无功功率补偿和并联电容器

合集下载

基于电力系统常见无功补偿方式分析与讨论

基于电力系统常见无功补偿方式分析与讨论

基于电力系统常见无功补偿方式分析与讨论电力系统常见的无功补偿方式有静态补偿和动态补偿两种。

静态补偿主要包括并联电容器补偿和串联电感器补偿。

并联电容器补偿是通过并联连接电容器组来提供无功功率,以消除电力系统中的无功功率缺口。

电容器的无功功率和电压成正比,通过调整并联电容器的容量,可以实现无功功率的控制。

并联电容器补偿的优点是结构简单,容量可调节,具有较低的损耗和较高的响应速度。

动态补偿主要包括静态同步补偿(SSC)、STATCOM和SVC。

静态同步补偿(SSC)是一种将无功功率转换为有功功率的设备,可以通过调节电流的相位角来实现对无功功率的控制。

SSC主要包括同步电机和发电机组,可以通过电源的调节,在电力系统中提供无功功率补偿。

STATCOM是一种通过控制所连接的电容器组和可逆式变频器来实现对无功功率的控制的设备。

STATCOM可以根据电网的需求,调节电容器的电压和频率,实现无功功率的传输和补偿。

变电站无功补偿及高压并联电容补偿装置设计

变电站无功补偿及高压并联电容补偿装置设计

变电站无功补偿及高压并联电容补偿装置设计2020-05-20 新用户796...修改一、电力系统的无功功率平衡1.1、无功功率电网中的电力负荷如电动机、变压器等都是靠电磁能量的变换而工作的,大部分属于感性负荷,建立磁场时要吸收无功,磁场消失时要交出无功。

在运行过程中需向这些设备提供相应的无功功率。

电力设备电磁能量的交换伴随着吸收和放出无功。

每交换一次,无功都要在整个电力系统中传输,这不仅要造成很多电能损失,而且往往在无功来回转换中会引起电压变化,因此设计时,应注意保持无功功率平衡。

变电站装设并联电容器是改善电压质量和降低电能损耗的有效措施。

在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗。

1.2、功率因数电网中的电气设备如电动机、变压器属于既有电阻又有电感的电感性负载,电感性负载的电压与电流的相量间存在相位差,相位角的余弦值即为功率因数cosφ,它是有功功率与视在功率的比值,即cosφ=P/S。

1.3、无功功率补偿的目的电网中的无功功率负荷主要有异步电动机、变压器,还有一部分输电线路。

而无功电源主要有发电机、静电电容器、同步调相机、静止补偿器。

无功功率的产生基本不消耗能源,但是无功功率沿电力网传输却要引起有功功率损耗和电压损耗。

合理配置无功功率补偿容量,以改变电力网无功潮流分布,可以减少网络中的有功功率损耗和电压损耗,从而改善用户端的电压质量。

在做电网网架规划时,根据各水平年各负荷点的有功负荷量及可靠性要求确定了变电容量的分配、线路回路数及导线截面和接线方式等等。

但是,这样还不能保证各用户端的电压达到国家和地区规定的要求。

因为做电网网架规划时是以最大负荷为依据,而实际运行时,负荷是变化的,功率因数也是变化的,通过线路的有功、无功功率都与规划计算时大不相同,因此,导致某些负荷点的电压“越限”(过高或过低)。

无功功率补偿并电容器

无功功率补偿并电容器

题目:无功功率补偿和并联电容器目录第一章绪论 (3)1.1研究背景 (3)1.2无功装置的发展状况 (4)第二章无功补偿的原理 (5)2.1无功补偿的原理 (5)2.2无功补偿的意义 (5)2.3确定容量的一般方法 (7)2.4无功补偿装置的选择 (8)第三章无功补偿的投切方式 (9)3.1无功补偿的投切器件 (9)3.2瞬时投切方式 (10)第四章并联电容器 (12)4.1并联电容器简介 (12)4.2使用电容器的优点 (12)4.3并联电容器无功补偿的配置方法 (13)4.4电容器的安装要求 (13)4.5并联电容器的日常维护 (14)4.6电容器组投入和退出运行 (15)4.7例子 (15)第五章总结 (20)第一章绪论1.1研究背景目前,我国的电网,特别是广大的低压电网,普遍存在功率因数较低,电网线损较大的情况。

