7微积分的创立
微积分的创立、发展及意义【最新】
微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。
在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。
关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。
第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。
第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。
第三类:问题是求函数的极大极小值。
第四类:问题包括求曲线的长度,曲线围成的面积等等。
首先对微积分的创造作出贡献的是开普勒和伽利略。
用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。
对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。
瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。
对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。
在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。
微积分的创立——卡瓦列利、笛卡尔
*例1:求y= x2 上任意一点P(x ,f (x))的切线斜率?
解: f (x)2 (v x)2 r2 (x e)2 Ci X i
x4 v2 2vx x2 r2 (x e)2 (x2 ax b)
左右同次幂相等:
v x 2x3
切线斜率=
vx f (x)
2x3 x2
2x
x
C(X)
P(X)
h
r
1
1
*
*
Q SC (X)
(r• x )2
h
r2,
S P (X)
( x )2
h
V圆锥 = r 2
V四棱锥
C(X)
r
x P(X)
h
1 1
*
卡瓦列利应用不可分量原理的应用 ——推理出幂函数的积分公式:
a
0
xndx
a n 1 (n
n 1
1、2、3、4、5、6、7、8、9)
2 x3 6 x2 y
(1)
另外:
a3 a a2 a (x y)2 a(2 x2 2 xy)
2 3
a3
2
(x
y)xy
2 3
a3
4
x2
y
x2
y
1 12
a3
(2)
将(1)代入(2)式中 x3 1 a4
4
*
*生平简介:
1596年3月31日生于法国安德尔-卢 瓦尔省的图赖讷拉海(现改名为笛 卡尔以纪念这位伟人),1650年2月 11日逝世于瑞典斯德哥尔摩。笛卡 尔是法国著名的哲学家、物理学家、 数学家、神学家,他对现代数学的 发展做出了重要的贡献,因将几何 坐标体系公式化而被认为是解析几 何之父。
微积分发展简史
微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
微积分的创立
微积分的创立,被誉为“人类精神的最高胜利”。
在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。
18世纪微积分最重大的进步是由欧拉(Leonard Euler ,1707—1783)作出的。
欧拉在1748年出版的《无限小分析引论》(Introductio in Anclysin infinitorum )以及他随后发表的《微分学》(Institutionis Calculi differentialis ,1755)和《积分学》(Institutiones Calculi integralis ,共3卷,1768—1770)是微积分史上里程碑式的著作,它们在很长时间里被当作分析课本的典范而普遍使用着。
这三部著作包含了欧拉本人在分析领域的大量创造,同时引进了一批标准的符号如:()f x e i --∑------函数符号求和号自然对数底虚数号等等,对分析表述的规范化起了重要作用。
欧拉出生于瑞士巴塞尔一个牧师家庭,13岁就进入巴塞尔大学,数学老师是约翰。
伯努利。
师生之间建立了极亲密的关系,伯努利后来在给欧拉的一封信中这样赞许自己这位学生在分析方面的青出于兰:“我介绍高等分析时,它还是个孩子,而您正在将它带大成人。
” 欧拉主要的科学生涯是在俄国圣彼德堡科学院(1727—1741;1766—1783)和德国柏林科学院(1741—1766)度过的。
他对彼德堡科学院怀有特殊的感情,曾将自己的科学成就归功于“在那儿拥有的有利条件”。
欧拉是历史上最多产的数学家。
他生前发表的著作与论文有560余种,死后留下了大量手稿。
欧拉自己说他未发表的论文足够彼德堡科学院用上20年,结果是直到1862年即他去世80年后,彼德堡科学院院报上还在刊登欧拉的遗作。
微积分的创立
牛顿(英 牛顿 英,1642-1727年) 年
牛顿:我不知道世人怎么看,但在我自己看来, 牛顿:我不知道世人怎么看,但在我自己看来, 我只不过是一个在海滨玩耍的小孩, 我只不过是一个在海滨玩耍的小孩,不时地为比 别人找到一块更光滑、 别人找到一块更光滑、更美丽的卵石和贝壳而感 到高兴,而在我面前的真理的海洋,却完全是个 到高兴,而在我面前的真理的海洋, 谜。 爱因斯坦: 爱因斯坦:“理解力的产品要比喧嚷纷扰的世 代经久, 代经久,它能经历好多个世纪而继续发出光和 热。”
7
解析几何的诞生
