【免费下载】一元一次方程应用题专题训练
一元一次方程应用题专项练习(含答案)
一元一次方程应用题专项练习宇文皓月1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采取一种高新技术后,每天多生产10台,结果用12天,不单完成任务,而且逾额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际依照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各逾额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去观赏博物馆,出租车的收费尺度是:不超出3公里的付费7元;超出3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超出3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.12.某商场一种品牌的服装标价为每件1000元,为了介入市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去观赏,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才干到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看角逐.球迷领队安插车辆若干,若每辆坐4人,车不敷,每辆坐5人,有的车未坐满.问领队安插的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,缺乏1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超出6吨,按每吨1.2元收费;如果超出6吨,未超出的部分仍按每吨1.2元收取,而超出部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去介入课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才干使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去介入一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超出每小时60千米.甲船从A 港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超出20吨,按每吨1.9元收费;如果超出20吨,未超出部分按每吨1.9元收费,超出部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成天职别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费尺度如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超出部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人角逐跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安插一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安插了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班辅佐和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才干完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才干完成任务?61.学校部分师生到离校28千米的地方观赏学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店推销了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔挺的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种分歧颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时介入做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采取“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得酬报600元.若按个人完成的工作量给付酬报,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样即可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机自己的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力建议和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了包管训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安插甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.。
(完整word版)一元一次方程应用题专题
一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2。
和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3。
等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100%利息=本金×利率×期数利率=每个期数内的利息本金经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数.②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2.(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?3.(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3 ,求小强叔叔今年的年龄。
一元一次方程应用题专题练习
一元一次方程应用题专题练习一元一次方程应用题专题练1.年龄问题XXX今年6岁,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1/4倍?解:设x年后XXX的年龄是爷爷的1/4倍,根据题意得方程为:6+x=72+1/4x2.数字问题一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(填表格并完成解答过程)解:设这个数的十位数字是x,个位数字是x+3,根据题意得原数为10x+x+3,对调后的新数为10(x+3)+(x)=11x+30.解方程得:原数为42,对调后的新数为93.3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得x+(x+2)=156,解得x=77,因此这两个奇数为77和79.4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
设原数为abcde,根据题意得方程为:a+bcde=3(abcde+),解得a=2,因此原数为+b+cde。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:1)十字框中的五个数的平均数与15有什么关系?2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.解:(1)十字框中的五个数的平均数为5,与15的关系是它们都是这些连续奇数的中位数。
2)这五个数的和为35,无法等于315,因为315是连续奇数的和,而这些数不在同一个连续奇数序列中。
6.日历时钟问题你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由。
解:无法圈出这样的正方形,因为任何一个正方形的四个角上的数相加都不小于13,而77不是13的倍数。
7.在6点和7点间,时钟分针和时针重合?解:在6点和7点间,时针和分针之间的夹角为30度,每分钟时针和分针的夹角增加5.5度,因此重合需要30÷(5.5)=5.45分钟,即在6点5分左右。
一元一次方程的应用题训练(行程类)
