导数练习题及答案

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

导数数学试题及答案

导数数学试题及答案

导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。

\( g'(x) = \) ________ , \( g'(2) = \) ________ 。

4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。

\( h'(t) = \) ________ 。

三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。

6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。

四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。

8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。

答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。

求导练习题带答案

求导练习题带答案

求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。

以下是一些求导的练习题及其答案,适合初学者练习。

练习题1:求函数 f(x) = x^3 的导数。

解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。

因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。

练习题2:求函数 g(x) = sin(x) 的导数。

解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。

所以,g'(x) = cos(x)。

练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。

解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。

对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。

练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。

解:这里我们使用链式法则和幂函数的求导法则。

首先,设 u = x^2- 1,那么 k(x) = u^3。

u 的导数是 u' = 2x,而 u^3 的导数是3u^2。

应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。

练习题5:求函数 m(x) = e^x 的导数。

解:根据指数函数的求导法则,e^x 的导数是它自身。

所以,m'(x) = e^x。

练习题6:求函数 n(x) = ln(x) 的导数。

解:自然对数函数 ln(x) 的导数是 1/x。

因此,n'(x) = 1/x。

练习题7:求函数 p(x) = (3x - 2)^5 的导数。

解:使用链式法则和幂函数的求导法则。

(完整版)导数习题+答案

(完整版)导数习题+答案

一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.2.已知函数f(x)=xlnx﹣2x+a,其中a∈R.(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+…+nlnn>(n﹣1)2,其中n≥2.3.已知函数f(x)=axlnx(a≠0).(Ⅰ)求函数f(x)的单调区间和最值;(Ⅱ)若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)4.已知函数f(x)=2e x﹣x(1)求f(x)在区间[﹣1,m](m>﹣1)上的最小值;(2)求证:对时,恒有.5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知函数f(x)=ln(x+2)﹣a(x+1)(a>0).(1)求函数f(x)的单调区间;(2)若x>﹣2,证明:1﹣≤ln(x+2)≤x+1.7.已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若x>﹣1,证明:.8.已知函数(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1]内是单调减函数;(2)当x∈(0,+∞)时f(x)≥1恒成立,求实数a的取值范围.9.已知函数f(x)=(1)当a<0,x∈[1,+∞)时,判断并证明函数f(x)的单调性(2)若对于任意x∈[1,+∞),不等式f(x)>0恒成立,求实数a的取值范围.参考答案与试题解析一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性。

导数练习题含答案完整版

导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

函数求导练习题(含解析)