克莱因( 1908-1992):笛卡儿把代数 M•克莱因(美, 1908-1992):笛卡儿把代数 提高到重要地位, 提高到重要地位,其意义远远超出了他对 作图问题的洞察和分类。 作图问题的洞察和分类。这个关键思想使 人们能够认识典型的几何问题, 人们能够认识典型的几何问题,并且能够 把几何上互不相关的问题归纳在一起。 把几何上互不相关的问题归纳在一起。代 数给几何带来最自然的分类原则和最自然 的方法层次。因此, 的方法层次。因此,体系和结构就从几何 转移到代数。 转移到代数。
30
牛顿(英 牛顿 英,1642-1727年) 年
剑桥大学三一学院牛顿的苹果树
2011-11-3
宁德师范高等专科学校
31
微积分的创立
1661年进入莱比锡大学 年进入莱比锡大学 法学博士、 法学博士、外交官 1672-1676年留居巴黎 年留居巴黎 数学家 科学家 哲学家
孕育
费尔马(法 费尔马 法, 1601-1665) 的极大极小方法(1629)和 的极大极小方法 和 曲边梯形面积(1636) 曲边梯形面积
增量方法 矩形长条分割曲边形并求和
微积分产生的历史过程
微积分产生的历史过程一、微积分的起源微积分是数学的一个重要分支,起源于17世纪。
在这之前,人们对于变化和无限的概念没有系统的研究和描述。
然而,随着科学的发展,人们开始意识到需要一种方法来理解和描述变化的现象。
二、牛顿与莱布尼茨的贡献微积分的发展离不开两位伟大的数学家,分别是牛顿和莱布尼茨。
牛顿是英国的物理学家和数学家,他通过研究天体运动的规律,提出了微积分的基本思想。
莱布尼茨则是德国的数学家,他独立地发展出了微积分的符号表示法。
牛顿和莱布尼茨在不同的地方独立地发展出微积分的思想,他们分别使用了不同的符号和表示方法。
然而,由于他们的研究成果几乎同时公开,因此微积分的发展很快就得到了广泛的认可。
三、微积分的基本概念微积分的基本概念包括导数和积分。
导数描述了函数在某一点上的变化率,可以用来研究函数的斜率和曲线的凹凸性。
积分则是导数的逆运算,用于求解曲线下面的面积或者函数的累积量。
导数和积分是微积分的核心概念,它们可以应用于各个领域,包括物理学、工程学、经济学等。
微积分提供了一种强大的工具,可以帮助人们理解和解决各种复杂的问题。
四、微积分的发展微积分的发展并不是一蹴而就的,而是经历了一个漫长的过程。
在17世纪,微积分的基本思想已经初步确立,但是在符号表示和严密性方面还存在一些问题。
随着时间的推移,数学家们不断完善微积分的理论体系,使其更加严密和完备。
在18世纪,欧拉和拉格朗日等数学家进一步发展了微积分的理论,提出了许多重要的概念和定理。
他们的工作为微积分的应用奠定了坚实的基础,使微积分成为当时数学发展的重要组成部分。
五、微积分的应用微积分在科学和工程领域有着广泛的应用。
在物理学中,微积分用于描述物体的运动和力学规律;在经济学中,微积分用于研究市场供求关系和最优化问题;在工程学中,微积分用于分析电路和控制系统等。
除了应用于实际问题,微积分本身也具有重要的理论意义。
微积分的发展推动了数学的进步,为数学的其他分支提供了重要的工具和方法。
微积分创立的背景与过程
微积分创立的背景与过程
微积分,作为数学中的一门重要学科,其创立过程可以追溯到17世纪。
在此之前,数学领域主要关注几何学和代数学,而微积分的诞生为解决一些物理问题提供了全新的数学工具。
微积分的创立主要涉及到牛顿和莱布尼兹这两位伟大的数学家。
他们几乎同时独立地发现了微积分的基本概念和方法。
牛顿是英国人,他在研究力学和天体运动时,提出了微积分中的微分和积分的概念。
他将这些方法应用于解决物体的运动和变化的问题,从而奠定了微积分的基础。
与此同时,德国数学家莱布尼兹也在研究曲线的切线和曲率等问题时,独立地发现了微积分中的微分和积分。
他将微积分的符号和记法系统化,为后来的发展奠定了基础。
莱布尼兹还提出了微积分基本定理,将微分和积分统一起来,使微积分更加完善。
微积分的创立过程可以说是在牛顿和莱布尼兹之间的竞争和合作中不断完善和发展的。
两位数学家的贡献为微积分的发展奠定了坚实的基础,使其成为数学中的一门重要学科。
微积分的创立背景与过程也与当时物理学和工程学的发展密切相关。
在工程学中,微积分被广泛应用于解决各种复杂的问题,如结构分析、流体力学等。
在物理学中,微积分被用来描述物体的运动、力学、热力学等现象。
微积分为这些学科提供了强大的数学工具,推
动了科学技术的发展。
总的来说,微积分的创立背景与过程是在数学家们不断探索和研究的基础上逐步完善和发展的。
微积分的诞生为解决物理和工程中的复杂问题提供了重要的数学方法,推动了科学技术的进步。
微积分作为一门重要学科,至今仍在不断发展和应用,为人类认识世界和改善生活提供了重要的帮助。
微积分的创立
6.1 半个世纪的酝酿
近代微积分的酝酿,主要是在17世纪上半叶 这个世纪 1. 1608伽利略制成的第一台天文望远镜。 2. 1619年开普勒公布了他的最后一条行星运 动定律
开普勒行星运动三大定律要义是
1. 每一个行星都沿各自的 椭圆轨道环绕太阳,而太阳 则处在椭圆的一个焦点中; 2.在相等时间内,太阳和运动中的行星的连 (向量半径) 所扫过的面积都是相等的。 3.各个行星绕太阳公转周期的平方和它们的椭圆轨道的 半长轴的立方成正比。
他是用求极大,极小值的方法得到,而不是用求和 的方法.这使他的朋友罗贝瓦尔感到惊奇.但是, 他居然没有看到这两类问题——微分学问题和 积分学问题——的基本联系,与微积分基本定 理擦肩而过.