一元一次方程的应用题训练(行程类)一.选择题(共14小题)1.甲、乙两人有相距60千米的两地同时出发相向而行,甲步行每小时走5千米,乙骑自行车,3小时后两人相遇,则乙的速度为每小时()千米.A.5B.10C.15D.202.在光明区举办的“周年艺术季”期间,小颖一家去欣赏了一台音乐剧,路上预计用时25分钟,但由于堵车,所以实际车速比预计的每小时慢了10千米,且路上多用了5分钟.设预计车速为x千米/时,根据题意可列方程为()A.B.C.25x=30x﹣10D.3.一辆客车和卡车同时从A地沿同一公路同方向行驶,客车的行驶速度是80km/h,卡车的行驶速度是70km/h,客车比卡车早2h经过B地.设A、B间的路程是xkm,可得方程()A.80x﹣70x=2B.﹣=2C.70x﹣80x=2D.﹣=2 4.一列火车匀速行驶,经过一条长800米的隧道,从车头开始进入隧道到车尾离开隧道一共需要50秒的时间;在隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是18秒,设该火车的长度为x米,根据题意可列一元一次方程为()A.18x﹣800=50x B.18x+800=50C.=D.=5.一列火车从开始进入山洞到完全离开山洞共用了10s,已知火车车身长100m,火车的速度为108km/h,若设山洞的长为xm,则列出的方程为()A.=10B.100+x=10×108C.=10D.=306.甲、乙两人分别从相距40km的两地同时出发,若同向而行,则5h后,快者追上慢者;若相向而行,则1h后,两人相遇,那么快者速度和慢者速度(单位km/h)分别是()A.30和10B.28和12C.24和16D.14和67.甲、乙两人分别从相距600米的A、B两地步行出发,相向而行,各人速度保持不变.若两人同时出发,则他们10分钟之后相遇;若乙比甲先出发3分钟,则甲出发9分钟之后,甲乙两人相遇,则甲的速度为()A.20米/分钟B.30米/分钟C.40米/分钟D.25米/分钟8.博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为()米.A.2075B.1575C.2000D.15009.小明平均每秒跑6m,小彬平均每秒跑5m,若小彬站在小明前10m,两人同时同向起跑,小明追上小彬需要()A.10s B.8s C.6s D.5s10.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米11.如图,在数轴上,点A,B分别表示﹣15,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5512.一艘轮船从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.=+3B.=﹣3C.=+3D.=﹣313.甲、乙两车站相距284km,一辆慢车从甲站开往乙站,每小时行48km,慢车出发1h后,另有一辆快车从乙站开往甲站,每小时行70km,设快车出发xh后与慢车相遇,则下列方程中正确的是()A.70x+48(x﹣1)=284B.70x+48(x+1)=284C.70(x﹣1)+48x=284D.70(x﹣1)+48(x+1)=28414.A、B两地相距16km,甲、乙两人都从A地到B地.甲步行,每小时4km,乙骑车,每小时行驶12km,甲出发2小时后乙再出发,先到达B地的人立即返回去迎接另一个人,在其返回的路上两人相遇,则此时乙所用时间为()A.3.5小时B.3小时C.1.5小时D.1小时二.填空题(共8小题)15.我国元朝朱世杰所著的《算学启蒙》中有一个问题:“良马日行240里,驽马日行150里,驽马先行12日,问良马几何追及之”.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先行十二天,快马几天可以追上慢马?如果快马和慢马从同一地点出发,沿同一路径行走.我们设快马x天可以追上慢马,根据题意可列方程为.16.王叔叔以每小时5千米的速度从家步行到单位上班,下班时以每小时4千米的速度按原路返回,结果发现下班路上所花的时间比上班路上所花的时间多15分钟,则王叔叔下班从单位步行回到家所需的时间为分钟.17.一艘船从甲码头到乙码头顺流而行,用了2小时;从乙码头返回甲码头逆流而上,用了2.5小时.若船在静水中的平均速度是每小时27千米,则水流速度为每小时千米.18.已知A、B、C三地依次在同一条笔直的公路上,甲、乙两车分别从相距100公里的A、B两地同时出发,驶往C地,甲车的速度是每小时80公里,甲、乙两车的速度比为4:3,当一车到达C地时,两车相距40公里,则A、C两地的距离为公里.19.若一列火车匀速行驶,经过一条长310米的隧道需要18秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯照在火车上的时间是8秒,则这列火车长米.20.一轮船往返于A、B两港之间,逆水航行需4小时,顺水航行需3小时,水速是5千米/时,则轮船在静水中的速度是千米/时.21.已知:如图,线段AB=24cm,OA=OP=2cm,∠POQ=60°,现点P绕着点O以30°/s的速度逆时针旋转一周后停止,同时点Q沿直线BA自点B向点A运动,若P,Q两点能相遇,则点Q运动的速度为cm/s.22.甲乙两人分别从相距80千米的A、B两地同时出发相向而行,已知甲走2千米需要小时,乙的速度是甲速度的,当两人相距10千米时,甲走了千米.三.解答题(共6小题)23.如图,直线l上有A、B两点,AB=18cm,O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若动点P,Q分别从点A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.当t为何值时,2OP﹣OQ=3cm?24.列方程解应用题:小明每天早上要在7:50之前赶到距家1000m的学校上学,一天,小明从家出发以60m/min的速度出发,6min后,小明的爸爸发现他忘了带数学书.于是,爸爸立即以180m/min的速度去追小明,并且在中途追上了他,爸爸追上小明用了多长时间?25.列一元一次方程解应用题:甲列车从A地开往B地、速度是60km/h,乙列车同时从B地开往A地,速度是90km/h.已知A,B两地相距200km,两车相遇的地方离A地多远?26.A,B两地相距150千米,甲车从A地匀速行驶前往B地,每小时行驶40千米;乙车从B地匀速行驶前往A地,每小时行驶60千米.(1)甲、乙两车同时出发,小时相遇.(2)甲、乙两车同时出发,小时两车相距10千米.(3)若乙车先行驶半小时,甲车再出发,求甲车出发几小时两车相遇?27.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?28.某单位一行8人7点搭乘小客车从A县城到B镇参加扶贫工作现场会,因光线不好,小客车以30千米/小时的速度行驶,预计8点到达B镇,在行驶了五分之二路程时,小客车发生故障,12分钟后故障排除,天色大亮,小客车加速行驶,正好于8点赶到B镇.(1)小客车发生故障时剩余路程还有多少,距离开会还有多少分钟?(2)列方程求出故障排除后小客车的行驶速度.。
【下载自www.glzy8一元一次方程应用题与平面图形的认识
一元一次方程应用题专题训练\例1、某地区的手机收费标准有两种方式,用户可任选其一:A.月租费20元,0.25元/分;B.月租费25元, 0.20元/分.x分钟, 则A方式应交付费用:元;B方式应交付费用:(1) 某用户某月打手机元; (用含x的代数式表示)(2) 某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见下表.请根据上面的表格回答下列问题:①若某户居民一月份用水8立方米,则应向其收水费多少元?②若该用户二月份用水12.5立方米则应向其收水费多少元?③若该用户三、四月份共用水15立方米(3月份用水量不超过6立方米),共交水费44元,则该用户三、四月份各用水多少立方米?练习2、某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部分按2.6元/3m 计费.设每户家庭用水量为3m x 时,应交水费y 元.(1)当020x ≤≤时,y=______;当20x 时, y=__________(用含x 的代数式表示);小明家这个季度共用水多少立方米?例3、甲、乙两班学生到集市上购买苹果,苹果的价格如下:甲班分两次共购买苹果70kg (第二次多于第一次),共付出189元,而乙班则一次购买苹果70 kg 。
(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少?练习3、历史文化名城扬州瘦西湖的团体参观门票价格规定如下表(随同教师免费):某校初一①、②两班共103人(其中⑴班人数多于⑵班人数)去参观吴承恩故居,如果两班都以班级为单位分别购票,则一共需付486元.⑴你认为有没有最节约的购票方法?如果有,可以节约多少元钱? ⑵你能确定两班各有多少名学生吗?⑶如果本校初一③班共45人也一同前去参观,那又如何购票最合理呢?共需多少元钱?例4、我校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(三)1.如图,将长方形ABCD分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD:AB=()A.5:3 B.7:5 C.23:14 D.47:292.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约()A.4819元B.4818元C.4817元D.4816元3.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上4.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶5.