函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。

导数试题及答案

导数试题及答案

1.设正弦函数y =sin x 在x =0和x =π2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系为( )A .k 1>k 2B .k 1<k 2C .k 1=k 2D .不确定2.设y =-2e xsin x ,则y ′等于( )A .-2e x cos xB .-2e xsin xC .2e x sin xD .-2e x(sin x +cos x )3.已知m <0,f (x )=mx 3+27x m,且f ′(1)≥-18,则实数m 等于( )A .-9B .-3C .3D .94.若曲线y =x 3-2ax 2+2ax 上任意点处的切线的倾斜角都是锐角,求整数a 的值.5.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末6.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )7.曲线y =13x 3+12x 2在点T (1,56)处的切线与两坐标轴围成的三角形的面积为( )A.4918B.4936C.4972D.49144 8.(2009年高考安徽卷)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.10.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=________.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程; (2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.12.(2008年高考海南、宁夏卷)设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.函数y =3x 2-6ln x 的单调增区间为________,单调减区间为________.14.(2009年高考北京卷)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间与极值点.15.函数f (x )=x 3-6b 2x +3b 在(0,1)内有极小值,则( )A .b >0B .b <12C .0<b <22D .b <1 16.已知函数f (x )的导数为f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极大值-5时,x 的值应为( )A .-1B .0C .1D .±117.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.1,解析:选A.∵y =sin x ,∴y ′=(sin x )′=cos x ,k 1=cos0=1,k 2=cos π2=0,∴k 1>k 2.2, 解析:选D.∵y =-2e xsin x ,∴y ′=(-2e x )′sin x +(-2e x)·(sin x )′=-2e x sin x -2e xcos x=-2e x(sin x +cos x ).3, 解析:选B.由于f ′(x )=3mx 2+27m,故f ′(1)≥-183m +27m≥-18,由m <0得3m+27m≥-183m 2+18m +27≤03(m +3)2≤0,故m =-3.4解:∵曲线y =x 3-2ax 2+2ax ,∴该曲线上任意点处切线的斜率k =y ′=3x 2-4ax +2a . 又∵切线的倾斜角都是锐角,∴k >0恒成立,即3x 2-4ax +2a >0恒成立.∴Δ=(-4a )2-4×3×2a =16a 2-24a <0,∴0<a <32.又∵a ∈Z ,∴a =1.5解析:选D.∵s =13t 3-32t 2+2t ,∴v =s ′(t )=t 2-3t +2,令v =0得,t 2-3t +2=0,解得t 1=1,t 2=2.6解析:选B.设二次函数为y =ax 2+b (a <0,b >0),则y ′=2ax ,又∵a <0,故选B.7, 解析:选D.易知点T 为切点,由f ′(1)=2,故切线方程为:y =2x -76,其在两坐标轴的截距分别为712,-76,故直线与两坐标轴围成的三角形面积S =12×712×|-76|=49144.8, 解析:选D.∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin(θ+π3).∵θ∈[0,5π12],∴θ+π3∈[π3,3π4].∴sin(θ+π3)∈[22,1].∴2sin(θ+π3)∈[2,2].9, 解析:由已知切点在切线上,所以f (1)=12+2=52,切点处的导数为切线的斜率,所以f ′(1)=12,所以f (1)+f ′(1)=3.答案:310, 解析:∵f ′(x )=x 2+2ax +(a 2-1),∴导函数f ′(x )的图象开口向上.又∵a ≠0,其图象必为第三张图.由图象特征知f ′(0)=0, 且-a >0, ∴a =-1.故f (-1)=-13-1+1=-13.11, 解:(1)由f (x )=x 3-3x 得,f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,∴所求直线方程为y =-2;(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 02-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 03-3x 0+2x 0-1,又x 03-3x 0+2x 0-1=3x 02-3,即x 03-3x 0+2=3(x 02-1)·(x 0-1),解得x 0=1(舍)或x 0=-12,故所求直线的斜率为k =3×(14-1)=-94,∴y -(-2)=-94(x -1),即9x +4y -1=0.12, 解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 02)(x -x 0),即y -(x 0-3x 0)=(1+3x 02)(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0).令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为S =12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.13, 解析:y ′=6x -6x =6x 2-6x.∵定义域为(0,+∞),由y ′>0得x >1,∴增区间为(1,+∞); 由y ′<0得0<x <1.∴减区间为(0,1).答案:(1,+∞) (0,1)14, 解:(1)f ′(x )=3x 2-3a ,因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增;此时函数f (x )没有极值点.当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减. 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增.此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点.15, 解析:选C.f ′(x )=3x 2-6b 2,令f ′(x )=0,得x =±2b .∵f (x )在(0,1)内有极小值, ∴0<2b <1.∴0<b <22.16, 解析:选B.可以求出f (x )=x 4-2x 2+c ,其中c 为常数.由于f (x )过(0,-5),所以c =-5,又由f ′(x )=0,得极值点为x =0和x =±1.又x =0时,f (x )=-5.故x 的值为0.17, 解析:令f ′(x )=3x 2-3=0,得x =±1,可求得f (x )的极大值为f (-1)=2, 极小值为f (1)=-2,如图所示,-2<a <2时,恰有三个不同公共点. 答案:(-2,2)。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

(完整版)导数练习题(含答案)

(完整版)导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案一、选择题1. 若函数f(x)=x^3-3x+1,则f'(x)等于()。