在数学史上,拉格朗日,拉普拉斯和傅立叶都曾称" 费尔马是真正发明者."但泊松正确地指出,费尔 马不应当享有这一荣誉.
确定非匀速运动物体的速度与加速度是瞬时变化率问 题的研究成为当务之急; 望远镜的光程设计需要确定透镜曲面上任一点的法线, 这又使求任意曲线的切线问题变得不可回避; 确定炮弹的最大射程及寻求行星轨道的近日点和远日 点等涉及的函数极大值、极小值问题也亟待解决;
行星沿轨道运动的路程、行星矢径扫过的面积以及物 体重心与引力的计算等积分学的基本问题——面积、 体积、曲线长、重心和引力计算的兴起被重新激发起 来。
在17世纪上半叶,几乎所有的科学大师都致力 于寻求解决这些难题的新的数学工具,特别是 描述运动与变化的无限小算法,并且在相当短 的时期内取得了迅速的进展。
代表性的工作有:
1.开普勒与旋转体体积
开普勒(德,1571-1630)的 旋转体体积(1615)
无穷小求和思想
微积分的发展历史
微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性. 2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型. 卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可rS i O分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和, 图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.Torricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ), ∵△TQP ∽△PRT 1 ∴1RT PRQP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程 222)()]([r x v x f =-+ P T 1P 1RT Q Q 1将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成: ∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:+++=+2)()()()()(E x Q x E x P x f E x f <)(x f-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:++E x Q x P )()(<0-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数x x f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y =为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响. 2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年B AR I D KR E E C起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性 英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗 即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy = (2)如果zdx dy =,则⎰=xy zdx 0 (设x=0时y=0)巴罗还采用帕斯卡二十年代提出而沃里斯正在使用的“微分三角形”思想来求曲线的切线.微分三角形是指由自变量增量x ∆和函数增量y ∆为直角边所构成的直角三角形.他第一个认识到xy ∆∆对于决定切线有重大意义,于是将微分三角形和费马的方法结合起来,从而得到比费马更优越的方法.实际上,巴罗已经接触到了微分的本质,因为x y ∆∆可以用来决定导数. 微积分的先驱们的工作,以费马和巴罗为标志而结束,由于历史的局限性,上述数学家关注的是具体几何特有的解答方法,而未注意大量成果的优越性、创造性和普遍性能够提炼成新的统一的方法构成一门新的学科,也就是需要创立具有普遍意义的抽象概念、具有一般符号和一整套解析形式与规则的可以应用的微积分学.牛顿和莱布尼茨正是在这样的时刻出。
《微积分的创立》课件
导数是描述函数变化率的概念,微分则将导数应用于实际问题。
3 积分
积分是计算曲线下面积或累积变化的数学手段。
微积分的应用ห้องสมุดไป่ตู้
物理学
微积分在物理学中广泛运用于 描述运动、力学、电磁学等现 象。
统计学
微积分在统计学中用于概率分 布、假设检验、参数估计等领 域。
经济学
微积分在经济学中用于分析市 场供需、边际效应、消费者行 为等经济问题。