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.57.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能12.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元13.某商场购进一批服装,又恰巧碰到双十一的促销活动,商场决定将这批服装按标价的五折销售,若打折后每件服装可获纯利润60元,其利润率为10%;若双十一过后,该商场按这批服装的标价打八折出售,那么获得的纯利润是()A.264元B.396元C.456元D.660元14.小明和小亮进行100米赛跑,两人在同一起跑线上,结果第一次比赛时小明胜10米;在进行第二次比赛时,小明的起跑线比原来起跑线推后10米,如果两次他们速度不变,则第二次结果().A.小亮胜B.小明胜C.同时到达D.不能确定15.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?()A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银16.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm217.某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利20%,另一件亏损20%,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元18.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是()千米/时.A.700 B.666C.675 D.65019.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.20.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里21.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.20622.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.23.某套课外书的进价为80元/套,标价为200元/套,“双11”期间某网店打x折销售,此时可获利25%,则x为()A.7 B.6 C.5 D.424.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.625.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是()米/分.A.120 B.160 C.180 D.200参考答案1.解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,2(5x+3x)+4=148x=95x=45,3x=27,AD=45+2=47,AB=27+2=29,=.故选:D.2.解:设每年应还x元,则根据题意可知:50000×(1+0.05)15=x×(1+0.05)14+x×(1+0.05)13+ (x)用计算器得出:x=4817故选:C.3.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2018÷4=504 (2)∴乙在第2018次追上甲时的位置是BC上.故选:B.4.解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5](瓶),所以第三天喝了{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5(瓶),(x+0.5)+[(x﹣x﹣0.5)+0.5]+{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5=x,解得x=7.故选:C.5.解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.6.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.7.解:A、设最小的数是x.x+x+7+x+7+1=15x=0故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=15,x=.故本选项不符合题意.C、设最小的数是x.x+x+1+x+8=15,x=2,故本选项符合题意.D、设最小的数是x.x+x+1+x+7=15,x=,故本选项不符合题意.故选:C.8.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.9.解:设这种服装每件的成本是x元,依题意,得:80%×(1+40%)x﹣x=24,解得:x=200.故选:C.10.解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故选:D.11.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.12.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.13.解:设该服装的标价为x元,由题意得,0.5x﹣60=,解得:x=1320.所以1320×80%﹣=456(元)故选:C.14.解:第一次小明跑100米和小亮跑90米的时间相等,则设小明的速度是a,小亮的速度是a,设第二次比赛,小明经过x秒追上小亮,ax=x+10,∴x=,∴a×=90米,∴小亮跑了90米时,就被小明追上,∴小明胜.故选:B.15.解:设有x两银,,解得,x=46,则人数为:=6,即有6个人,46两银,故选:C.16.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x ﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.17.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).即亏了10元.故选:B.18.解:设飞机往返的平均速度是x千米/时,根据题意,得(2.5+2)x=1500×2.解得x=666.故选:B.19.解:设第一个数为x,根据已知:A:得得x+x+6+x+7+x+8=36,则x=3.75不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选:C.20.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.21.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.22.解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.23.解:根据题意得:200×﹣80=80×25%,解得:x=5.故选:C.24.解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.25.解:设爷爷的速度为x米/分钟,则小林的速度为2x米/分钟,根据题意得:5×(2x﹣x)=400,解得:x=80,∴2x=160.答:爷爷的速度为80米/分钟,小林的速度为160米/分钟.故选:B.。
一元一次方程应用题100道(带答案)
一元一次方程应用题100道(带答案)初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,?则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,?两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(?)厘米.A.1 B.5 C.3 D.4 16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,?一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,?这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.?已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:?“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D 10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、?分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800?米,?列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G?站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28 545454654544121dhgghsaqy3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,?桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,?每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,?并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,?并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B 原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B —C—D—A),则所用时间为(?1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B —E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B —E—C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)3 .[ (- 2)-4 ]=x+24. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x) 9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2) (x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+3 2y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。
一元一次方程的应用题训练(工程类)
一元一次方程的应用题训练(工程类)一.选择题1.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天2.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天3.师徒俩人检修一条煤气管道,师傅单独完成需10小时,徒弟单独完成需15小时.若师徒合作2小时后,师傅因事离开由徒弟一人完成工作,则一共需要多少小时完成?设共需x小时完成,可得方程为()A.+=1B.+=1C.+=1D.+=14.一项工程由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙两队合作完成,完成剩下的部分需要甲、乙两队合作()A.3天B.6天C.天D.一天5.为打造县城河道风光带,现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治12米,乙工程队每天整治8米,共用时20天.则甲工程队共整治河道()A.60米B.80米C.100米D.120米6.某市一项重点工程,甲公司单独完成需3年,乙公司单独完成需6年,现在两公司合作完成整项工程后,该市共付工程款360万元,如果按两公司分别完成工作量的多少分配,则甲公司比乙公司多分得()A.120万元B.180万元C.200万元D.240万元7.完成某项工作,甲单独要10天,乙单独要15天,如果两队合作,工作效率可以提高20%,那么两队合作要多少天完成()A.7.5天B.20天C.5天D.6天8.检修一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙丙合作完成,则乙中途离开的天数是()A.2天B.3天C.4天D.5天9.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天.若甲、丙先合作3天后,甲因故离开,由乙接替甲的工作,则要完成这项工程的还需要的天数为()A.2B.3C.4D.510.某项工程,甲单独需a天完成,在甲做了c(c<a)天后,剩下工作由乙单独完成还需b天,若开始就由甲乙两人共同合作,则完成任务需()天.A.B.C.D.二.填空题11.一项工程,甲单独完成要20天,乙单独完成要25天,则由甲先做2天,然后甲、乙合做余下的部分还要天才能完成.12.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需x天完成,列方程为.13.一项工程,甲单独做a天完成,乙单独做b天完成.(1)甲的工作效率为,乙的工作效率为.(2)现在甲、乙合作8天完成了这项工程,则可以列出等式为.(3)若甲先单独工作5天后,甲、乙又合作3天完成了这项工程,则可以列出等式为.(4)若甲先单独工作5天后,乙又单独工作2天,最后甲、乙合作2天终于完成了全部工程,则可以列出等式为.(5)若甲、乙合作m天完成了整个工程的﹣半,则可列等式为.(6)若乙单独工作c天,又与甲合作m天完成了整个工程的,则可列等式为.由以上各题可以总结出:工程问题中列方程用到的相等关系﹣般来说都是从工作量、工作效率、工作时间这三个量中的哪个量来找?.14.一项工程,甲单独完成需要10天,乙单独完成需要15天,现两人合作需要天完成.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.16.一项工程,A独做10天完成,B独做15天完成.若A先做5天,再A、B合做,要完成全部工程的三分之二,还需天.17.一次工程,甲独做5小时完成,乙独做比甲晚3小时才能完成,甲、乙二人合作需要小时完成.18.一件工作,甲独做要3小时完成,乙独做要5小时完成,两人合作完成这件工作的,需要小时完成.三.解答题19.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独做这项工程需要15天完成.(1)甲的工作效率是,乙的工作效率是.(2)如果两队同时施工2天,然后由乙队单独施工,还需几天完成?20.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?21.甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?22.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能完成该工程.(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.23.列方程解应用题:为了治理大气污染,提升空气质量,现在广大农村正在实施“煤改气”工程.甲、乙两个工程队共同承接了某村“燃气壁挂炉注水”任务.若甲队单独施工需10天完成;若乙队单独施工需15天完成.(1)甲、乙两队合做需要几天完成?(2)若甲队先做5天,剩下部分由两队合做,还需要几天完成?24.哈市美化工程招标时,有甲、乙两个工程队投标、经测算:甲队单独完成这项工程需要30天,乙队单独完成这项工程需要45天,若由甲队先做10天,剩下的工程由甲、乙两队合作,共完成总工作量的.(1)求甲、乙两队合作了多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲队先做若干天后,再由乙队完成剩余的工作,若要求完成此工程的工程款恰好是100万元,求甲队工作了几天?25.一项工程,如果甲队单独做5天可以完成全工程的;如果乙、丙两队合做2天可以完成全工程.三队合做多少天可以完成全工程?26.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?27.一项工程,甲独做10h完成,乙独做15h完成,丙独做20h完成,开始时三人合作,中途甲另有任务,由乙、丙两人完成,从开始到工程完成共用6h,问甲实际做了几小时?28.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?。
解方程一元一次方程100题
解方程一元一次方程100题以下是100道一元一次方程应用题:1.甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2.一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进。
突然,1号队员以45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合。
1号队员从离队开始到与队员重新会合,经过了多长时间?3.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
4.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,求购买甲、乙两种票各多少张?5.某工厂第一车间人数比第二车间人数的4/5少30人,如果从第二车间调10人到第一车间,则第一车间的人数是第二车间人数的3/4,求原来每个车间的人数。
6.小明将1000元压岁钱存入银行,定期一年,年利率为2.25%,到期后需支付20%的利息税,求小明到期后实际得到的本利和。
7.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?8.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,求火车的长度。
9.某中学组织初一学生到爱国主义基地参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。
求初一年级的人数和原计划租用45座客车的辆数。