A. 3x^2-3B. 3x^2+3C. 3x^2-3xD. 3x^2+3x答案:A解析:根据导数的定义,f'(x)=3x^2-3。

2. 函数y=x^2-4x+c的导数是()。

A. 2x-4B. 2x+4C. -2x-4D. -2x+4答案:A解析:对函数y=x^2-4x+c求导,得到y'=2x-4。

二、填空题3. 若f(x)=x^2+2x+1,则f'(1)=______。

答案:4解析:将x=1代入f'(x)=2x+2,得到f'(1)=2*1+2=4。

4. 函数y=ln(x)的导数是______。

答案:1/x解析:对函数y=ln(x)求导,得到y'=1/x。

三、解答题5. 求函数g(x)=x^3-2x^2+x-1的导数。

答案:g'(x)=3x^2-4x+1解析:根据导数的运算法则,对函数g(x)求导得到g'(x)=3x^2-4x+1。

6. 已知f(x)=x^2+3x+2,求f'(-1)。

答案:-2解析:首先求出f'(x)=2x+3,然后将x=-1代入,得到f'(-1)=2*(-1)+3=-2。

四、应用题7. 某物体在t秒时的速度为v(t)=t^2-t,求物体在t=2秒时的瞬时速度。

答案:3解析:首先求出速度函数的导数v'(t)=2t-1,然后将t=2代入,得到v'(2)=2*2-1=3。

8. 函数y=e^x-x^2在x=0处的切线斜率是多少?答案:1解析:求出函数y的导数y'=e^x-2x,然后将x=0代入,得到y'(0)=e^0-2*0=1。

五、证明题9. 证明:若f(x)=x^3+2x,则f'(x)=3x^2+2。

答案:证明如下:∵f(x)=x^3+2x∴f'(x)=3x^2+2证明完毕。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案1. 计算函数\( f(x) = x^3 - 3x^2 + 2 \)在点\( x = 1 \)处的导数。

答案:首先求导数\( f'(x) \),得到\( f'(x) = 3x^2 - 6x \)。

然后将\( x = 1 \)代入,得到\( f'(1) = 3(1)^2 - 6(1) = -3 \)。

2. 已知函数\( g(x) = \sin(x) + \cos(x) \),求其在\( x =\frac{\pi}{4} \)处的导数。

答案:求导数\( g'(x) \),得到\( g'(x) = \cos(x) - \sin(x) \)。

然后将\( x = \frac{\pi}{4} \)代入,得到\( g'(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) - \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \)。