导致此现象的主要原因是众多的感性负载用电设备设计落后,功率因数较低,比如我国的电动机消耗的电能占全部发电量的70%,而由于设计和使用方面的原因我国的电动机的功率因数往往较低,一般约为cos=0.70。

在这种情况下,采用无功补偿节能技术,对提高电能质量和挖掘电网潜力是十分必要的,世界各国都把无功补偿作为电网规划的重要组成部分。

从我国电网功率因数和补偿深度来看,我国与世界发达国家有不小的差距。

因此大力推广无功补偿技术是非常必要的,世界各国都把无功补偿作为电网规划的重要组成部分。

从我国电网功率因数和补偿深度来看,我国与世界发达国家有不小差距。

因此大力推广补偿技术是非常必要的,并且从以下数据,我们也能看出无功补偿所能带来的巨大经济效益。

2007年,我国年总发电量为32559亿千瓦时,统计线损率为8.77%,但是这个数字没有包含相当大的110千伏、35千伏、10千伏的输电线损及0.38千伏的低压电网线损。

据报道,估计实际的统计线损率约为15%,即2007年全国年线损量约为4800亿千瓦时,设全国的理论线损与统计线损相一致,其中可变线损约占理论总线损的80%,则每年可以降低线损约为300亿千瓦时。

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法引言在电力系统中,无功功率是不可避免的。

无功功率对于电力系统的影响包括电压稳定性和输电损失等。

由于电容器具有“吞噬”无功功率的功能,因此并联电容器补偿无功功率是一种有效的方法。

本文将介绍并联电容器补偿无功功率的原理及相关方法。

无功功率的产生与影响无功功率是电力系统中不可避免的现象。

在电路中,一部分电能转化为有用功率,用于供电设备的工作,其他部分电能则被转化为无功功率,用于维持电路的电磁场。

一般来说,无功功率对电路性能的影响包括以下几个方面:电压波动电压波动是无功功率对电路性能的主要影响之一。

当无功功率过多时,会导致电路中电压的不稳定。

此时,电路中的各种设备会受到影响,其工作效率将大大降低。

特别是在对质量要求较高的行业中,电压波动将对设备带来严重的危害。

输电损失由于无功功率产生的电磁场的存在,线路中的电流将变得更大。

这意味着更多的电能将被转化为热量和其他不需要的形式的能量。

如果无功功率过多,将导致输电损失增加,进而降低电力系统的效率。

并联电容器补偿无功功率的原理并联电容器可以通过吸收无功功率的方式来调整电路的无功功率。

在电路中引入并联电容器后,电容器将在电流周期中积累电荷,然后在下一个周期中释放这些电荷。

换句话说,电容器通过在不同的周期中增加或减少电流的流动来调整电路的无功功率。

并联电容器补偿无功功率的原理可通过以下公式来描述:Qc = Qp * tan(acos(Pf))其中,Qc代表电容器的无功补偿容量,Qp代表电路的总无功功率,Pf为功率因数的余弦值。

并联电容器补偿无功功率的方法为了高效地补偿无功功率,需要根据实际情况选择合适的并联电容器进行安装。

并联电容器的选择通常基于电路的功率因素和负载特性。

以下是几种应用广泛的并联电容器安装方法:固定电容器固定电容器是一种直接在电路中并联安装的电容器。

这种方法对于负载电流比较稳定、功率因数波动不大的电路比较适用。

电容并联和串联无功补偿

电容并联和串联无功补偿

电容并联和串联无功补偿
电容并联和串联无功补偿是两种常见的无功补偿方式,它们在电力系统中的应用场景和工作原理有所不同。

电容并联无功补偿:这种方式是将电容器直接并联在被补偿设备的同一电路上。

电容器为用电设备提供所需无功电流,从而减轻电力线路、变压器和发电机的负担。

并联电容器是目前电网中应用最为广泛的一种无功补偿方式,尤其在10KV及以下电压等级的供电系统中,几乎所有的无功补偿装置均属于并联电容器补偿。

其主要作用是减小视在电流,提高功率因数,降低损耗,从而提高电力设备的效率。

对用户侧而言,补偿无功还有提高电压、降低线损、减少电费支出、节约能源、增加电网有功容量传输、提高设备的使用效率等作用。

电容串联无功补偿:这种方式是把电容器直接串联到高压输电线路上,主要作用是通过在电网输电侧直接治理进而达到改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗的作用。