10.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?11.某商品的进价为2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?12.一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每道题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他做对了多少道题?13.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?14.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽。
(完整word版)一元一次方程应用题专项训练
(完整word版)⼀元⼀次⽅程应⽤题专项训练⼀元⼀次⽅程应⽤题专项训练4.2018元旦,王东和吴童相约⼀起去登⾹⼭.王东⽐吴童早18分钟到⾹⼭⼭脚,并以每分钟登⾼8⽶的速度直接开始登⼭;吴童到达⾹⼭⼭脚后没有休息,也直接以每分钟登⾼12⽶的速度开始登⼭,最后两⼈同时到达⼭顶.你能据此计算出⾹⼭⼭⾼多少⽶吗?5.列⼀元⼀次⽅程解应⽤题:社会是⼀个重要的学校和课堂,⽣活是⼀种重要的课程和教材,实践是⼀种重要的学习⽅式和途径.参加社会⽣活和社会实践,不仅可以学到很多在课堂上学不到的东西,也可以把课堂上学到的理论知识同社会实践联系起来,加深对课堂学习内容的理解,我区某校七年级学⽣在农场进⾏社会实践活动时,采摘了黄⽠和茄⼦共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄⽠和茄⼦各多少千克?(2)这些采摘的黄⽠和茄⼦可赚多少元?6.列⽅程解应⽤题:多少张?7.某市⾃来⽔公司为限制单位⽤⽔,每⽉只给某单位计划内⽤⽔300吨,计划内⽤⽔每吨收费3.4元,超过计划的部分每吨按4.6元收费.(1)当该单位每⽉⽤⽔250吨时,需付款元;当该单位每⽉⽤⽔350吨时,需付款元;(2)若某单位4⽉份缴纳⽔费1480元,则该单位⽤⽔多少吨?(3)若某单位5、6⽉份共⽤⽔700吨(6⽉份⽤⽔量超过5⽉份),共交⽔费2560元,则该单位5⽉份⽤⽔吨.8.随着经济的发展,能源与环境已成为⼈们⽇益关注的问题.据统计,全球每年⼤约会产⽣近3亿吨的塑料垃圾(例如平时⽤的矿泉⽔瓶⼦等)和约5亿吨的废钢铁(例如平时扔掉的易拉罐等),某中学为了培养学⽣的环保意识,开展了“环境保护,从我做起”的主题活动,七(2)班同学在活动中积极响应,在甲⼩区设⽴了回收塑料瓶和易拉罐的两个垃圾桶,班长⼩明对2个周的收集情况进⾏了统计,根据下列个周共收集了⽄塑料瓶,收集了⽄易拉罐.(2)班委会决定给贫困⼭区的孩⼦们捐赠⼀套价值43.8元的励志丛书,你认为按照这样的收集速度,需要收集⼏个周才能实现这个愿望?写出计算过程来⽀持你的答案.(3)七(1)班在⼄⼩区也设⽴了塑料瓶和易拉罐的回收点,两周收集塑料瓶和易拉罐共计440个,按相同价格出售后,所得⾦额⽐七(2)班两个周的废品回收⾦额多1.8元,求七(1)班同学两周收集的塑料瓶和易拉罐各多少个?9.商场将⼀批学⽣书包按成本价提⾼50%后标价,⼜按标价的80%优惠卖出,每个的售价是72元.每个这种书包的成本价是多少元?利润是多少元?利润率是多少?10.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选⼿的题,得分.(3)⽤⽅程知识解答:若某位选⼿F得64分,则他答对了⼏道题?(4)参赛选⼿G说他得78分,你认为可能吗?为什么?11.政府准备修建⼀条公路,若由甲⼯程队单独修需3个⽉完成,每⽉耗资12万元;若由⼄⼯程队单独修建需6个⽉完成,每⽉耗资5万元.若由甲⼯程队先做⼀段时间,剩下的由⼄⼯程队单独完成,⼀共⽤了4个⽉完成修建任务,这样安排共耗资多少万元?(时间按整⽉计算)12.根据图中情景,解答下列问题:(1)购买8根跳绳需元;购买11根跳绳需元;(2)⼩红⽐⼩明多买2根,付款时⼩红反⽽⽐⼩明少7元,你认为有这种可能吗?请结合⽅程知识说明理由.13.甲组的4名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的4倍多20件,⼄组的5名⼯⼈3⽉份完成的总⼯作量⽐此⽉⼈均定额的6倍少20件.(1)如果两组⼯⼈实际完成的此⽉⼈均⼯作量相等,那么此⽉⼈均定额是多少件?(2)如果甲组⼯⼈实际完成的此⽉⼈均⼯作量⽐⼄组此⽉⼈均⼯作量多2件,那么此⽉⼈均定额是多少件?14.根据国家发改委实施“阶梯电价”的有关⽂件要求,三明市结合地⽅实际,决定对居民⽣活⽤电试⾏(1)表中,a= ,b= ;(2)试⾏“阶梯电价”收费以后,该市⼀户居民2017年8⽉份平均电价每度为0.9元,求该⽤户8⽉⽤电多少度?15.新年快到了,贫困⼭区的孩⼦李明想给在“希望⼯程”中帮扶过他的王亮写封信,折叠长⽅形信纸装⼊标准信封时发现;若将信纸如图①五等分折叠后,沿着信封⼝边线装⼊时,宽绰有5.24cm,若将信封如图②三等分折叠后,同样⽅法装⼊时,宽绰有 1.4cm,试求信封的⼝宽20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果⼩东家2017年7⽉份的⽤⽔量为20吨,则需交⽔费多少元?(2)如果⼩明家2017年7⽉份的⽤⽔量为m吨,⽔价要按两级计算,则⼩明家该⽉应交⽔费多少元?《⽤含m的代数式表⽰,并化简)(3)若林安家2017年7⽉份应缴⽔费87.5元,则该户⼈家7⽉份⽤⽔多少吨?17.A、B两地相距70千⽶,甲从A地出发,每⼩时⾏15千⽶,⼄从B地出发,每⼩时⾏20千⽶.(1)若两⼈同时出发,相向⽽⾏,则经过⼏⼩时两⼈相遇?(2)若甲在前,⼄在后,两⼈同时同向⽽⾏,则⼏⼩时后⼄超过甲10千⽶?(3)若两⼈同时出发,相向⽽⾏,则⼏⼩时后两⼈相距10千⽶?18.为满⾜同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所⽰(总费⽤=总书价+总邮费本,共需总费⽤为元.(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费⽤为1064元时,共邮购了多本图书?②若你是学校图书馆负责⼈,从节约的⾓度出发,在“每次邮购10本“与“⼀次性邮购”这两种⽅式中选择⼀种,你会选择哪⼀种?计算并说明理由.19.列⽅程解应⽤题:如图,现有两条乡村公路AB、BC,AB长为1200⽶,BC长为1600⽶,⼀个⼈骑摩托车从A处以200⽶/分的速度匀速沿公路AB、BC向C处⾏驶;另⼀⼈骑⾃⾏车从B处以100⽶/分的速度从B向C⾏驶,并且两⼈同时出发.(1)求经过多少分钟摩托车追上⾃⾏车?(2)求两⼈均在⾏驶途中时,经过多少分钟两⼈在⾏进路线上相距150⽶?20.某⼯程交由甲、⼄两个⼯程队来完成,已知甲⼯程队单独完成需要60天,⼄⼯程队单独完成需要40天(1)若甲⼯程队先做30天后,剩余由⼄⼯程队来完成,还需要⽤时天(2)若甲⼯程队先做20天,⼄⼯程队再参加,两个⼯程队⼀起来完成剩余的⼯程,求共需多少天完成该⼯程任务?21.某校组织学⽣⾛上街头宜传雾霾的危害,他们要复印⼀部分宣传资料(不少于20页),校门⼝有两家复印店。
专题13一元一次方程的应用(12大题型)专项讲练(原卷版)
专题13 一元一次方程的应用(12大题型)专项讲练一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共十二大题型进行方法总结与经典题型进行分类。
1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长 2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
人教版七年级上册数学一元一次方程应用题(配套问题)专题训练
人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。
一元一次方程的应用(十二大类型)(题型专练)(原卷版)
专题03 一元一次方程的应用(十二大类型)【题型1 和、差、倍、分问题】【题型2 行程问题】【题型3 工程问题】【题型4 顺水逆水问题】【题型5 商品利润问题】【题型6 分配问题】【题型7 配套问题】【题型8 数字与日历问题】【题型9 方案选择问题】【题型10 分段计费问题】【题型11 隧道或过桥问题】【题型12 几何图形问题】【题型1 和、差、倍、分问题】1.(2022秋•泗水县期末)了丰富学生课后服务活动,某校七年级开展了篮球兴趣班和足球兴趣班,现需要给每名兴趣班同学分别购买一个篮球或一个足球,篮球每个100元,足球每个80元,结合图中两个学生的一段对话,求两个兴趣班各有多少人?2.(2023•西安二模)袁隆平,“共和国勋章”获得者,中国科学院院士,“中国杂交水稻之父”,一生致力于对水稻的研究,现有A、B两块试验田各30亩,A块试验田种植普通水稻,B块试验田种植杂交水稻,杂交水稻的亩产量是普通水稻的2倍,两块试验田单次共收获水稻43200千克,求杂交水稻的亩产量是多少千克?3.(2023•上饶模拟)2022年北京冬奥会后,奥运题材商品成为了市场热销,现有冰墩墩和冬奥会徽扣两种商品,其中冰墩墩的售价为冬奥会徽扣的2倍少10元,且两件商品作为套装销售时均打8折,套装售价为64元,求冰墩墩和冬奥会徽扣原价各为多少?4.(2023•雁塔区校级模拟)以井测绳.若将绳三折测之,绳多五尺;若将绳四折测之,绳多半尺.则井深几何?