3. 判断函数\( h(x) = x^2e^x \)在\( x = 0 \)处的单调性。

答案:求导数\( h'(x) \),得到\( h'(x) = 2xe^x + x^2e^x \)。

然后将\( x = 0 \)代入,得到\( h'(0) = 2(0)e^0 + 0^2e^0 = 0 \)。

由于导数为0,无法判断单调性,需要进一步分析。

4. 给定函数\( k(x) = \ln(x) \),求其在区间\( (1, 2) \)上的单调区间。

答案:求导数\( k'(x) \),得到\( k'(x) = \frac{1}{x} \)。

由于\( k'(x) > 0 \)对于所有\( x > 0 \)成立,因此函数\( k(x) \)在区间\( (1, 2) \)上单调递增。

完整版)导数大题练习带答案

完整版)导数大题练习带答案

完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。

Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。

+\infty)$。

Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。

m+3]$ 上的最值。

$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。

m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。

Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。

证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。

2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。

Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。

$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。

导数公式的练习题及答案

导数公式的练习题及答案

导数公式的练习题及答案1. 导数的物理意义:瞬时速率。

一般的,函数y?f在x?x0处的瞬时变化率是?x?0limf?f,?x我们称它为函数y?f在x?x0处的导数,记作f?或y?|x?x0,即f?=lim?x?0f?f?x2. 导数的几何意义: 当点Pn趋近于P时,函数y?f 在x?x0处的导数就是切线PT的斜率k,即k?lim3. 导函数二.导数的计算1. 基本初等函数的导数公式. 导数的运算法则. 复合函数求导?x?0f?f?f?xn?x0y?f和u?g,称则y可以表示成为x的函数,即y?f)为一个复合函数 y??f?)?g?三.导数在研究函数中的应用 1.函数的单调性与导数:.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数y?f的极值的方法是:如果在x0附近的左侧f??0,右侧f??0,那么f是极大值; 如果在x0附近的左侧f??0,右侧f??0,那么f是极小值;.函数的最大值与导数函数极大值与最大值之间的关系.求函数y?f在[a,b]上的最大值与最小值的步骤求函数y?f在内的极值;将函数y?f的各极值与端点处的函数值f,f比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题1、已知函数f?2x?1的图象上一点及邻近一点,则2?y等于?xA.4B.4?xC.4?2?xD.4?2?x2、如果质点M按规律S?3?t2运动,则在一小段时间[2,2.1]中相应的平均速度为A.4B.4.1C.0.41D.33、如果质点A按规律S?2t3运动,则在t?3秒的瞬时速度为A.B.18C.54D.8111在点处的切线斜率为_________,切线方程为__________________. x225、已知函数f?ax?2,若f??1,则a?__________.4、曲线y??6、计算:f?5x?7,求f?;f?y?221x?2,求f?;21,求y?|x?0 x?17、在自行车比赛中,运动员的位移与比赛时间t存在函数关系S?10t?5t2,t?20,?t?0.1时的求t?20的速度. 1、函数y??S; ?t的导数是1?4?141323A.xB.xC.x5D.?x55555112、曲线y?x2在点处切线的倾斜角为225???A.1B.?C.D.4443、已知曲线y?x?2x?2在点M处的切线与x轴平行,则点M的坐标是A.B. C.D.2x在点处的切线方程为____________________.x?135、曲线y?x在点处的切线与x轴、直线x?2所围成的三角形面积为__________.4、曲线y?6、求下列函数的导数:y?x?log3x;y??2x?1.13?;y?cos2x.sinx?cosx求f在点处的切线方程;求过点的切线方程.、函数y?的导数是A.6x5?12x B.4?2x C.2 D.2?3x、已知y?333321sin2x?sinx,那么y?是A.仅有最小值的奇函数B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数D.非奇非偶函数 10、曲线y?e1x2在点处的切线与坐标轴所围三角形的面积为2C.2e D.e22211、已知f?ln,若f??1,则实数a的值为__________. A.e2B.4e12、y?sin3x在处的切线斜率为__________________.1?x,?1?x?1. 1?x13、求下列函数的导数:f?f?e?x2?2x?3;y?lncos2x??14、已知f? ,求f.1?sin2x41、函数f?e的单调递增区间是A. B.C. D.2、设函数y?f在定义域内可导,y?f的图象如图1所示,则导函数y?f?可能为A2xB C D3、若函数f?x?ax?x?6在内单调递减,则实数a的取值范围是A.a?1B.a?13C.a?1D.0?a?14、函数f?ax?x在R上为减函数,则实数a的取值范围是______________.、求函数f?2x?lnx的单调区间.、设函数f?xe.kx2求曲线y?f在点)处的切线方程;求函数f的单调区间;若函数f在区间内单调递增,求k的取值范围.、函数y?4x2?1的单调递增区间是 x11A. B. C.D.8、若函数y?x3?x2?mx?1是R上的单调函数,则实数m 的取值范围是A. B.D..