红球的组合数,可以得到问题的解。
5. 利用概率公式:对于一些问题,可以通过运用概率公式来解决。
概率公式是指根据问题的要求,直接利用概率公式计算出所需的概率。
有一个有10个球的盒子,其中有4个红球和6个蓝球。
现从中不放回地取出2个球,则取出的2个球中至少有一个红球的概率可以通过利用概率公式直接计算得到。
以上就是高中数学必修三中古典概型的几种解题技巧。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中重要的一部分,涉及排列、组合、分配等问题。
在解题过程中,有一些常用的解题技巧可以帮助我们更轻松地解决古典概型的问题。
下面我们就来讨论几种解题技巧。
技巧一:分清题目中的条件在解决古典概型的问题时,首先要准确地理解题目,并分清题目中给出的条件。
只有了解了题目的条件,我们才能采取正确的方法解题。
当遇到排列组合的问题时,有时题目中会有特殊的条件,比如有些元素不能相邻,有些元素需要排在一起等,这些都是我们在解题时需要注意的地方。
技巧二:理清解题的思路在解决古典概型的问题时,我们需要理清解题的思路,选择合适的方法来解决问题。
通常情况下,我们可以采用排列、组合和分配等方法,根据题目中给出的条件来选择合适的方法。
当遇到要求从n个不同元素中取r个元素进行排列或组合的问题时,我们可以考虑使用排列组合的方法来解题,而当遇到要将n个元素进行分配的问题时,我们则可以考虑使用分配的方法来解题。
技巧三:灵活运用公式在解决古典概型的问题时,我们可以灵活运用排列组合的公式来解题。
排列和组合的公式可以帮助我们快速求解问题,并且减少计算的时间。
技巧四:多做练习在解决古典概型的问题时,我们需要多做练习,熟练掌握排列、组合和分配等方法的运用技巧。
只有通过多做练习,我们才能更加熟练地运用这些方法来解决古典概型的问题。
通过多做练习,我们还可以了解各种题型的解题思路,掌握不同类型题目的解题技巧,提高解题的效率。
技巧五:善于总结在解决古典概型的问题时,我们需要善于总结解题的方法和技巧。
通过总结,我们可以发现一些解题的规律,提高解题的效率。
我们可以总结解不相邻排列的方法和技巧,总结解相邻排列的特殊情况,总结解各种特殊条件下的排列组合和分配的技巧。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧
在高中数学必修三中,古典概型是一个非常重要的概念。
古典概型是指一个实验中所有可能的元素都是等概率发生的,且实验间相互独立的情况。
解题时,可以使用以下几种技巧:
1. 树形图法:树形图法是一种直观的解题方法,可以清晰地展示出实验的过程和每个事件的发生情况。
将实验的每个步骤用树状结构表示出来,然后根据题目给出的条件计算出每个事件的概率,最后求出所需的概率。
2. 排列组合法:排列组合法是一种常用的解题方法,在古典概型中也可以有效地运用。
对于排列问题,可以使用排列公式计算出不同元素排列的数量;对于组合问题,可以使用组合公式计算出不同元素组合的数量。
根据题目的要求,计算出所需的事件发生的概率。
3. 计数法:在某些情况下,使用计数法可以更简单地解题。
计数法包括乘法原理和加法原理。
乘法原理可以用来求解多个独立事件同时发生的概率,而加法原理可以用来求解至少发生一个事件的概率。
4. 两个集合的关系:在古典概型中,常常涉及到两个集合之间的关系,例如并集、交集、差集等。
通过理解和运用集合的基本运算规律,可以简化解题过程。
特别是当两个集合之间相互独立时,可以直接使用集合的概率计算方法求解。
5. 概率的加法与乘法原理:概率的加法原理指的是当两个事件互斥时,它们的概率相加等于它们各自发生的概率之和;概率的乘法原理指的是当两个事件相互独立时,它们的概率相乘等于它们各自发生的概率之积。
这两个原理是古典概型解题中常用的技巧,可以根据题目条件合理运用。
人教版高中数学必修3如何合理的运用古典概型概率的计算公式解题
如何合理的运用古典概型概率的计算公式解题古典概型是高考考查的重点和热点之一,考查的主要内容是事件发生概率的求解,但是正确、合理的运用古典概型概率的计算公解题是关键。
一、对古典概型概率计算公的两点解读1.()nm A P =是求古典概型的概率的基本公式.求P(A)时,要首先判断是否是古典概型.若是,则应按以下步骤计算:(1)算出基本事件的总个数n ;(2)算出事件A 中包含的基本事件的个数m ;(3)算出事件A 的概率,即()n m A P =. 可见在运用公式计算时,关键在于求出n m ,.在求n 时,应注意这n 种结果必须是等可能的,在这一点上比较容易出错.例如,先后抛掷两枚均匀的硬币,共出现“正,正”,“正,反”,“反,正”,“反,反”这四种等可能的结果.如果认为只有“两个正面”、“两个反面”、“一正一反”这三种结果,那么显然这三种结果不是等可能的.在求m 时,可利用列举法或者结合图形采取列举的方法,数出事件A 发生的结果数.2.求古典概型概率的计算公式为()nm A P =.根据这个公式计算概率时,关键在于求出n m ,,因此,首先要正确理解基本事件与事件A 的相互关系.