题目大意:古人用绳子测量水井的深度.如果将绳子折成三等份测量,绳子比井深多五尺;如果将绳子折成四等份测量,则绳子比井深多半尺.求此水井的深度.【题型2 行程问题】5.(2022秋•红河县期末)甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?6.(2022秋•莘县期末)甲、乙两人从A,B两地同时出发,沿同一条路线相向匀速行驶,已知出发后经3小时两人相遇,相遇时乙比甲多行驶了60千米,相遇后再经1小时乙到达A地.(1)甲,乙两人的速度分别是多少?(2)两人从A,B两地同时出发后,经过多少时间后两人相距20千米?7.(2022秋•铁西区期末)小彬和小强每天早晨坚持跑步,小彬每秒跑4m,小强每秒跑6m.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小强站在百米跑道的起点处,小彬站在他前面10m处,两人同时同向起跑,几秒后小强能追上小彬?8.(2022秋•莘县校级期末)甲乙两人分别从相隔56km的A、B两地同时出发,甲骑自行车的速度为每小时20千米,乙步行的速度为每小时8千米.(1)甲、乙分别从A、B两地同时出发,相向而行,求经过几小时两人相遇?(2)甲、乙两人从A地出发,同向而行,当甲到达B地时立刻掉头返回A地,求经过几小时两人相遇?9.(2022秋•罗山县期末)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).【题型3 工程问题】10.(2023•大庆一模)现需加工一批物件,甲单独做4天完成,乙单独做6天完成.现由乙先做1天,再两人合作,完成后共得报酬500元,如果按每人工作量分配报酬,那么该如何分配?11.(2022秋•梁山县期末)一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能完成该工程.(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.12.(2023春•江岸区校级月考)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(a+3)天,余下的工程再由甲工程队施工(4a+2)天,恰好完成该工程,求甲工程队一共参与了多少天?13.(2022秋•榕城区期末)一项工程,甲队单独完成需30天,乙队单独完成需45天,现甲队先单独做20天,之后两队合作.甲、乙合作多少天才能把该工程完成?14.(2022秋•姑苏区校级期末)某市有甲、乙两个工程队,现有一小区需要进行小区改造,甲工程队单独完成这项工需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多10天.(1)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(2)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?15.(2022秋•新邵县期末)截止2021年底,我国国家高速公路已建成11.7万公里,为推动社会主义现代化建设“振兴乡村”,构建城乡一体化.现在建城龙高速城步段施工由甲、乙两工程队完成,已知甲工程队单独完成需200天,乙工程队单独完成需300天,若由甲先做40天,然后甲、乙一起完成,则甲、乙一起还需多少天才能完成工作?16.(2022秋•北塔区期末)为了打造铁力旅游景点,市旅游局打算将依吉密河中一段长1800米的河道整治任务交由甲、乙两个工程队来完成.已知,甲工程队每天整治60米,乙工程队每天整治40米.(1)若甲、乙两个工程队接龙来完成,共用时35天,求甲、乙两个工程队分别整治多长的河道?(2)若乙工程队先整治河道10天,甲工程队再参加两个工程队一起来完成剩余河道整治任务,求整段河道整治任务共用是多少天?17.(2022秋•沙坪坝区校级期末)列方程解应用题.今年暑假期间,北关中学对校园进行了整改,整个校园面貌焕然一新.(1)7月份甲工程队接到了铺设600m2地砖的施工任务,铺设了400m2后,为了赶工期,提高了铺设速度,又施工2天后,完成全部任务,求甲工程队提速后每天铺设地砖多少m2?(2)8月份增加乙工程队与甲工程队同时施工.若甲工程队按(1)中提速后的施工速度进行施工,则两队需要12天完工.为了不影响正常开学,实际施工时,甲工程队的施工速度提高了5%,乙工程队的施工速度提高了30%,结果10天完工,求乙工程队原计划每天铺设地砖多少m2?18.(2022秋•潼南区期末)某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元,已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.19.(2022秋•寻乌县期末)某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?【题型4 顺水逆水问题】20.(2022秋•栖霞市期末)轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A.+3=﹣3B.﹣3=+3C.+3=D.﹣3=21.(2022秋•丰南区校级期末)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程.22.(2022秋•甘井子区校级期末)在风速为24km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8h,它逆风飞行同样的航线要用3h.求无风时这架飞机在这一航线的平均航速及两机场之间的航程.23.(2021秋•兰西县期末)一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.24.(2022秋•永川区期末)一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.25.(2022秋•武邑县校级期末)汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5h.已知船在静水中的速度为18km/h,水流速度为2km/h,求甲、乙两地之间的距离.【题型5 商品利润问题】26.(2023春•长宁区期末)一台手机进价是2800元,按照标价3400元的九折出售;一块电子手表进价是600元,按照标价的八折出售,结果每台手机的利润比每块手表的利润多140元,问手表的标价是多少元?27.(2023•安庆模拟)我国航天事业的飞速发展引发了航空航天纪念品的热销,某商店准备购进甲、乙两类关于航空航天的纪念品进行销售.已知甲类纪念品的进价为m元/件,乙类纪念品的进价比甲类的进价多5元/件.若每件甲类纪念品的售价是在其进价的基础上提高了60%,每件乙类纪念品的售价是在其进价的基础上提高了40%,根据上述条件,回答下面问题:(1)请用含有m的代数式填写表:进价/元售价/元甲类纪念品m乙类纪念品(2)该商店分别购进甲类纪念品100件,乙类纪念品80件.两类纪念品全部售出后所得的总利润为1080元,问每件甲、乙两类纪念品进价分别多少元?28.(2022秋•晋安区期末)某商场经销A,B两种商品,A种商品每件进价40元,售价60元;B种商品每件售价80元,利润率为60%.(1)每件A种商品利润率为,B种商品每件进价为.(2)若该商场同时购进A,B两种商品共50件,恰好总进价为2300元,则该商场购进A种商品多少件?29.(2022秋•徐闻县期末)列方程解应用题欧尚超市恰好用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的与少10件,甲、乙两种商品的进价和售价如表;(注:每件商品获利=售价﹣进价).甲乙进价(元/件)2030售价(元/件)2540(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?30.(2022秋•新民市期末)某社区超市第一次用6000元购进甲,乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:甲乙进价(元/件)2230售价(元/件)2940(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次的总利润多180元,求第二次乙商品是按原价打几折销售?【题型6 分配问题】31.(2022秋•天津期末)某班手工兴趣小组的同学们计划制作一批中国结送给敬老院作为新年礼物.如果每人制作9个,那么就比计划少做17个;如果每人制作12个,那么就比计划多做4个.这个手工兴趣小组共有多少人?计划要做的这批中国结有多少个?32.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.33.(2022秋•垫江县期末)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【题型7 配套问题】34.(2023•灞桥区校级模拟)列方程解应用题.某家具厂有60名工人,加工某种有一个桌面和四条桌腿的桌子,工人每天每人可以加工3个桌面或6个桌腿.分配多少工人加工桌面,多少工人加工桌腿,才能使每天生产的桌面和桌腿配套?35.(2022秋•栾城区期末)工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?36.