由于串联电容器只能应用在高压系统中(在低压系统中由于电流太大无法应用),因此其一般的应用场所是高压远距离输电线路上,用户侧的应用较少。

串联电容无功补偿的原理是利用电容器的容性阻抗抵消线路电感的感性阻抗,从而缩短电气距离,提高线路的输电容量和稳定性。

总的来说,电容并联和串联无功补偿都是为了提高电力系统
的功率因数、降低损耗、提高设备的效率等目的而采取的措施。

具体选择哪种方式需要根据实际情况进行综合考虑。

并联电容器与无功补偿(多图)

并联电容器与无功补偿(多图)

© CNTXC - 20 -
并联电容器的补偿作用
系统功率计算
视在功率:
S = 3 ×U×I
有功功率:
P = 3 ×U×I×cosj
无功功率:
Q = 3 ×U×I×sinj
功率因数:
Q
S
P
cosj =
S
j
P
© CNTXC - 21 -
© CNTXC - 22 -
并联电容器的补偿作用
无功容量: 电流: 电压增长: 并联谐振:
2023最新整理收集 do
something
并联电容器 在无功补偿中的应用
Insert image here
西安ABB 电力电容器有限公司
工程部 张长宇 杨晓良
2008-06
© CNTXC - 1 08-06-11
© CNTXC - 2 -
欢迎
欢迎大家参加 电力电容器 技术交流
内容
一 二 三 四 五 六
P1
P2 P
cosj1 cosj2
通过增加系统中无功功率,如电容器(Qc),可以改善功率因数,结 果是视在功率(S)中的有功功率由P1变为P2,使夹角j1减少到j2, 改善功率因数这条途径被叫做功率因数修正或无功功率补偿。
© CNTXC - 23 -
ABB电容器的选型
四 ABB电容器的选型
© CNTXC - 24 -
标准电容器
主要用途:作为标准电容,或用作测量高压的电容分压装置。
© CNTXC - 10 -
并联电容器的基本概念
二 并联电容器的基本概念
© CNTXC - 11 -
并联电容器的基本概念
电容器的电容
电容:贮存电荷的能力。在其他导体的影响可以忽略时,电容器的一

感性、容性无功功率,并联电抗器、电容器无功补偿的相关问题

感性、容性无功功率,并联电抗器、电容器无功补偿的相关问题

感性、容性无功功率,并联电抗器、电容器无功补偿的相关问题以下是本人最近纠结的问题,还望各位星星指正:1:在实际应用中,我们通常把感性无功默认为正。

所以通常说的无功,既为感性无功。

2:发出感性无功,可以理解为消耗容性无功。

其机理可以根据电流电压的参考方面来确定。

3:电感负载是消耗感性无功的。

关于这个结论,我们可以从电力系统的负载主要为感性负载,当电力系统重载运行时,缺感性无功功率,从而发电机需要发出更多感性无功来认知。

但是,对于这点,我有自己的不解:既然是同向的电压和电流流经感性负载后,电压超前电流,造成了感性无功。

那么何来消耗感性无功一说,应该是发出感性无功吧?这个理解是哪儿出现了问题?望指正。

4:并联电抗器的主要作用是降低长线路空载或者轻载时的线路末端升高的电压。

其大概机理是:长线路空载或者轻载时,线路的对地电容和相间电容在线路上起到了主导作用,产生了容升效应,从而使线路末端电压升高。

这里,讲述一下我对容升效应的理解:电容在线路上,吸收容性无功,相当于提供感性无功,以此和“电力系统缺感性无功时电压下降,发电机发出感性无功以维持电压平衡”的机理保持一致。