函数f?lnx?1313131312x的图象大致是10、如果函数y?f的导函数的图象如下图所示,给出下列判断:①函数y?f在区间内单调递增;②函数y?f在区间内单调递减;③函数y?f在区间内单调递增;④当x?2时,函数y?f有极小值;⑤当x??12121时,函数y?f有极大值.32则上述判断中正确的是____________.11、已知函数f?x?ax?bx?c,g?12x?4,若f?0,且f 的图象在点)处的切线方程为y?g.求实数a,b,c的值;求函数h?f?g的单调区间 12、已知函数f?13、已知函数f?12x?lnx?x在上是增函数,求实数a的取值范围.x?1?alnx,f的单调区间.1.C .B3.C4.4;y?4x?4.?7.210.5;2101?1?381x111.C.C .B4.y??x?2.6.;?;ln?233xln3?sinx?cosx7.y?4x?3;y?e;1?x814.?9111.D.D .A4.a?0.增区间,减区间22116.y?x;k?0时,增区间,减区间kk11k?0时,增区间,减区间;[?1,0)?和,减区间12.a?213.a?0时,增区间为a?0时,在基本初等函数的导数公式及导数运算法则练习姓名班级713?1.曲线y=x-2在点?-1,-处切线的倾斜角为?3?A.30°B.45° C.135°D.60°.设f=31A641-1x2xf′等于57B.C.-667D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为A.4x-y-3=032B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=04.已知f=ax+9x+6x-7,若f′=4,则a的值等于A.193B.16101 D.3314325.已知物体的运动方程是st-4t+16t,则瞬时速度为0的时刻是A.0秒、2秒或4秒B.0秒、2秒或16秒C.2秒、8秒或16秒 D.0秒、4秒或8秒6.曲线y=x-2x+1在点处的切线方程为A.y=x-1B.y=-x-1 D.y=-2x-23C.y=2x-2x7.若函数f=esinx,则此函数图象在点)处的切线的倾斜角为A.π2B.0C.钝角D.锐角?ππ8.曲线y=xsinx在点?-,处的切线与x轴、直线x=π所围成的三角形的面积为 ?22?πA.21222B.π C.2πD.+π)29.设f0=sinx,f1=f0′,f2=f1′,…,fn+1=fn′,n∈N,则f2011等于A.sinxB.-sinx C.cosxD.-cosx10.f与g是定义在R上的两个可导函数,若f、g满足f′=g′,则f与g满足A.f=g B.f-g为常数C.f=g=0 11.函数y=在x=1处的导数等于A.1 B.2C.D.412.若对任意x∈R,f′=4x,f=-1,则f=第 - 1 - 页共 1页32D.f+g为常数A.x34mB.x-D.x+21*}的前n项和是 f44C.4x-513.设函数f=x+ax的导数为f′=2x+1,则数列{ A.n+2nn+1B. C.D.n+1n+1n-1nn14.二次函数y=f的图象过原点,且它的导函数y=f′的图象是过第一、二、三象限的一条直线,则函数y=f的图象的顶点在A.第一象限32B.第二象限C.第三象限D.第四象限15.函数y=的导数为A.6x+12xB.4+2xC.24252332D.2·3x316.若函数f=ax+bx+c满足f′=2,则f′=A.-1B.- C.2D.031017.设函数f=,则f′=A.0B.-1 C.-60D.6018.函数y=sin2x-cos2x的导数是π??A.2cos?2x-?4??π??B.cos2x-sin2xC.sin2x+cos2x D.22cos?2x +?4??119.已知曲线y=-3lnx的一条切线的斜率为,则切点的横坐标为42A.3B. C.11D.x220.设函数f是R上以5为周期的可导偶函数,则曲线y=f在x=5处的切线的斜率为1A51B.5D.5?π1221.设f=ax-bsinx,且f′=1,f′?=a=________,b=________.?3?222.设f=x-3x-9x+1,则不等式f′<0的解集为________.3.曲线y=cosx在点P?32?π,1处的切线的斜率为______.?32?x24.已知函数f=ax+be图象上在点P处的切线与直线y=-3x平行,则函数f的解析式是____________.25.若f=x,φ=1+sin2x,则f[φ]=_______,φ[f]=________.6.设函数f=cos,若f+f′是奇函数,则φ=________.7.函数y=的导数为________.8.函数y=x1+x的导数为________.三、解答题第 - - 页共 1页22829.求下列函数的导数:1111+x1x24x4xy=x;y=;y=sin+cosy=xx44x1-x1x30.求下列函数的导数:e+1x+cosxy=xsinx; y=ln;yx y=.e-1x+sinx22x.31.求下列函数的导数:y=cos;y=cosx·sin3x; y=xloga; y=log2 2sinx232.设f=f′=·g,求g.1+x33.求下列函数的导数:是可导函数)第 - - 页共 1页222x-1. x+1?1?2y=f??;y=fx+1).?x?34.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C1:y=x与C2:y=-.直线l与C1、C2都相切,求直线l的方程.18.求满足下列条件的函数f:f是三次函数,且f=3,f′=0,f′=-3,f′=0;f′是一次函数,xf′-f=1.222第 - - 页共 1页基本初等函数的导数公式及导数运算法则答案一、选择题7?13?1.曲线yx-2在点?-1,-?处切线的倾斜角为?3?A.30° C.135° [答案] B[解析] y′|x=-1=1,∴倾斜角为45°..设f31A67C6[答案] B1-1B.45° D.60°x2xx,则f′等于5B.67D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为 A.4x-y-3=0C.4x-y+3=0[答案] A [解析] ∵直线l的斜率为4,而y′=4x,由y′=4得x=1而x=1时,y=x=1,故直线l的方程为:y-1=4即4x-y-3=0.4.已知f=ax+9x+6x-7,若f′=4,则a的值等于 A.C.193103B.D.16313332344B.x+4y-5=0 D.x+4y+3=0[答案] B[解析] ∵f′=3ax+18x+6,16∴由f′=4得,3a-18+6=4,即a=.3∴选B.第 - - 页共 1页2基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?x2lnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?xlnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。