特别要强调指出,一个基本事件是某一次试验出现的结果,千万不可以把几次试验的结果混为一个结果.二、运用古典概型概率的计算公时的易错点和易忽略点导析古典概型的易错点和易忽略点是对题意理解不清,搞错对象,以致于出错.例1 有1号、2号、3号3个信箱和A 、B 、C 、D 4个信封,若4封信可以任意投入信箱,投完为止,其中A 信封恰好投入1号或2号信箱的概率是多少?错解:每封信投人1号信箱的机会均等,而且所有结果数为4,故A 信封投入l 号或2号信箱的概率为214141=+. 错解分析:应该考虑A 信封投入各个信箱的概率,而错解考虑成了四封信投入某一倌箱的概率.正确解法:由于每封信可以任意投入信箱,对于A 信封投入各个信箱的可能性是相等的,一共有3种不同的结果.投入1号信箱或2号信箱有2种结果,所以所求概率为32. 三、利用古典概型的计算公式时应注意两点例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中的一个重要内容,主要指的是等可能事件的概率问题。
本文将介绍几种常见的古典概型的解题技巧,帮助学生更好地掌握这一知识点。
1. 等概率原理等概率原理是古典概型的重要概念,它指的是指定一个样本空间中的事件发生的概率是相等的。
例如,将一枚硬币抛掷两次,那么正反面是等概率的,即每次抛掷正面和反面的概率各为1/2,因此总共可能得到4种结果,分别是“正正”、“正反”、“反正”、“反反”,每种结果的概率都是1/4。
在使用古典概型解题时,我们可以利用等概率原理简化问题。
例如,如果两个人同时抛掷一枚硬币,那么他们得到正反面的组合有4种,每种组合的概率都是1/4。
2. 枚举法枚举法是解决古典概型问题的一种常见方法。
它的基本思路是将所有可能的情况列举出来,然后计算出每种情况发生的概率,最后将所有情况的概率相加即可得到所求的概率。
例如,在一个扑克牌游戏中,要求抽到一张黑桃或者一张红心的概率,可以使用枚举法解决。
第一步,将所有的红心和黑桃分别列出,有13张黑桃和13张红心;第二步,计算抽到黑桃或者红心的概率,即P(黑桃或红心) = P(黑桃) + P(红心) = 13/52 + 13/52 = 1/2。
3. 排列组合排列组合是解决古典概型问题的另一种方法,它可以简化问题的计算,同时还可以避免漏算和重复算的情况。
例如,在一堆扑克牌中,要求抽到一对牌的概率,可以使用排列组合解决。
第一步,计算从52张牌中取2张牌的组合数,即C(52,2) = 1326;第二步,计算从4种花色中取一种花色的组合数,即C(4,1) = 4;第三步,将第一步和第二步的组合数相乘,得到抽到一对牌的组合数,即C(13,2) * C(4,1) = 78,最后求出概率为P(一对牌) = 78/1326 ≈ 0.0588。
4. 条件概率条件概率是指在已知一定条件下,某一事件发生的概率。
例如,如果已知一枚硬币有1/3的可能性是正面朝上,2/3的可能性是反面朝上,那么根据条件概率,抛掷硬币得到正面朝上的概率为P(正面朝上|已知硬币朝上) = 1/3。
古典概型解题技巧
古典概型解题技巧摘要概率论是数学学科中从数量的侧面来研究部分随机现象的规律性方面,其理论和方法渗透到了自然科学的各个领域,而古典概型是古典概率论的主要研究内容之一,也是概率论的研究中的一个经典的研究概型。
古典概型的主要研究对象是等可能事件,深入研究古典概型有助于我们更好地理解概率论中一些基本的概念,掌握概率论中的基本规律,有助于我们提高分析问题和解决问题的能力。
本文主要研究古典概型中的摸球问题,分球入盒问题,随机取数问题等几种模型,分析其解题思路,总结解题技巧以及思考其应用范围。
关键词:古典概型;分球入盒;摸球问题TitleAbstractKeywords:1 古典概型简介随机现象,是现实生活中非常常见,非常普遍的一种现象。
事件的发生或者是其走向,都是由随机决定的。
而这些随机性的事件都可以用概率模型来进行一定的分析,以求得相对准确的期望值。
随机性虽然容易给人们生活带来一定的烦恼,但同时也是最公平的象征。
在模拟计算,统计运筹中都有运用概率论的思想以及方法,所以,概率论有着明显的现实意义以及数学应用范畴。
在概率论的发展过程中,数学家们根据不同的问题,从各个不同的角度,给与了概率不同的定义和计算的方法。
但是这些定义或者计算的方法往往针对的是非常具体类型的事件和情况,所以多数都有一定的缺点,常常只是经验公式。
而经过长期的发展,概率论先后给出了古典概率,几何概率,统计概率,最后才给出了概率的数学定义。
在所有的随机事件中,有一类随机事件有两个明显的特点:第一,只有有限个可能的结果;第二,每个结果发生的可能性相同。
这类随机事件是概率论初期的研究对象,我们也把这类事件叫做古典概型。
2 古典概型的计算我们可以根据古典概型的等可能性和有限性的特点,得出模型下的概率。
古典概型的概率计算过程可以分解为三个步骤:第一,确定所研究的对象为古典概型;第二,计算样本点数;第三,利用公式计算概率。