而并联电抗器来吸收这种情况下过剩的感性无功,达到降低电压的作用。

说明一下,这个理解方式,可以保证感性无功过剩会导致电压升高这个说法,不会出现矛盾。

我看其他地方说在该情况下发生的线路末端电压升高是因为容性无功过剩的原因。

如果是这样理解的话,岂不是在电网电压下降时,发电机应该发出大量容性无功而不是感性无功了?5:并联电容器的主要作用是提高功率因数,改善电压质量。

其大概机理是:和感性负载并联使用,电容器消耗容性无功,相当于发出感性无功,即补偿感性负载所需的感性无功,从而提高功率因素。

当然,引起电压变化的原因很多,我这里仅仅从感性、容性无功对此线性的分析,如有不妥,希望各位指正。

并联电抗器,并联电容器这些无功补偿方式,说到底,是为了避免无功电流在线路中不合理地流动,引起的线路损耗过多。

供电系统无功补偿原理

供电系统无功补偿原理

供电系统无功补偿原理
供电系统无功补偿的原理主要是通过并联电容器来实现的。

感性负载在运行过程中需要建立交变磁场,这种功率叫做无功功率。

感性负载所需要的无功功率可以由容性负荷输出的无功功率来补偿。

通过并联电容器,容性负荷能够提供感性负荷所需要的无功功率,从而减少无功功率在电网中的传输,降低电网的损耗,提高功率因数。

无功补偿可以提高功率因数,是一项投资少、收效快的降损节能措施。

无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。

这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率来补偿。

当前,国内外广泛采用并联电容器作为无功补偿装置。

这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。

通过无功补偿,可以改善电网的电压质量,提高输电稳定性和输电能力,满足用户的用电需求,提高用电质量。

无功补偿和并联电容器

无功补偿和并联电容器

无功补偿和并联电容器无功补偿和并联电容器摘要:通过对电路加设并联电容来进行无功功率补偿的原理,以实现节省电能、降低压损、提高供电质量。

关键词:功率因数电容器无功补偿由于矿山企业使用大功率的电机、变压器等电感性设备,它不仅消耗有功功率,还消耗无功功率,因此必须提高用户功率因数,以减少对电源系统的无功功率的消耗。

1、并联电容器在电力系统中的无功补偿方式电容器的补偿具有投资小、有功功率损失小、运行维护方便、故障范围小的特点。

电容器的补偿方式,应以无功就地平衡为原则。

电网的无功负荷主要由用电设备和输变电设备引起的。

除了在比较密集的供电负荷中心集中装设大、中型电容器组,便于中心电网的电压控制和稳定电网的电压质量之外,还应在距用电无功负荷较近的地点装设中、小型电容器组进行就地补偿。

安装电容器进行无功补偿可采取三种形式:集中、分组或个别就地补偿。

(1)集中补偿:在低压配电线路中安装并联电容器组,将其集中安装在变电所的一次或二次侧的母线上。

(2)分组补偿:分组补偿是将电容器组分组安装在车间配电室或变电所各分路的出线上,它可与工厂部分负荷的变动同时投入或切除。

(3)个别就地补偿:在单台用电设备处安装并联电容器,直接对其所需无功功率进行补偿。

电容器补偿其优点:(1)因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用户功率因数始终处于滞后状态,既有利于用户,也有利于电网。

(2)有利于降低电动机起动电流,减少接触器的火花,提高控制电器工作的可靠性。

(3)加装无功补偿设备,不但使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。

在确定无功补偿容量值时,应注意两点:(1)在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。

(2)功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿。

2、电容器组的保护(1)电容器单台熔丝保护:在每台电容器上都装有单独的熔断器,可避免电容器内部故障击穿短路时油箱爆炸,并波及和影响邻近电容器。

浅议无功功率补偿和并联电容

浅议无功功率补偿和并联电容

率 因数 , 减小线 路 中通 过 的电流 , 而可 以减小 导 会 从 线 的截 面积 , 约线路 的投资 。 节
3 电力用户 的功率 因数应 达到 的标准
在 配电 系统 中提 高 功 率 因数 , 有 效 地 降低 线 可 损、 提高供 电质量 。在《 电营业规则》 供 中规定 : 无
需 要从 电力 系统 吸收 无功 功率 。若保 持 有功 功率 为

提高 功率 因数 会使 得 视在 功率 J变 小 。对用 电单 位 s
而言 , 在满 足 用 电需要 的情 况下 , 小 了所需 变压 器 减
的容 量 , 降 低 了投资 和 电能损 耗 。 也
4 减 少 电压 损 失 , 善 电 压质 量 。在线 路 中 ) 改 电压损 失 A U的计 算 公式 为 :
定值 , 功功率 供 求 量 的增 大也 会 引起 电流 的 增 无
大 , 而使 系统 中变 压 器 、 从 电器 设 备 、 线 等 容 量 增 导
大, 并使 设 备及 供 电线 路 铜 损 大 大 增 加 。可 见 无 功
A e X× 0 v U: R+ Q 1 一k