答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。

答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。

答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。

答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。

答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。

8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知某函数的导数为y′=12(x-1),则这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2009•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2009•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,则此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.下列关于函数f(x)=(2x-x2)ex的判断正确的是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.已知f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,则方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2010•河南省实验中学)若函数f(x)=(2-m)xx2+m的图象如图所示,则m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

) 13.(2009•武汉模拟)函数y=xln(-x)-1的单调减区间是________.14.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=________.15.(2009•南京一调)已知函数f(x)=ax-x4,x∈[12,1],A、B是其图象上不同的两点.若直线AB的斜率k总满足12≤k≤4,则实数a的值是________.16.(2009•淮北模拟)已知函数f(x)的导数f′(x)=a(x+1)•(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、演算步骤或证明过程。

) 17.(本小题满分10分)设a为大于0的常数,函数f(x)=x-ln(x+a).(1)当a=34,求函数f(x)的极大值和极小值;(2)若使函数f(x)为增函数,求a的取值范围.18.(本小题满分12分)已知函数y=f(x)=lnxx.(1)求函数y=f(x)的图象在x=1e处的切线方程;(2)求y=f(x)的最大值;(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.19.(本小题满分12分)设a>0,函数f(x)=x-ax2+1+a.(1)若f(x)在区间(0,1]上是增函数,求a的取值范围;(2)求f(x)在区间(0,1]上的最大值.20.(本小题满分12分)已知函数f(x)=1+ln(x+1)x.(x>0)(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(2)若当x>0时,f(x)>kx+1恒成立,求正整数k的最大值.21.(2009•天津)(本小题满分12分)已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠23时,求函数f(x)的单调区间与极值.命题意图:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法.22.(2010•保定市高三摸底考试)(本小题满分12分)已知函数f(x)=lnxx+ax-1(a∈R)(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若f(x)≤0在区间(0,e2]上恒成立,求实数a的取值范围.答案:一、1答案:A解析:对选项求导.(ln1-x)′=11-x(1-x)′=11-x•12(1-x)-12•(-1)=12(x-1).2答案:A解析:f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在点(1,f(1))处切线斜率为4.3答案:D解析:y′=(xx-2)′=-2(x-2)2,∴k=y′|x=1=-2.l:y+1=-2(x-1),则y=-2x+1.4答案:D解析:∵y′=ex,∴y=ex在点(2,e2)的导数为e2.