(2022秋•襄州区期末)某工厂要制作一批糖果盒,已知该工厂共有88名工人,其中女工人数比男工人数的2倍少20人,并且每个工人平均每小时可以制作盒身50个或盒底120个.(1)该工厂有男工、女工各多少人?(2)该工厂原计划男工负责制作盒身,女工负责制作盒底,要求一个盒身配两个盒底,那么调多少名女工帮男工制作盒身时,才能使每小时制作的盒身与盒底恰好配套?37.(2022秋•嘉祥县期末)2020年3月,我县新冠肺炎疫情最为严重.为支持抗疫,某工厂紧急加工一批医用口罩.已知某车间有52名工人,每名工人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配2个口罩耳绳.请问安排多少名工人生产口罩面,能使每天生产的口罩面与口罩耳绳刚好配套.38.(2022秋•东港区校级期末)某机械厂加工车间有84名工人,平均每人每天加工大齿轮9个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?39.(2022秋•广州期末)初一年级共45名学生参与科技节活动,制作纸飞机模型.每人每小时可做20个机身或60个机翼,一个飞机模型要1个机身配2个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时能够做出多少套?【题型8 数字与日历问题】40.(2021秋•兴隆台区校级月考)有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,求这个两位数.41.(2021秋•蚌山区月考)一个三位数,十位数比个位数字大2,百位数是十位数字的2倍,如果把百位数字与个位数字对调,那么得到的三位数比原来的三位数小495.求原来的三位数.42.(2022秋•荆门期末)如图是2022年11月的日历,用一个方框在日历中任意框出4个代表日期的数(1)a﹣b﹣c+d=;(2)设S=a+b+c+d.①若S=84,求a的值;②S的值能否为36?请说明理由.43.(2022秋•思明区校级期中)如图是某月的日历表,在此日历表上用一个“十”字圈出5个数(如3,9,10,11,17).照此方法,在某年四月的日历表若圈出5个数,是否存在这5个数的和为120,请说明理由.44.(2023•邯郸模拟)如图是2022年2月的日历表:(1)在图中用优美的“”U形框框住五个数,其中最小的数为1,则U形框中的五个数字之和为;(2)在图中将U形框上下左右移动,框住日历表中的5个数字,设最小的数字为x,用代数式表示U形框框住的五个数字之和为;(3)在图中移动U形框的位置,框住的五个数字之和可以为63吗?若能,求出这五个数字中最小的数;若不能,请说明理由.【题型9 方案选择问题】45.(2022秋•道县期末)2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A:买一件运动速干衣送一双运动棉袜;方案B:运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x双(x≥30).(1)若该户外俱乐部按方案A购买,需付款元(用含x的式子表示);若该户外俱乐部按方案B购买,需付款元(用含x的式子表示);(2)若x=40,通过计算说明此时按哪种方案购买较为合算;(3)当购买运动棉袜多少双时两种方案付款相同.46.(2022秋•防城港期末)为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.【题型10 分段计费问题】48.(2022秋•绵阳期末)如表为某市居民每月用水收费标准(单位:元/立方米),设用户用水量为x立方米.用水量/立方米单价/(元/立方米)x≤30a超出30的部分a+1.02(1)某用户用水10立方米,共交水费29.8元,求a的值.(2)在(1)的前提下,该用户10月份交水费109.4元,请问该用户用水多少立方米?49.(2022秋•东港区校级期末)为增强居民节约用水意识,某市从2022年1月开始对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:一户居民一个月用水量记为x立方米水费单价(单位:元/立方米)x≤22aa+1.1超出22立方米不超出28立方米的部分超出28立方米的部分a+2.2该市某户居民2022年四月份用水10立方米时,缴纳水费24元.(1)求a的值;(2)若该户居民2022年五月份所缴水费为69元,求该户居民五月份的用水量.50.(2022秋•灵宝市期末)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2.6元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2.6元/立方米收费,超过部分按4元/立方米计费.设小明家月用水量为x立方米.(1)若小明家四月份用水15立方米,应收水费为元;当x超过20时,应收水费为元.(用含x的代数式表示,写化简后的结果);(2)小明家六月份交水费62.4元,请帮小明计算一下他家这个月用水量是多少立方米?51.(2023春•莱芜区月考)一家通讯公司推出两种移动电话计费方法,如表所示:计费方法A计费方法B每月基本服务费(元/月)68元98元每月免费通话时间(分)200分500分0.25元0.20元超出后每分钟收费(元/分)(1)若月通话时间是5小时,则使用计费方法A的用户话费为元,使用计费方法B的用户话费为元;(2)若月通话时间是x分钟(x>500),则按A、B两种计费方法的用户话费分别是多少?(用含x的代数式表示)(3)当通话时间为多长时,按A、B两种计费方法所需的用户话费相等?52.(2022秋•武城县期末)某省公布的居民用电阶梯电价听证方案如下:项目第一档第二档第三档用电量(度)210度以下210至350350度以上价格(元)0.52比第一档提价0.05元比第一档提价0.3元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?53.(2021秋•柯桥区期末)A市出租车收费标准如表:8千米以上的部分行程(千米)3千米以内满3千米但不超过8千米的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?(3)小明乘飞机来到A市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?【题型11 隧道或过桥问题】54.(2022秋•永年区期末)一列火车匀速行驶,经过一条长800米的隧道,从车头开始进入隧道到车尾离开隧道一共需要50秒的时间;在隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是18秒,设该火车的长度为x米,根据题意可列一元一次方程为()A.18x﹣800=50x B.18x+800=50C.=D.=55.(2022秋•下陆区期末)一列火车匀速行驶,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,则这列火车的长度为.56.(2022秋•东平县期末)火车要穿过一条长1000米的隧道,测得火车从开始进隧道到完全通过共用1分钟,整列火车完全在隧道时间为40秒,求车速和车长.57.(2022•克东县校级开学)一列火车匀速行驶,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5s.(1)设火车的长度为xm,用含x的式子表示火车经过隧道的速度以及火车经过灯下的速度;(2)求这列火车的长度.58.(2022秋•潜江月考)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.【题型12 几何图形问题】59.(2022秋•靖西市期末)一个长方形的周长为26cm,若这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设这个长方形的长为xcm,可列方程()A.x+1=(26﹣x)﹣2B.x+1=(13﹣x)﹣2C.x﹣1=(26﹣x)+2D.x﹣1=(13﹣x)+2 60.(2022秋•绵阳期末)在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示.设AE=x,则下列方程正确的是()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6D.6+2x=14﹣x61.(2022秋•雁塔区校级期末)如图所示,一个长方形恰好分成6个正方形,其中最小的正方形的边长是2,则这个长方形的面积是()A.512B.516C.572D.576 62.(2023•秦都区校级二模)如图,悦悦将一张正方形纸片剪去一个宽为3cm 的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1cm的长条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍.求:(1)原正方形纸片的边长;(2)第二次剪下的长方形纸条的面积.63.(2022秋•自贡期末)用8个形状和大小都相同的小长方形,恰好可以拼成如图1所示的大长方形;若用这8个小长方形拼成如图2所示的正方形,则中间留下一个空的小正方形(阴影部分).设小长方形的长和宽分别为a和b (a>b).(1)由图1,可知a,b满足的等量关系是;(2)若图2中小正方形的边长为2,求小长方形的面积.。