功 率过 大对 电 力 系 统 及 用 电设 备 会 产 生 不 良的 影
由于 S=P o ̄, 有 功 功 率 P一 定 的 情 况 下 , cs 在
收 稿 日期 :090 — 2 0 -81 0
作者简 介 : 郭
尚(9 4一) 男 , 17 , 山西 阳高人 , 助理工程 师 , 从事机 电技 术工作。
3 7
郭 尚: 浅议无功功率补偿和并联 电容
第 1 第2期 9卷
,:

,将抵 消 一部 分 电感 电流 , 而 使 电感 电流 ,减 小 从

并联电容器补偿无功功率的作用及方法

并联电容器补偿无功功率的作用及方法

并联电容器补偿无功功率的作用及方法
电力电容器作为补偿装置有两种方法:串联补偿和并联补偿。

串联补偿是把电容器直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送力量,降低线路损耗。

这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采纳。

并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。

这种补偿方法所用的电容器称作并联电容器,用电企业都是采纳这种补偿方法。

按电容器安装的位置不同,通常有三种方式。

1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。

可削减高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端变配电所高压或低压母线上,也称为分散补偿。

这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。

但是分组补偿的效果比较明显,采纳得也较普遍。

3.就地补偿将电容器或电容器组装设在异步电动机或电感性用电设备四周,就地进行无功补偿,也称为单独补偿或个别补偿方式。

这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备非常适用。

并联电容器的补偿方式

并联电容器的补偿方式

并联电容器的补偿方式
1、高压集中补偿
高压集中补偿,是将并联电容器组集中安装在企业变配电所6-10kV的母线上。

该种补偿方式初期投资较少、电容器利用率高、可以提高系统功率因数、便于运行维护,因此普遍应用于大中型企业。

但是这种补偿方式只能补偿6-10KV的无功功率,低压电网得不到补偿。

而且高压集中补偿,一般要将电容器设在单独房间。

2、低压集中补偿
低压集中补偿,是将并联电容器组安装在变压器的二次母线上。

这种补偿方式可以补偿低压母线前变压器、配电线路和电力系统的无功功率,补偿范围大、运行维护方便。

3、低压就地补偿
低压就地补偿,是将并联电容器组安装在用电设备附近。

这种
补偿方式可以补偿安装部位前所有高、低压线路和变压器的无功功率。

低压就地补偿的补偿范围大、补偿效果好、还能就地平衡无功电流;但是这种补偿方式投资成本大、利用率低、不便于维护。

当用电设备停止运行时,电容器也会退出运行。

并联电容器的补偿方式各有其优缺点。

在企业电网中,究竟采用哪种补偿方式,还需要根据企业实际情况分析后再做选择。

推荐阅读:自愈式并联电容器的组成以及常见的补偿方式。

并联电容器对电力系统无功补偿和电压调节问题的探讨

并联电容器对电力系统无功补偿和电压调节问题的探讨

并联电容器对电力系统无功补偿及电压调节问题的探讨马文成摘要:变电站并联电容器可以对电网的无功功率进行集中补偿。

通过对无功功率的合理补偿,从而达到调节电压、使系统经济和稳定运行。

但在实际运行中,往往由于设计原因,无功负荷的分布不可预见性等因素导致变电站母线并联电容器不能合理的补偿无功和调节电压。

下面就某站10kV 母线并联电容器运行中存在的问题加以分析和探讨。

关键词:并联电容器、无功补偿、电压调节某变电站电压等级为110/35/10kV ,两台主变容量分别为25000kVA 和20000kVA 的有载调压变压器,正常时20000kVA 变压器运行,另一台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关联成单母运行。

10kV Ⅱ段母线装var 36003600102K TBB -成套电容器装置,电容器型号为:W BFFH 31180023114⨯-⨯--密集型电容器,每组容量为var 1800K ,两组共3600var K ,其额定电流为89A ,串联电抗器型号为11012--CKGKL 的空芯电抗器,额定电抗率为1%。