∴y=ex在点(2,e2)的切线方程为y=e2x-e2.y=e2x-e2与x轴、y轴的交点分别为(1,0)和(0,-e2),∴S=12×1×e2=e22.5答案:D解析:由题意知函数f(x),g(x)都为增函数,当x<x0时,由图象知f′(x)>g′(x),即f(x)的增长速度大于g(x)的增长速度;当x>x0时,f′(x)<g′(x),g(x)的增长速度大于f(x)的增长速度,数形结合,6答案:C解析:y′=16x-1x.当x∈(0,14)时,y′<0,y=8x2-lnx为减函数;当x∈(12,1)时,y′>0,y=8x2-lnx为增函数.7答案:D解析:由f(x)>0⇒(2x-x2)ex>0⇒2x-x2>0⇒0<x<2,故①正确;f′(x)=ex(2-x2),由f′(x)=0得x=±2,由f′(x)<0得x>2或x<-2,由f′(x)>0得-2<x<2,∴f(x)的单调减区间为(-∞,-2),(2,+∞).单调增区间为(-2,2).∴f(x)的极大值为f(2),极小值为f(-2),故②正确.∵x<-2时,f(x)<0恒成立.∴f(x)无最小值,但有最大值f(2).∴③不正确.8答案:C9答案:C解析:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则Δ=4a2-12(a+6)>0,从而有a>6或a<-310答案:A解析:设高为h,则半径为202-h2,体积V=13πr2h=13π(202-h2)•h=-13πh3+2023πh(0<h<20),V′=-πh2+2023π.令V′=0,得h=2033或h=-2033(舍去),即当h=2033时,V为最大值.11答案:C解析:f′(x)=(x2-m)(m-2)(x2+m)2=(x-m)(x+m)(m-2)(x2+m)2由图知m-2<0,且m>0,故0<m<2,又m>1,∴m>1,因此1<m<212答案:C解析:由y=f′(x)的图象知,当x<0时,f′(x)<0,函数f(x)是减函数;当x>0时,f′(x)>0,函数f(x)是增函数;两正数a,b满足f(2a+b)<1,f(4)=1,点(a,b)的区域为图中的阴影部分(不包括边界),b+2a+2的意义为阴影部分的点与点A(-2,-2)连线的斜率,直线AB、AC的斜率分别为12、3,则b+2a+2的取值范围是(12,3)二、13答案:(-1e,0)14答案:32解析:令f′(x)=3x2-12=0,得x=-2或x=2,列表得:x -3 (-3,-2) -2 (-2,2) 2 (2,3) 3f′(x)+ 0 - 0 + f(x) 17极值24极值-8-1可知M=24,m=-8,∴M-m=32.15答案:92解析:f′(x)=a-4x3,x∈[12,1],由题意得12≤a-4x3≤4,即4x3+12≤a≤4x3+4在x∈[12,1]上恒成立,求得92≤a≤92,则实数a的值是92.16答案:(-1,0)解析:结合二次函数图象知,当a>0或a<-1时,在x=a处取得极小值,当-1<a<0时,在x=a处取得极大值,故a∈(-1,0).三、17解析:(1)当a=34时,f′(x)=12x-1x+34,令f′(x)=0,则x-2x+34=0,∴x=94或14,当x∈[0,14]时,f′(x)>0,当x∈(14,94),f′(x)<0,当x∈(94,+∞)时,f′(x)>0,∴f(x)极大值=f(14)=12,f(x)极小值=f(94)=32-ln3.(2)f′(x)=12x-1x+a,若f(x)为增函数,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴12x≥1x+a,即x+a≥2x,即a≥2x-x=-(x-1)2+1恒成立,∴a≥1.18解析:(1)∵f(x)定义域为(0,+∞),∴f′(x)=1-lnxx2∵f(1e)=-e,又∵k=f′(1e)=2e2,∴函数y=f(x)的在x=1e处的切线方程为:y+e=2e2(x-1e),即y=2e2x-3e.(2)令f′(x)=0得x=e.∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数,当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数,∴fmax(x)=f(e)=1e.(3)∵a>0,由(2)知:F(x)在(0,e)上单调递增,在(e,+∞)上单调递减.∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)},∵F(a)-F(2a)=12lna2,∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna.当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=12ln2a.19解析:(1)对函数f(x)求导数,得f′(x)=1-axx2+1.