悬臂梁受力计算表格

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Simpl

e

Beam

--- (5)

Concentrat

ed Load At

Any Point

(Basing on

American Institute

1Input data:

Concentrated Load:P=0.85ton

Span:l= 5.00cm

Point's location:a=0.00cm

Point's location:b= 5.00cm

Moment of inertia for "Y" axis:I y= 1.14cm4

Section Modulus for "Y" axis:W y= 3.27cm3

Shearing Area for "Z"

axis:

A zz=28.00cm2

Modulus of Elasticity of

steel:

E=2141.10t/cm2

Yield Strength of steel:[s]= 2.35t/cm2 2Output data:

1)Reactions:

Reaction for "Z" axis: R =

P=0.85ton

2)Shearing Stress

Check:

Max. Shearing Force for "Z"

axis: F SF = P =0.85ton

Shearing Stress for "Z" axis:

t z = F SF / A zz =0.03

ton /cm2

< 0.4 [s] =0.94

t/cm2 Unity Check: UC = t z / 0.4

[s] ==0.03Okay!

3)Bending Stress Check:

Max. Bending Moment

Force for "Z" axis: M MAX

= P*b = 4.25ton*cm Prepareed by Reagin

Bending Stress for "Z" axis: s b = M MAX / W y =2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s b /

0.6 [s] =Okay!

4)Combined Stress

Check:

Combined Stress for "Z"

axis: s c = ( s2b + 3 * t2 )

1/2 =

2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s c /

0.6 [s] =Okay!

5)Deflection Check:

Max. Deflection for "Z"

axis: d z = P * b2 * ( 3 * l -

b ) / ( 6 * E * I )

< l / 200 =0.03cm

@ x = free end =Okay!

3Conclusion:

So the designed

structure's

stength is enough

for designed

loading!

Prepareed by Reagin

相关文档
最新文档