1 运行中存在的问题该站自2000年投运以来,因10kV 母线并联电容器的补偿容量不合理致使电容器不能正常投入运行,因此,10kV 母线输送的无功负荷不能实现就地补偿,从而不利于电网运行的经济性和稳定性。

1.1 影响并联电容器投入运行的因素:1.1.1 并联电容器投入时补偿容量过剩图例分析如下: 25003000350040004500500055002月1月3月4月5月6月7月8月9月10月t800900100011001200700有功(kw )无功(kvar )图 A 10kV 母线2011 年平均有功、无功负荷曲线图上图数据为该站10kV 母线2011年有功、无功负荷平均值,从图中可以看出,10kV 母线年输送无功负荷最大值为1500var K ,最小值为500 var K ,平均值为1000var K 。

电容并联和串联无功补偿 -回复

电容并联和串联无功补偿 -回复

电容并联和串联无功补偿-回复电容并联和串联无功补偿,是电力系统中常用的一种无功补偿方式。

在电力系统中,无功功率是指由电感和电容元件所产生的能量交换,并且不做功的功率。

无功功率的存在会导致电流产生相位滞后,造成电压下降,影响电力系统的稳定性和负载的正常运行。

因此,无功补偿是电力系统中非常重要的一项工作。

首先,我们先了解一下电容的基本情况。

电容是一种被动元件,具有存储和释放电能的能力。

当电容器两端施加电压时,电场会带动电荷在电容器的电极之间移动,从而形成电流。

根据电容的特性,我们可以通过并联或串联电容器的方法来实现无功补偿。

一、电容并联无功补偿电容并联无功补偿是指将电容器并联接在负载侧,通过电容器释放无功功率,从而提高电力系统的功率因数,减少无功功率的流向。

具体的实施步骤如下:1.计算负载的无功功率:首先要明确负载的无功功率,可以通过测量仪器进行实时监测,或者通过电力系统的负荷曲线图进行估算。

2.根据负载的无功功率计算所需的电容容量:根据电容器的电容值和无功功率的大小,可以通过以下公式计算所需电容的容值:C = Q / (2πfV^2)其中,C为电容值,Q为无功功率,f为系统频率,V为电压。

例如,当负载的无功功率为3Mvar,系统频率为50Hz,电压为10kV 时,计算所需电容器的容值为:C = 3 * 10^6 / (2π*50*(10^4)^2) ≈95μF3.选择合适的电容器并联:根据所得到的电容容值,选择合适的电容器并联到负载侧。

通常可以采用多个小容值的电容器并联来实现所需的电容容量。

4.对电容器进行保护:并联电容器时要注意对电容器的保护,避免因电容器受到过电压或过电流的冲击而损坏。

二、电容串联无功补偿电容串联无功补偿是指将电容器串联接在电源侧,通过电容器的带电,产生与负载的电感抵消的效果,达到无功功率的补偿。

具体的实施步骤如下:1.计算电源的无功功率:首先要明确电源的无功功率,可以通过测量仪器进行实时监测,或者通过电力系统的负荷曲线图进行估算。

并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用什么是无功补偿?在电力系统中,有功电能是可以被转化为机械能、热能等有用工作的能量,而无功电能则不能被直接利用。

