焦化(煤化工)行业焦炉煤气七大综合利用节能技术解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦化(煤化工)行业
焦炉煤气七大综合利用节能技术解析
目录
一、总则 (3)
二、焦炉煤气用作气体燃料 (3)
三、利用焦炉煤气发电 (4)
1、蒸汽发电,热电联产供热与发电兼用: (4)
2、焦炉煤气用于燃气轮机发电: (5)
3、燃气——蒸汽联合循环发电技术(CCPP): (5)
4、用煤气内燃机带动发电机发电: (5)
四、利用焦炉煤气制氢 (6)
五、焦炉煤气用于生产直接还原铁 (7)
六、焦炉煤气用于高炉喷吹炼铁 (7)
七、焦炉煤气作为化工原料生产合成气 (8)
1、焦炉煤气制合成氨——尿素 (8)
2、焦炉煤气生产甲醇 (8)
3、焦炉煤气提取或合成天然气 (9)
八、焦炉煤气直接生产合成气 (9)
一、总则
焦炉煤气除部分返回焦炉加热外,剩余主要作为城市煤气,还有相当数量的焦炉煤气会通过火炬燃烧放空。

据估计每年约有350×108m3以上的焦炉煤气未被有效利用而付之一炬,这不仅造成环境污染,还浪费了大量能源。

根据焦炉煤气的特点(含氢量高),我国焦化行业应进一步开发出符合企业特点的应用技术,进而实现煤气资源的优化开发利用,增加焦炉煤气的利用价值,增强炼焦行业的整体竞争力。

焦炉煤气利用程度不断提高,在开发利用技术方面进行了一系列探索,本文总结出七种常用的焦炉煤气综合利用节能技术。

二、焦炉煤气用作气体燃料
焦炉煤气是优质的中热值气体燃料,其热值为17兆焦~19兆焦/标准立方米,煤气的主要成分(体积百分比)为氢55%~60%、甲
烷23%~27%、一氧化碳5%~8%,含两个以上的碳原子的不饱和烃2%~4%,以及少量的二氧化碳、氮、氧等。

由于我国油气资源缺乏,为解决大中城市民用燃气紧张的问题,20世纪80年代焦炉煤气曾一度广泛应用于民用燃气领城。

目前,在天然气还没有通达而焦化行业有一定基础的地区,焦炉煤气仍是民用煤气和其他工业生产的主要气体燃料提供者。

如将焦炉煤气用作陶瓷厂窑炉的加热燃料,生产出优质的陶瓷制品。

此外,焦炉煤气还可用作水泥和玻璃等工业生产的燃料。

三、利用焦炉煤气发电
由于焦炉普遍采用了高效的烟气余热回收技术,约有50%~55%的焦炉煤气富余,我国许多焦化企业将剩余的焦炉煤气用于发电。

焦炉煤气发电有三种方式,分别为蒸汽发电(热电联产)、燃气轮机发电和内燃机发电,目前这几种发电方式在国内均有应用,技术成熟。

如果焦化企业与高电耗生产匹配或与发供电企业联营,且上网电价合适,焦炉煤气用于发电可作为优先选择的技术路之一。

其运行与管理简便,生产作业间长,可采取多种方式,企业收益稳定。

1、蒸汽发电,热电联产供热与发电兼用:
蒸汽发电由锅炉-凝气式气轮机-发电机组成。

该工艺以焦炉
煤气作为热源燃烧锅炉,生成高压蒸汽,用以带动汽轮机、发电机而发电。

蒸汽发电技术过关、成熟可靠。

在我国焦化行业应用较广泛,但其系统复杂、占地面积大、启动时间长。

2、焦炉煤气用于燃气轮机发电:
燃气轮机发电是用焦炉煤气直接燃烧,驱动燃气轮机以带动发电机发电。

燃气轮机发电机组设备紧凑、占地少、效率高、效益好、启动速度快。

不过,燃气轮机运行一段时间后必须远距离运回制造厂检修,因此需要较多的备品,要求工人有较高的技术素质。

3、燃气——蒸汽联合循环发电技术(CCPP):
该技术的基本原理是将剩余的焦炉煤气和回收的高炉煤气经净化、混合、加压后送往燃气轮机燃烧、膨胀做功,带动燃气轮发电机组发电。

同时燃气轮机排放的高温烟气加热余热锅炉,产生蒸汽,带动蒸汽轮发电机组,形成联合循环发电。

燃气——蒸汽联合发电是热能资源的高效梯级综合利用,其发电效率高达45%以上,实现了钢电联产,目前多家钢厂都在使用该技术。

4、用煤气内燃机带动发电机发电:
一些焦化厂采用煤气内燃机发电。

可供选择的焦炉煤气内燃
机发电机组有400千瓦、500千瓦、1200千瓦和2000年瓦。

目前焦化行业大多采用的是500千瓦焦炉煤气内燃机发电机组。

按焦炉煤气热值(低热值)16720千焦/立方米计算,1立方米焦炉煤气可发电1.1千瓦时。

四、利用焦炉煤气制氢
焦炉煤气中的氢含量达55%~60%,是重要的氢资源提供者。

目前,焦炉煤气制氢的主要方法是采用变压吸附技术(PSA)从冷焦炉煤气中分离氢气,该工艺生产的氢气纯度可达99.99%,钢铁企业先后建设了多套100立方米/时至5000立方米/时、纯度为99.999%的焦炉煤气变压吸附制氢装置,其中投产运行时间最长的一套已达20多年。