《微积分的创立》
微积分是现代数学的基石,它的创立是数学史上的一大里程碑。本课件将带 您回顾微积分的创立历程以及其在各领域的应用。
引言
微积分是研究数量变化和累积变化的数学分支,其应用广泛涉及物理、统计、经济等领域。
微积分的发展历程
1
微分学、积分学
2
微积分分为两大分支:微分学研究变化 率,积分学研究累积变化。
结论
微积分的重要性
微积分是现代科学和工程领域不可或缺的数学工具。
未来微积分的发展方向
微积分在数据科学、机器学习等领域中的应用将进 一步扩大。
古希腊时期到牛顿时期
微积分的雏形可以追溯到古希腊时期, 但真正的发展是在牛顿时期。
微积分的创立者
牛顿和莱布尼茨
牛顿和莱布尼茨都被认为是微积分的创立者,他们的贡献和争议至今仍存在。
两人的贡献与争议
牛顿发明了微积分的主要原理,莱布尼茨独立发明并推广了符号微积分。
微积分基本概念
1 极限
极限是微积分中最基本的概念,它描述了函数逼近某个点时的行为。
数学史第七章巨人的杰作——微积分的创立讲义
巨人的杰作——微积分的创立
7.3 科学巨人—— 7.4 多才多艺的数学大师莱布尼茨
7.3 科学巨人——牛顿
牛顿
Isaac Newton
数学家 物理学家 天文学家 自然哲学家 英国皇家学会会员
艾萨克·牛顿简介
艾萨克·牛顿(1642--1727)出生于英格兰林肯郡的一 个小镇乌尔斯索普。他出生之前,他的父亲就已去世 。在牛we顿lco3m岁e时to ,us他e th的es母e P亲ow改e嫁rPo给in一t te个mp牧lat师es,, N把ew牛顿托 付给了Co他nt的ent祖de母sig抚n,养10。ye8a年rs后ex,per牧ien师ce病故,牛顿的母亲 又回到了乌尔斯索普。牛顿自幼沉默寡言,性格倔强, 这种习性可能来自他的家庭环境。
主要贡献
微积分的创立 二项式定理
运动的三个基本定 律(牛顿三定律):
光学、哲学、 天文学
数学其他方面
微积分的创立
牛顿关于微积分问题的研究起始于1664年,当时 笛卡儿的《几何学》和沃利斯的《无穷算术》对他的 影响最大。他对笛卡尔求曲线切线的方法产生了浓厚 的兴趣并试图寻找更好、跟一般的方法。
1666年10月他写的第一篇关于微积分的论文《 论数短论》,其中首次提出了流数的概念,所谓流数 就是速度,在变速运动中速度是路程对事件的微商, 至于速度的变化状况就要用速度的微商来反映,即加 速度是速度的微商。
艾萨克·牛顿简介 牛顿墓碑铭文:此地安葬的是艾撒克·牛顿勋爵,他 用近乎神圣的心智和独具特色的数学原则,探索出行 星的运动和形状、彗星的轨迹、海洋的潮汐、光线的 不同谱调和由此而产生的其他学者以前所未能想像到 的颜色的特性。以他在研究自然、古物和圣经中的勤 奋、聪明和虔诚,他依据自己的哲学证明了至尊上帝 的万能,并以其个人的方式表述了福音书的简明至理。 人们为此欣喜:人类历史上曾出现如此辉煌的荣耀。 他生于1642年12月25日,卒于1727年3月20日。
微积分发展简史
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。
微积分的创立
微积分的创立微积分思想的历史萌芽,可以追溯到古代。
在阿基米德、刘徽、祖冲之父子关于体积的计算中包含了无穷小求积过程,极限的思想与方法也十分明确。
与积分学相比,微分学的起源则要晚很多。
刺激微分学发展的主要数学问题是求曲线的切线、求瞬时变化率和求函数的极大值极小值。
但是,古代学者处理这些问题都是基于静态的观点。
比如,把切线看做是与曲线只在一点接触且不穿过曲线的“切触线”,而不是把切线看做是“割线”的极限。
17世纪以来,随着生产实践的深入和对自然现象的深刻认识,对数学提出了大量的问题,主要集中在:(1)由距离和时间的关系,求物体在任意时刻的瞬时速度和加速度;(2)确定运动物体在其轨道上任一点的运动方向,以及研究光线通过透镜而提出的切线问题;(3)求函数的最大值和最小值;(4)求曲线的长度、曲线围成的面积、体积,物体的重心,等等。
在17世纪上半叶,几乎所有的科学大师都致力于寻求解决这些问题的新的数学工具。
正是他们的努力,最终导致微积分的诞生。
下面将简要介绍几位先驱者的具有代表性的工作。
① 开普勒与旋转体体积开普勒是现代天文学的创始人,他因行星运动三大定律的发现,被称誉为“天空的立法者”。
开普勒的第二定律称:联结行星与太阳之间的焦半径在相等的时间里扫过相等的面积。
为了估计出一个椭圆扇形的面积,开普勒将椭圆扇形分割成许多的小三角形相加。
也许他认为自己只是在运用常识而已,然而,他已解决了一个积分学的问题。
这种思想在他的《求酒桶体积之新法》(Nova stereometria doliorum vinariourum, Linz,1615)一书中有系统的阐述,开普勒应用粗糙的积分方法,求出了93种立体的体积,这些体积是圆锥曲线的某段围绕它们所在平面上的轴旋转而成的。
