悬臂梁受力计算表格
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Simpl
e
Beam
--- (5)
Concentrat
ed Load At
Any Point
(Basing on
American Institute
1Input data:
Concentrated Load:P=0.85ton
Span:l= 5.00cm
Point's location:a=0.00cm
Point's location:b= 5.00cm
Moment of inertia for "Y" axis:I y= 1.14cm4
Section Modulus for "Y" axis:W y= 3.27cm3
Shearing Area for "Z"
axis:
A zz=28.00cm2
Modulus of Elasticity of
steel:
E=2141.10t/cm2
Yield Strength of steel:[s]= 2.35t/cm2 2Output data:
1)Reactions:
Reaction for "Z" axis: R =
P=0.85ton
2)Shearing Stress
Check:
Max. Shearing Force for "Z"
axis: F SF = P =0.85ton
Shearing Stress for "Z" axis:
t z = F SF / A zz =0.03
ton /cm2
< 0.4 [s] =0.94
t/cm2 Unity Check: UC = t z / 0.4
[s] ==0.03Okay!
3)Bending Stress Check:
Max. Bending Moment
Force for "Z" axis: M MAX
= P*b = 4.25ton*cm Prepareed by Reagin
Bending Stress for "Z" axis: s b = M MAX / W y =2
< 0.6 [s] = 1.41
t/cm2
Unity Check: UC = s b /
0.6 [s] =Okay!
4)Combined Stress
Check:
Combined Stress for "Z"
axis: s c = ( s2b + 3 * t2 )
1/2 =
2
< 0.6 [s] = 1.41
t/cm2
Unity Check: UC = s c /
0.6 [s] =Okay!
5)Deflection Check:
Max. Deflection for "Z"
axis: d z = P * b2 * ( 3 * l -
b ) / ( 6 * E * I )
< l / 200 =0.03cm
@ x = free end =Okay!
3Conclusion:
So the designed
structure's
stength is enough
for designed
loading!
Prepareed by Reagin