钢铁企业采用PSA从焦炉煤气中分离氢气,用作轧钢厂保护性气体。

据了解,钢铁行业每年提供约40亿标准立方米氢气供应给燃料电池行业使用,通过改进工艺,未来其供应量将进一步增加。

另外,由于大多数钢厂位于城市中心附近,所以未来城市所需的大部分清洁能源可由钢厂负责供应。

随着氢电池开发、应用成本的降低,利用炼焦煤气提氢将成为焦炉煤气资源化利用的新亮点。

采用炼焦煤气生产氢气将是未来炼焦煤气资源化应用的新途
径。

五、焦炉煤气用于生产直接还原铁
传统的炼铁工业完全依靠碳为还原剂,随着炼焦煤和焦炭资源的日益短缺,业界正在开发资源节约、环境友好的氢冶金,用焦炉煤气直接还原铁是氢冶金重要的应用技术之一。

由于氢的还原潜能是一氧化碳的14倍,大力开发焦炉煤气直接还原铁,可以大大降低炼铁过程对炼焦煤和焦炭的消耗。

直接还原铁生产技术的关键在于还原性气体(70%H2和30%C0)的制备,而焦炉煤气中H2和甲烷含量分别在55%~60%和23%~27%,只需将焦炉煤气中的甲烷进行裂解(重整)即可获得74%的H2和25%的CO,以此作为直接还原生产海锦铁的还原性气体非常廉价。

用焦炉煤气生产直接还原铁的研究以HYL-ZR(自重整)工艺技术为基础,其通过在自身还原段中生成还原气体而实现最佳的还原效率,因此,该工艺无需使用外部重整炉设备或者其他的还原气体生成系统。

采用HYL-ZR(自重整)工艺用焦炉煤气生产直接还原铁的生产成本较低,直接还原铁的金属率可达94%。

六、焦炉煤气用于高炉喷吹炼铁
高炉喷吹含氢介质强化氢还原已成为当今冶炼工艺的热点。

首先,无论从热力学还是从动カ学条件看,高温下氢作为铁
氧化物的还原剂比一氧化碳更具优势;
其次,氢还原的气态产物是水蒸气而不是二氧化碳,故喷吹含氢介质可减少二氧化碳的产生量。

炼焦过程中,煤炭72%~78%生成焦炭,15%~18%生成焦炉煤气。

在炼铁过程中,焦炭的还原当量与焦炉煤气的还原当量之比为1:1,因为H2的还原潜能与CO的还原潜能之比为14:1。

因此,将焦炉煤气通入高炉中同样可以炼铁,相当于提高了炼焦煤资源的利用率,可缓解炼焦煤资源供应紧张的问题。

与天然气相比,焦炉煤气的还原性能更好。

有国家已把高炉喷吹焦炉煤气作为节能减排关键技术进行开发,目前我国也已开始了高炉喷吹焦炉煤气的研究,钢铁联合企业的焦化厂应关注该技术的发展。

七、焦炉煤气作为化工原料生产合成气
近年来随着科技的进步与广大企业的勇于探素,焦炉煤气的应用领域拓展到制化肥、甲醇-二甲醚、提取甲烷制LNG和合成甲烷等。

1、焦炉煤气制合成氨——尿素
有焦化厂率先开发了焦炉煤气热裂解技术用于制纯氢,与空分氮气合成氨,进而生产尿素。

2、焦炉煤气生产甲醇
每生产1吨甲醇可消耗焦炉煤气2000立方米~2200立方米,对富余的炼焦煤气消费非常可观。

以焦炉煤气生产甲醇500万吨计算,就可以消耗焦炉煤气100亿~120亿立方米。

因此,利用焦炉煤气制甲醇、二甲醒、人造汽油等资源化开发利用比作为燃料具有更大的经济和社会效益。

为推进甲醇燃料的应用,先后出台了M15、M85等甲醇汽油标准,已经开始甲醇汽油的车用试点。

3、焦炉煤气提取或合成天然气
在焦炉气组成中,甲烷含量约23%~27%,一氧化碳和二氧化碳含量占近10%,其余为氢和少量氮,因此焦炉气通过甲烷化反应,可以使绝大部分一氧化碳和二氧化碳转化成甲烷,得到主要含氢、甲烷、氮的混合气体,经进一步分离提纯后可以得到甲烷体积在90%以上的合成天然气(SNG),再经压缩得到压缩天然气(CNG)或经液化得到液化天然气(LNG)。

焦炉煤气深度净化后经甲烷化生产天然气(SNG/CNG/LNG)的技术,具有投资小、消耗低、无污染、能量利用率高等优势,是焦化企业较佳的选择。

八、焦炉煤气直接生产合成气
在焦化生产中,从炭化室经上升管逸出的650℃~700℃的荒煤气,在桥管和集气管中被大量喷洒的70℃~75℃循环氨水却
至80℃~85℃,接着又在初冷器中被冷却水冷却到25C~40℃、650℃~700℃的高温荒煤气所带出的显热相当于炼焦过程总热量的32%,这部分能量几乎未被利用而浪费。

为充分利用这部分热量,建立生产两种产品——焦炭和还原性气体的焦化厂,即高温荒煤气从炭化室逸出后不冷却,直接进入热裂解炉、将焦炉煤气中的煤焦油、粗苯、氨、萘等有机物热裂解成以CO和H2为主要成分的合成气体。

这种合成气体可以作为生产合成氨、生产甲醇-二甲醚等的原料气,也可以生产直接还原铁。

相关文档
最新文档