1613年10月30日,开普勒举行了他的第二次婚礼。
他准备了几大桶葡萄酒,可是经销商计算酒桶体积的拙劣方法,促使开普勒思考如何计算这类问题,从而为积分学的发明奠定了基础。
微积分的创立
微积分的创立1.理论展开顺序:首先集合论是一切的基础,接下来就是实数理论和函数(变量对应关系说),继实数理论之后就是数列极限然后是函数极限,函数的连续性然后是导数微分(中值定理),继而级数,最后是多元积分。
2.数学分析理论展开:对微积分的学习研究,我们是从极限——微分——积分的基本顺序展开的。
不难发现,微积分研究的对象是变量,是函数,微分学、积分学的理论都是通过极限的理论作为基础和工具进行研究和建立的。
3.历史展开顺序:公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想,他用穷竭法在几何应用静态极限。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”刘徽欲证阳马与鳖臑的体积之比为2:1,于是阳马的体积公式abc/3,即长方形的体积的三分之一。
比率2:1对于任意的长方形都成立,故称之“不易之率”。
正是为了证明这个“不易之率”,在感到出入相补无能为力的情况下,刘徽使用了极限的方法,这些都是朴素的、也是很典型的极限概念。
到了近代文艺复兴之后,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔(极值问题)、笛卡尔(解析几何问题);英国的巴罗(牛顿的老师《自然哲学的数学原理》)、瓦里士、沃利斯(变化率澄清);德国的开普勒(定积分—面积定律);波兰的哥白尼(反射望远镜,光的分解);意大利的伽利略(自由落体的瞬时速度问题)卡瓦列利等人都提出许多很有建树的理论。
微积分的创立数学史
科学的巨人——牛顿
17世纪中叶,剑桥大学的教育制度还渗透着浓厚的中世纪 经院哲学的气味。当牛顿进入剑桥大学时,那里还在传授 一些经院式课程,如逻辑、古文、语法、古代史、神学等 等。
科学的巨人——牛顿
两年之后三一学院出现了新气象。H. 卢卡斯创设了一个独辟蹊径的讲座, 规定讲授自然科学知识如地理、物理、 天文和数学课程。讲座的第一任教授 就是巴罗。在巴罗的指导下,牛顿掌 握了算术、三角,学习了欧几里得的 《几何原本》。并阅读了开普勒的 《光学》、笛卡儿的《几何学》和 《哲学原理》、伽利略的《关于托勒 密和哥白尼两大世界体系的对话》、 R.胡克的《显微图集》和华莱士的 《无穷算术》等著作,特别是笛卡儿 的《几何学》和华莱士的《无穷算术》 对他数学思想的形成尤为重要。
科学的巨人——牛顿
1676年,牛顿完成了他的第4篇论文《曲线 求积论》(1704年发表),这是他最成熟 的一部微积分论著。在这部著作中,他改 变了过去那种“略去所有含瞬的项”的做 法,认为“数学的量不是由非常小的部分 组成的,而是用连续的运动来描述的。” 为此他引入了最初比和最后比的概念,并 借助于几何解释把流数理解为增量消逝时 的最后比。
先驱们的探索
17世纪上半叶,随着函数观念的建立和对 机械运动规律的探求,许多实际问题摆到 了数学家们的面前。 几乎所有的科学大师都把自己的注意力集 中到寻求解决这些难题的新的数学工具上 来。 他们在解决问题的过程中,逐步形成了微 积分学的一些基本方法,这些问题可以分 为以下四类:
先驱们的探索
科学的巨人——牛顿
1665年8月,剑桥大学 因为瘟疫流行而停课放 假,牛顿回到故乡乌尔 斯索普,在家乡躲避瘟 疫的这两年间,牛顿思 考了自然科学领域中的 一些前人从未思考过的 问题,踏进前人没有涉 及的领域,创建了前所 未有的惊人业绩。
《数学史》微积分的创立 ppt课件
分之— ( VR4R2 1 )·
《数学史》微积分的创立
(三)笛卡儿“圆法”
以上介绍的微积分准备阶段的工作,主要采用几何方法并 集中于积分问题.解析几何的诞生改变了这一状况.解析几何 的两位创始人笛卡儿和费马,都是将坐标方法引进微分学问题 研究的前锋.
笛 卡 儿 在 《 几 何 学 》(1637) 中 提 出 了 求 切 线 的 所 谓 “ 圆 法”,本质上是一种代数方法.
《数学史》微积分的创立
第6章 微积分的创立
《数学史》微积分的创立
精品资料
你怎么称呼老师?
如果老师最后没有总结一节课的重点的难点,你是 否会认为老师的教学方法需要改进?
你所经历的课堂,是讲座式还是讨论式? 教师的教鞭
“不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨, 没有学问无颜见爹娘 ……”
“太阳当空照,花儿对我笑,小鸟说早早早……”
与积分学相比而言,微分学的起源则要晚得多.刺激微 分学发展的主要科学问题是求曲线的切线、求瞬时变化率以 及求函数的极大极小值等问题.