如果本次随机事件只有有限个可能的结果,并且每一个可能的结果出现的可能性相同,则可以确定该事件为古典概型问题。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧高中数学必修三古典概型是数学中非常重要的一个部分,它涵盖了排列、组合和二项式定理等内容。
对于很多学生来说,古典概型的问题常常是解题困难的地方,因此需要一些解题技巧来帮助学生更好地理解和解决古典概型的问题。
本文就将介绍古典概型的几种解题技巧,希望能够帮助学生更好地掌握这一部分内容。
1. 排列和组合的区别和应用在古典概型中,排列和组合是两个非常重要的概念。
排列是指从一组元素中按照一定顺序取出一部分元素,组成一个序列,这个序列就是一种排列。
而组合则是从一组元素中取出一部分元素,不考虑元素之间的顺序,这个取出的元素的集合就是一种组合。
在解决古典概型的问题时,学生首先要清楚排列和组合的区别,并根据问题的具体情况选择使用排列还是组合的方法。
如果问题需要考虑元素的顺序,就应该使用排列的方法;而如果问题不考虑元素的顺序,就应该使用组合的方法。
掌握这一点可以帮助学生更准确地解决古典概型的问题。
2. 使用数列的思想解决排列和组合的问题在解决古典概型的问题时,有时候可以使用数列的思想帮助我们更好地理解和解决问题。
在排列和组合的问题中,可以将问题中的元素看作数列中的元素,然后根据数列的性质来解决问题。
这样做可以帮助学生更加直观地理解问题,并且可以减少一些繁杂的计算,提高解题速度。
二项式定理是古典概型中常用的计算公式,它可以帮助我们快速计算排列和组合的个数。
在解决古典概型的问题时,可以运用二项式定理来简化计算过程,提高解题效率。
学生也应该掌握二项式定理的基本性质,以便在解题过程中灵活运用。
4. 利用化简和递推的方法解决古典概型的问题在解决古典概型的问题时,学生应该根据问题的具体情况选择合适的解题方法,灵活运用排列、组合、二项式定理等知识,同时也要注重化简和递推的方法,以便更好地理解和解决问题。
希望以上几种解题技巧能够帮助学生更好地掌握古典概型的知识,提高解题能力,取得更好的学习成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概率模型中的巧思妙解
古典概型在高考试题中具有一定的灵活性、机动性.一般对随机事件的考察,常常结合选修中排列、组合的知识进行考察,多以选择题、填空题形式出现,但也不排除应用题的形式,所以对于这一部分内容要熟练灵活的掌握.
例1.甲、乙二人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,
甲、乙二人一次各抽取一题,问:甲、乙二人至少有一个抽到选择题的概率是多少? 解:甲、乙二人一次各抽取一题基本事件的总数是10×9=90;
基本解法:利用分类计数原理
只有甲抽到了选择题的事件数是:6×4=24;只有乙抽到了选择题的事件数是:6×4=24;甲、乙同时抽到选择题的事件数是:6×5=30; 故甲、乙二人至少有一个抽到选择题的概率是15
1390302424=++. 巧思:基本解法利用的是分类计数原理,从正面入手,考虑情况比较多,“正难则反”,不妨
换个角度,考虑其反面即利用其对立事件反而会简单明了。
妙解:利用对立事件
事件“甲、乙二人至少有一个抽到选择题”与事件“甲、乙两人都未抽到选择题”是对立事件.
事件“甲、乙两人都未抽到选择题”的基本事件个数是4×3=12; 故甲、乙二人至少有一个抽到选择题的概率是1513152190121=-=-.
例2.现有一批产品共有10件,其中8件为正品,2件为次品,如果从中一次取3件,
求3件都是正品的概率?
解: 基本解法:这种抽取可以看作不放回3次无顺序抽样,先按抽取顺序(x ,y ,z )记录结
果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x ,y ,z ),(x ,z ,y ),(y ,x ,z ),(y ,z ,x ),(z ,x ,y ),(z ,y ,x ),是相同的,所以试验的所有结果有10×9×8÷6=120,
按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,
因此P (B )= 120
56≈0.467. 巧思:对于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺
序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.上面就是按无顺序抽样进行的,那有顺序抽样是否会简单一些呢?
妙解:把上面的抽样看作是不放回有顺序抽样
可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ), 则x 有10种可能,y 有9种可能,z 有8种可能,
所以试验的所有结果为10×9×8=720种.
设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336, 所以P (B )= 720336
≈0.467.。