(完整版)一元一次方程的应用题100道
(完整版)一元一次方程的应用题100道一元一次方程的应用题用方程解决问题(1)---------比例问题与日历问题1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。
7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题(2)---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成?5、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题(3)---------盈亏问题工作量与折扣问题1.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?3.将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?4.有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?5.修一条路,A队单独修完要20天,B队单独修完要12天。
一元一次方程的应用题
一元一次方程应用题专项训练(一)(通用版)试卷简介:训练学生读题的过程中,明确未知数的含义,找取关键词,表达关键词,并根据公式建立等式的能力。
一、单选题(共14道,每道7分)1.一个两位数的个位数字是a,十位上的数字比个位上的数字大4,将两个数字调换后的两位数可表示为( )A.2a+4B.11a+40C.11a+4D.11a-402.小明骑自行车走了0.5小时,然后乘汽车走了4小时,最后步行x千米,已知骑自行车与乘汽车的速度分别为v1千米/时和v2千米/时,则小明所走的全部路程为( )千米.A.0.5v2+4v1+xB.0.5v1+4v2+xC.0.5v1+4v2D.0.5v1+4+xv23.某商店销售一种服装的进价是每件350元,按标价的九折销售,设这种服装的标价是每件x 元,则这种服装的售价是( )元A. B. C.315 D.4.如果5年前父亲的年龄是儿子年龄的6倍,设今年儿子的年龄是x岁,则今年父亲的年龄是( )岁A. B. C. D.5.一种商品每件成本为a元,若按成本增加25%作为标价.现由于库存积压决定减价,按标价的90%出售,现售价为( )元A.(1-25%)×90%·aB.(1+25%)×90%·a-aC.25%×90%·aD.(1+25%)×90%·a6.一个两位数个位上的数字的3倍加1等于十位上的数字,设个位上的数字为x,则这个两位数可表示为( )A.31x-10B.4x+1C.13x+1D.31x+107.某影院热映了一部电影,某天共售出1000张票,已知学生票每张30元,成人票每张60元, 设售出学生票x张,则售出的成人票销售额为( )元A.60xB.60000C.60(1000-x)D.30(1000-x)8.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为x千米,则汽车下坡共用了( )小时A. B. C. D.9.某商店购进一批商品,每件成本是500元,商店决定按成本价提高60%来标价.由于天气的缘故,需要尽早处理这批商品,于是决定打x折后再降价20元销售,则此时商店卖一件商品能得到的利润为( )A. B.C.500×(1+60%)·x-20-500D.10.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,降价后,卖出一件商品所获得的利润为( )元A. B. C.10-8·x% D.11.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.设小明从家到学校用了x分钟,则小明家到学校的距离为( )米A.(180-70)xB.70(x-11)C.180(x-11)D.180x12.某商店有一种运动服,成本是每套500元,按成本价提高20%进行标价,为了促销,决定打x 折,为了吸引更多顾客又降价16元.则这种运动服的售价是每套( )元A. B.C. D.13.网络购物方便快捷,逐渐成为人们日常购物的一种重要方式.“中秋节”期间,某网店推出一系列并行优惠活动:(1)“中秋节”期间,网店全部商品九折销售;(2)凡在本网店购物均可享受5%的返利(在成交价的基础上返还5%).小李是该网店的一个店主,他想将商铺中进价为每件350元的风衣卖出,若小李将这种风衣标价为每件x元,则在自己承担13元运费的情况下每件获得的利润( )元A. B.C. D.14.一客车以60千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆小汽车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,若设甲、乙两地的距离为x千米,则小汽车从出发到两车相遇行驶了( )小时A. B. C. D.一元一次方程应用题专题训练(二)(通用版)试卷简介:训练学生读题的过程中,明确未知数的含义,找取关键词,表达关键词,并根据公式建立等式的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为
2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分钟;若每小时行 9 千米,可比预定时间晚到 15 分钟;求从家里到学校的路程有多少千米?
3、一列客车车长 200 米,一列货车车长 280 米,在平行的轨道上相向行驶,从两车头相遇到两车 车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少米?
9、甲、乙两地相距 x 千米,一列火车原来从甲地到乙地要用 15 小时,开通高速铁路后,车速平均 每小时比原来加快了 60 千米,因此从甲地到乙地只需要 10 小时即可到达,列方程得 。
环行跑道与时钟问题: 1、在 6 点和 7 点之间,什么时刻时钟的分针和时针重合?
2、甲、乙两人在 400 米长的环形跑道上跑步,甲分钟跑 240 米,乙每分钟跑 200 米,二人同时同 地同向出发,几分钟后二人相遇?若背向装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?
4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时 3.6km,骑自行车的人的速度是每小时 10.8km。如果一列火车从他们背后开来,它通过行人的 时间是 22 秒,通过骑自行车的人的时间是 26 秒。⑴ 行人的速度为每秒多少米? ⑵ 这列 火车的车长是多少米?
6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是 60 千 米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地后,再 回头接步行的这部分人。出发地到目的地的距离是 60 千米。问:步行者在出发后经过多少时 间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
3、小明在静水中划船的速度为 10 千米/时,今往返于某条河,逆水用了 9 小时,顺水用了 6 小时, 求该河的水流速度。
4、某船从 A 码头顺流航行到 B 码头,然后逆流返行到 C 码头,共行 20 小时,已知船在静水中的速 度为 7.5 千米/时,水流的速度为 2.5 千米/时,若 A 与 C 的距离比 A 与 B 的距离短 40 千米,求 A 与 B 的距离。
工程问题 1.工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
工作效率 工作总量 工作时间
工作时间 工作总量 工作效率
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
一般行程问题(相遇与追击问题) 1.行程问题中的三个基本量及其关系:
一元一次方程应用题归类汇集
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
2.行程问题基本类型
(1)相遇问题: 快行距+慢行距=原距
(2)追及问题: 快行距-慢行距=原距
1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的
3、某工厂计划 26 小时生产一批零件,后因每小时多生产 5 件,用 24 小时,不但完成了任务,而 且还比原计划多生产了 60 件,问原计划生产多少零件?
4、某工程,甲单独完成续 20 天,乙单独完成续 12 天,甲乙合干 6 天后,再由乙继续完成,乙 再做几天可以完成全部工程?
市场经济问题 1、某高校共有 5 个大餐厅和 2 个小餐厅.经过测试:同时开放 1 个大餐厅、2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅、1 个小餐厅,可供 2280 名学生就餐. (1)求 1 个大餐厅、1 个小餐厅分别可供多少名学生就餐; (2)若 7 个餐厅同时开放,能否供全校的 5300 名学生就餐?请说明理由. 2、工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将