《数学史》微积分的创立
微积分的萌芽
• 微积分的产生是数学上的伟大创造。它从生产技术和理论科学 的需要中产生,又反过来广泛影响着生产技术和科学的发展。 如今,微积分已是广大科学工作 者以及技术人员不可缺少的工 具。
《数学史》微积分的创立
微积分产生的社会背景和数学渊 源
微积分诞生在17世纪,主要来自政治,经济和社会发展对数 学的巨大推动。
微积分的发明历程
微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨.微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇"中,著有“一尺之棰,日取其半,万世不竭"。
三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。
他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景.到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作.笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。
微积分的创立
微积分的创立微积分的诞生,是全部数学史中的一个伟大的创举.追溯一下历史就可发现,早在微积分诞生之前的2000多年,就已经有了它的萌芽.比如,古代的人民用方砖砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”,祖恒原理,等等,都涉及到以“直”代“曲”的极限观念,属于微积分的朴素思想.阿基米德更可称为是微积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓形那样复杂的曲边形的面积中,而且在求积时应用了级数有限项之和所成序列的近似法、还首次提出了现在所谓的上积分与下积分的概念等.但是真正形成微积分思想是17世纪后半叶,牛顿—莱布尼兹总结和发展了前人的工作,几乎同时建立了微积分的方法和理论微积分的起源,主要是力学与几何两大类问题.已知变速运动的路程为时间的函数,求瞬时速度及加速度;求曲线的切线等,这类问题的数学抽象化,即微分学.已知变速运动的速度为时间的函数,求运动物体通过的路程,求曲线围成的面积等.这类问题的数学抽象化,即积分学.牛顿和莱布尼茨用各自不同的方法,创立了微积分学。
如果说牛顿接近最后的结论比莱布尼茨早一些,那么莱布尼茨发表自己的结论要早于牛顿。
虽然牛顿的微积分应用远远超过莱布尼茨的工作,刺激并决定了几乎整个十八世纪分析的方向,但是莱布尼茨成功的建立起更加方便的符号体系和计算方法。
两位微积分的奠基人,一位具有英国式的处事严谨,治学严谨的风度,一位具有德国人的哲理思辨心态,热情大胆。
下面分别讲述两位数学家在微积分方面的研究。
英国著名数学家、物理学家牛顿(Newton,1643—1727),一贯坚持唯物论的经验论,特别重视实验和归纳推理的他,从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.他的微积分的思想最早出现在1665年5月20日的一份手稿中提到“流数术”.这一天可以作为微积分诞生的日子,而微积分的思想公开发表于1687年他的巨著《自然哲学的数学原理》中.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数.所谓“瞬”这个概念,如牛顿所说是一种刚刚产生的无限小的量,如一个无限小的时间间隔称为一个瞬.牛顿把全部微积分问题分为两大类,他用运动学上的术语表达为:“速度”与“路程”.“速度”相当于现在的导函数,“路程”相当于现在的原函数,“时间”被简单地作为所有变量的公共自变量,流数术所提出的中心问题是:①已知连续运动的路程,求给定时刻的速度(即微分法);②已知运动速度,求给定时间内经过的路程(即积分法).牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.用字母x,y,z…表示流动量,简称为流量,用加点字母x,y,z…表示流动率,称为流数,或称为速度,用字母。
微积分创始人(莱布尼茨)课件
莱布尼茨的故居和博物馆也是重要的 纪念场所,吸引了大量学者和游客前 来参观。
对现代数学的贡献与影响
微积分学的发展
莱布尼茨对微积分学的发展做出了卓越贡献,他引入了微 分符号(d)和积分符号(∫),并提出了微积分的基本定理。
对数学其他领域的影响
莱布尼茨的工作对数学的其他领域也产生了深远影响,如 代数学、几何学和概率论等。
莱布尼茨深入研究了微分学,包括 微分符号、微分法则和微分方程等。
与牛顿的微积分理论的比较
1 2
符号系统
牛顿的微积分理论使用的是文字叙述,相对而言 不如莱布尼茨的符号系统简洁明了。
连续性观念
牛顿对连续性的理解较为直观,而莱布尼茨则从 数学角度对连续性进行了严格的定义。
3
发展进程
牛顿的微积分理论是在其力学研究中逐渐形成的, 而莱布尼茨的微积分理论则是在对无穷小量的研 究中独立发展出来的。
03
莱布尼茨的其他数学成就
符号逻辑学
总结词
莱布尼茨在符号逻辑学领域做出了杰出贡献,他发明了二进制数系,为计算机科学和信息技术奠定了基础。
详细描述
莱布尼茨认为,任何科学都应使用统一的符号系统来表示,他致力于发展一套通用的符号逻辑语言,以简化科学 交流和推理过程。他发明的二进制数系成为计算机科学中数据存储和运算的基础,对现代信息技术产生了深远影 响。
莱布尼茨的思想与哲学
理性主义思想
理性主义强调人类的认识只能来源于纯粹的理性,而经验只是对 理性的一种辅助。莱布尼茨认为,数学和逻辑学可以通过理性得 到证明,而不需要依赖于经验。