要使f(x)在区间(0,1]上是增函数,又要f′(x)=1-axx2+1≥0在(0,1]上恒成立,即a≤x2+1x=1+1x2在(0,1]上恒成立.因为1+1x2在(0,1]上单调递减,所以1+1x2在(0,1]上的最小值是2.注意到a>0,所以a的取值范围是(0,2].(2)①当0<a≤2时,由(1)知,f(x)在(0,1]上是增函数,此时f(x)在区间(0,1]上的最大值是f(1)=1+(1-2)a.②当a>2时,令f′(x)=1-axx2+1=0,解得x=1a2-1∈(0,1).因为当0<x<1a2-1时,f′(x)>0;当1a2-1<x<1时,f′(x)<0,所以f(x)在(0,1a2-1)上单调递增,在(1a2-1,1)上单调递减.此时f(x)在区间(0,1]上的最大值是f(1a2-1)=a-a2-1.综上所述,当0<a≤2时,f(x)在区间(0,1]上的最大值是1+(1-2)a;当a>2时,f(x)在区间(0,1]上的最大值是a-a2-1.20解析:(1)f′(x)=1x2[xx+1-1-ln(x+1)]=-1x2[1x+1+ln(x+1)].由x>0,x2>0,1x+1>0,ln(x+1)>0,得f′(x)<0.因此函数f(x)在区间(0,+∞)上是减函数.(2)解法一:当x>0时,f(x)>kx+1恒成立,令x=1有k<2[1+ln2].又k为正整数.则k的最大值不大于3.下面证明当k=3时,f(x)>kx+1(x>0)恒成立.即证明x>0时(x+1)ln(x+1)+1-2x>0恒成立.令g(x)=(x+1)ln(x+1)+1-2x,则g′(x)=ln(x+1)-1.当x>e-1时,g′(x)>0;当0<x<e-1时,g′(x)<0.∴当x=e-1时,g(x)取得最小值g(e-1)=3-e>0.∴当x>0时,(x+1)ln(x+1)+1-2x>0恒成立.因此正整数k的最大值为3.解法二:当x>0时,f(x)>kx+1恒成立.即h(x)=(x+1)[1+ln(x+1)]x>k对x>0恒成立.即h(x)(x>0)的最小值大于k.由h′(x)=x-1-ln(x+1)x2,记Φ(x)=x-1-ln(x+1).(x>0)则Φ′(x)=xx+1>0,∴Φ(x)在(0,+∞)上连续递增.又Φ(2)=1-ln3<0,Φ(3)=2-2ln2>0,∴Φ(x)=0存在惟一实根a,且满足:a∈(2,3),a=1+ln(a+1),由x>a时,Φ(x)>0,h′(x)>0;0<x<a时,Φ(x)<0,h′(x)<0知:h(x)(x>0)的最小值为h(a)=(a+1)[1+ln(a+1)]a=a+1∈(3,4).因此正整数k的最大值为3.21解析:(1)当a=0时,f(x)=x2ex,f′(x)=(x2+2x)ex,故f′(1)=3e.所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e.(2)f′(x)=[x2+(a+2)x-2a2+4a]ex.令f′(x)=0,解得x=-2a,或x=a-2.由a≠23知,-2a≠a-2.以下分两种情况讨论.①若a>23,则-2a<a-2,当x变化时,f′(x)、f(x)的变化情况如下表:x (-∞-2a),-2a (-2a,a-2) a-2 (a-2,+∞)f′(x)+ 0 - 0 +f(x)极大值极小值所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数,在(-2a,a-2)内是减函数.函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a.函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2.②若a<23,则-2a>a-2.当x变化时,f′(x)、f(x)的变化情况如下表:x (-∞,a-2) a-2 (a-2,-2a) -2a (-2a,+∞)f′(x)+ 0 - 0 +f(x)极大值极小值所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.22解析:(1)因为函数f(x)的定义域为(0,+∞),导函数f′(x)=1-(lnx+a)x2,∴k=f′(1)=1-a,又f(1)=a-1,即切点坐标为(1,a-1),所以,函数f(x)的图象在点(1,f(1))处的切线方程为:y-(a-1)=(1-a)(x-1),即y=(1-a)x+2(a-1).(2)结合(1),令f′(x)=0得x=e1-a,由对数函数的单调性知:当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数.(ⅰ)当e1-a<e2时,a>-1时,f(x)max=f(e1-a)=ea-1-1,令ea-1-1≤0,解得a≤1,即-1<a≤1,(ⅱ)当e1-a≥e2即a≤-1时,f(x)在(0,e2]上是增函数,∴f(x)在(0,e2]上的最大值为f(e2)=2+ae2-1,令2+ae2-1≤0,解得a≤e2-2,即a≤-1,综上可知,实数a的取值范围是a≤1.。

相关文档
最新文档