莱布尼茨认为,人类的认识应该基于普遍的真理和原则,而不是 个别的观察和经验。他强调,普遍的真理和原则可以通过推理和 演绎得到,而不需要依赖于感觉经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章微积分的创立主题:微积分创立的意义知识理解:本章介绍微积分从酝酿到完全确立起来的过程,重点介绍了在17世纪里有关微积分所产生的一系列的数学事件,包括各种微积分算法的特殊情况和牛顿和莱布尼茨建立微积分的情况。
一.背景:1解析几何:工具2科学问题:(1)古代:求积、求切线和最值(2)近代:瞬时变化率、切线问题、函数极值、几何求积(3)酝酿:开普勒与旋转体体积;卡瓦列尼不可分量原理;笛卡儿“圆法”;费马求极大值与极小值的方法;巴罗“微分三角形”;沃利斯“无穷算术”总之:针对基本问题,微积分的算法技巧成熟。
需要的工作:将各种算法统一成一种同一的算法——微分与积分,同时确立二者的互逆关系从而统一起来。
二微积分的创立1 牛顿创立微积分的过程:(1)其人:牛顿(1642-1727):(2)过程:出发点:1664 笛卡儿《圆法》,1665 发明“正流数术”(微分),1666 “反流数术”(积分),《流数简论》(1666年)是历史上第一篇系统的微积分文献。
(3)特点:微积分具有运动学背景(4)意义:在这之前,面积总是被看成无限小量不可分量之和,牛顿这是从确定面积变化率入手通过反微分计算面积。
面积计算与求切线问题的互逆关系,在以往场合也被人模糊提出过,但没有把它作为一种系统的理论总结出来,而只有牛顿以敏锐的眼光和能力将这种互逆关系明确作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。
牛顿是自古希腊以来将求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术即微分与积分,并证明了二者的互逆关系而将这两类运算进一步统一成整体。
微积分算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等16类问题,表现了此类算法的极大的普遍性和系统性。
(5)发展:《运用无限多项方程的分析》(简称《分析学》)(1699),《流数法与无穷级数》(1671),《曲线求积术》(1691)三篇论文反映了微积分学说的发展过程,并对于微积分的基础先后给出不同的解释。
(6)发表:《原理》2 莱布尼茨创立微积分的过程其人:莱布尼茨(1646-1716):(1)起点:特征三角形(2)建立:(3)分析微积分:形式化(4)有关文献:(5)其他数学贡献:三比较背景:运动背景几何化;几何背景形式化方法:综合方法;分析方法形式:和力学运动学结合在一起;与几何背景抽象出来7微积分的创立7.1 孕育(16-17世纪)开普勒(德,1571-1630年),1609年、1619年公布了通过观测归纳出的行星运动三大定律,如何从数学上推证这定律成为当时自然科学的中心课题之一。
事实上,自文艺复兴以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破的阶段,所面临的数学困难,关注的焦点:瞬时速度问题、切线问题,极值问题,长度、面积、体积、重心和引力计算问题。
在17世纪上半叶,几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,特别是描述运动与变化的无限小算法。
(1)伽利略(意,1564-1642年),1638年《关于力学和位置运动的两种新科学的对话与数学证明》,建立了自由落体定律、动量定律等,为动力学奠定了基础,切线构造为运动合速度方向的直线;(2)开普勒(德,1571-1630年),1615年《测量酒桶的新立体几何》,论述了求圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法,无穷小求和思想;(3)卡瓦列里(意,1598-1647年),就学于伽利略,1629-1647年是波罗尼亚大学的数学教授,他那个时代最有影响的数学家之一,虔诚的耶稣会士,曾任帕马的耶稣会修道院院长,1629年任波罗尼亚大学首席数学教授直至去世(1629-1647年),1635年《用新方法促进的连续不可分量的几何学》中提出了线、面、体的不可分量原理,即卡瓦列里原理,无穷小方法计算面积和体积,该书成为研究无穷小问题的数学家引用最多的书籍,1639年他用一可分量原理建立了等价于⎰=axdx 0a^{2}/2的积分公式;(4)托里切利(意,1608-1647年),物理学家、数学家,幼年时表现出数学才能,20岁时到罗马在伽利略早年的学生卡斯提利指导下学习数学,毕业后成为他的秘书,1641年写了第一篇论文《论自由坠落物体的运动》,发展了伽利略关于运动的想法,经卡斯提利推荐做了伽利略的助手,在数学上的主要贡献是推进了不可分量方法,关于高次抛物线和双曲线的切线,获得了面积比等于抛物线的幂指数比,从而本质上证明了⎰a n dx x 0=a{n+1}/(n+1); (5)笛卡儿(法,1596-1650年)1637年《几何学》中提出圆法及讨论光的折射时法线的构造方法,由此可导入切线的构造,牛顿是以笛卡儿圆法为起跑点而踏上研究微积分的道路;(6)费尔马(法,1601-1665年)的极大极小方法(1629)和曲边梯形面积(1636),给出了增量方法及矩形长条分割曲边形并求和的方法,这方法几乎相当于现今微分学中所用的方法;令人奇怪的是,费尔马在应用他的方法来确定切线、求函数的极大值极小值以及面积、求曲线长度等问题时,能在如此广泛的各种问题上从几何和分析的角度应用无穷小量,而竟然没有看到这两类问题之间的基本联系,其实,只要费尔马对他的抛物线和双曲线求切线和求面积的结果再仔细地考察和思考,是有可能发现微积分的基本定理的,也就是说费尔马差一点就成为微积分的真正发明者。
(7)巴罗(英,1630-1677年),1664年任剑桥大学卢卡斯讲座教授(荣誉数学教授职位,每年有若干津贴,低于大学院院长,不需要再担任神职,也不许再兼其他学校的教授)第一人,以微积分先驱者闻名于世,1669年让位于牛顿,形成于1664年、载于1669年《几何讲义》,求切线方法的关键概念是“特征三角形”或“微分三角形”,Δy/Δx 对于决定切线的重要性;此外,微积分基本定理是架设在切线问题和求积问题之间的桥梁,揭示了两者的互逆关系,巴罗在《几何讲义》的第10、11讲中用几何形式给出面积与切线的某种关系,已得到基本定理的要领。
(8)沃利斯(英,1616-1703年),在牛顿和莱布尼茨以前,将分析方法引入微积分贡献最突出的数学家,是当时最有能力、最有创造力的数学家之一,也是牛顿在英国的直接前辈之一,他推动英国数学界的发展长达半个世纪。
1649年他被任命为牛津大学的萨魏里几何讲座教授直至逝世(任职54年),1655年出版《无穷算术》,因而作为一个数学家享誉四方,其中有分数幂积分公式q q p a q p a qp q dx x /)(0/++=⎰、无穷小分析的算术化等内容,有计算π的著名的沃利斯公式,4/π=3/2∙3/4∙5/4∙5/6∙7/6∙⋯,引进了现在用的无穷大符号∝,最先完整地说明零指数、负指数和分数指数意义的人,为牛顿创立微积分开辟了道路。
17世纪上半叶一系列前驱的工作,沿着不同的方向向微积分的大门逼近,这还不足以标志微积分作为一门独立科学的诞生,方法缺乏足够的一般性,没有一般规律性的提出,需要有人站在更高的高度将以往个别的贡献和分散的努力综合为统一的理论。
历史安排牛顿和莱布尼茨在这样关键的时刻出场了。
在伽利略去世的那年,牛顿出生了。
7.2 牛顿(英,1642-1727年)伽利略死的那年牛顿出生。
英国诗人波普的诗:Nature and Nature's laws lay hid in night; God said,let Newton be! and all was light.(自然和自然定律隐藏在茫茫黑夜中。
上帝说:让牛顿出世吧!于是一切都豁然明朗。
)牛顿是个遗腹子,17岁时被母亲从他就读的中学召回田庄务农,校长劝说:“在繁杂的农务中埋没这样一位天才,对世界来说将是多么巨大的损失”,1661年进入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作,影响最深的是笛卡儿《几何学》(1637),沃利斯《无穷算术》(1655),1665年夏至1667年春剑桥大学因瘟疫流行而关闭,牛顿离校返乡,竟成为牛顿科学生涯中的黄金岁月,如制定微积分,发现万有引力,提出光学颜色理论……,可以说描绘了牛顿一生大多数科学创造的蓝图。
1669年26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授至1701年,1699年伦敦造币局局长,1703年皇家学会会长,1705年封爵。
第一个创造性成果:二项定理(1665)及无穷级数(1666),在研读沃利斯的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
第一篇微积分文献:《流数简论》(1666)(fluxion)。
它反映了牛顿微积分的运动学背景,以速度形式引进了“流数”概念。
为什么称为流数,牛顿说道,“我把时间看作是连续流动或增长,其他量则随时间而连续增长,我从时间的流动性出发,把所有其他增长速度称为流数。
”借助求逆运算来求面积,从而建立了所谓“微积分基本定理”,创造了首末比方法:求函数自变量与因变量变化之比的极限,牛顿关于流数的记号。
1684年天文学家哈雷(英,1656-1742年)到剑桥拜访牛顿。
在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。
皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版,立即对整个欧洲产生了巨大的影响。
它运用微积分工具,严格证明了包括开普勒行星运动三大定律、万有引力定律在内的一系列结果,将其应用于流体运动、声、光、潮汐、彗星及至宇宙体系,把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合,充分显示了这一新数学工具的威力。
图:《自然哲学的数学原理》。
《原理》由导论和三篇组成。
导论:定义、基本定理和定律,及相关的说明(绝对时空概念、运动合成法则、运动三定律、力的合成与分解法则、伽利略相对性原理);第一篇:解决引力问题;第二篇:讨论物体在介质中的运动;第三篇:论宇宙体系。
他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律,从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。
拉格朗日(法,1717-1783年):牛顿是历史上最有才能的人,也是最幸运的人,因为宇宙体系只能被发现一次。
牛顿:“如果我看得更远些,那是因为我站在巨人们的肩膀上”。
(1676年2月5日至胡克的信)牛顿:“科学研究虽然是艰苦而又枯燥的,但要坚持,因为它给上帝的创造提供证据。
”牛顿:“我不知道世人怎么看,但在我自己看来,我只不过是一个在海滨玩耍的小孩,不时地为比别人找到一块更光滑、更美丽的卵石和贝壳而感到高兴,而在我面前的真理的海洋,却完全是个谜。