无功电能在电力系统中依旧承担着重要的作用,它可以代表充电电能和放电电能之间的相互影响和传递。

因此,无功电能的调节就显得至关重要。

而无功补偿则是调节无功电能的重要手段之一。

何时需要补偿无功?在电力系统正常运行的过程中,当出现电力设备过载、谐波扰动等情况时,会导致电力系统的无功功率发生变化。

这时就需要在电力系统中引入无功补偿器,来维持系统的正常运行。

并联电容器的无功补偿并联电容器是常用的无功补偿器之一。

在电力系统中,引入并联电容器时,可以让电容器吸收系统中的富余的电能,将其转化为电场能量,以达到补偿无功功率的目的。

并联电容器是以电容器为基础的无功补偿器之一。

但在使用时需要注意以下几点,才能达到最佳的补偿效果。

1.和并联电感器一起使用由于电力系统中有许多的电感器,例如电机、变压器等等,这些电感器也会对无功功率产生一定的影响。

而并联电容器可以被用于补偿这些电感器带来的无功功率,从而达到系统的无功功率补偿的目的。

2.正确匹配并联电容器的容值并联电容器的容值需要根据系统的实际情况进行匹配。

如果并联电容器的容值过大或过小,就会出现无功功率的波动。

当容值过大时,会导致电容器过负荷,同时可能引起电容器内部电压的过高,从而影响电容器的使用寿命。

而容值过小时,会导致无功功率的补偿效果不尽如人意。

3.避免电流过载在使用并联电容器时,需要注意其额定电流和容量的匹配关系。

如果电流过载,会导致电容器损坏或过热,进而影响电容器的使用寿命。

4.延长电容器的使用寿命为了延长电容器的使用寿命,需要在使用前和使用过程中注意以下几点:•保证电容器内部的温度不超过其额定温度范围•避免电容器受到强电场干扰•定期检查电容器是否有明显的损伤和老化无功补偿是电力系统中重要的一个环节,而并联电容器则是常见的无功补偿器之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文题目:无功功率补偿和并联电容器专业:年级:姓名:学号:指导教师:电力工程系年月日目录摘要第一章绪论 (1)1.1无功功率的产生和影响 (1)第二章无功功率补偿 (2)2.1无功补偿的原理 (2)2.2无功补偿的意义 (3)2.3无功功率补偿装置 (4)2.4无功补偿容量的确定 (5)第三章功率因数 (6)3.1功率因数的提高 (6)3.3功率因数调整电费 (8)3.4功率因数的标准值及其适用范围 (10)第四章电力电容器 (10)4.1电容器组投入和退出运行 (10)4.2并联电容器的补偿方式 (11)4.3并联电容器的接线方式 (11)4.4电容器组的运行注意事项 (12)4.5电容器组的运行维护 (13)第五章风力发电 (13)5.1风力发电系统无功补偿的重要性分析 (13)5.2风力发电的无功补偿 (14)第六章结论与研究展望 (15)参考文献 (15)摘要:近年来,随着电网容量增加,对电网无功要求也与日增加。

无功电源与有功电源一样,是保证电力系统电能质量、降低网络损耗以及安全运行所不可缺少的部分。

电力系统中,应保持无功功率的平衡,否则,将导致系统电压不正常,严重时,将导致设备损坏,系统瓦解。

此外,网络功率因素和电压的降低,还将导致网络输送能力下降、输电损耗增大、电气设备不能充分利用等。

因此,解决好网络补充问题,有着极其重要的意义。

关键词:无功补偿;功率因数;并联电容器;风力发电;第一章绪论1.1无功功率的产生和影响在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。

电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。

其中P、Q分别为流入输电线(或变压器)的有功功率和无功功率,U 是输电线(或变压器)与P、Q同一点测得的电压,R、X 则分别是输电线(或变压器)的电阻和电抗。

由此可见,无功功率在输电线、变压器中的流动会增加有功功率损耗和无功功率损耗以及电压降落;由于变压器、高压架空线路中电抗值远远大于电阻值,所以无功功率的损耗比有功功率的损耗大,并且引起电压降落的主要因素是无功功率的流动。

一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。

许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。

为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。

在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:cosφ=P/S=P/(P2+Q2)1/2在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。

这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。

第二章无功功率补偿电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。

在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。

2.1无功补偿的原理2.1.1无功补偿的基本原理把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。

这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

2.1.2无功补偿的原则提高用电单位的自然功率因数,无功补偿分为集中补偿、分散补偿和随机随器补偿。

应该遵循:全面规划,合理布局,分级补偿,就地平衡;集中补偿与分散补偿相结合,以分散补偿为主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合,以降损为主的原则。

2.2.1无功补偿的目的无功功率补偿装置能够提供或吸收感性无功功率,可使电网中输送的无功功率减少,从而达到提高功率因数、提高电压质量、减少电能损耗和提高电网输送电能的目的。

2.1.2无功补偿的意义加装无功补偿设备后,电力网功率因数的提高,具有一下几个方面的意义:(1)减少系统原件的容量,换个角度看是提高电网的输送能力。

电气设备的视在功率在补偿后为S'=[P2 + (Q- Q C)2]1/2由公式可知,加装无功补偿后,减少了电网无功输送量,在输送同样的有功功率情况下,设备安装容量可以减少,节约大量有色金属,也节约了投资。

对于运行中的电气设备而言,无功补偿后其中通过的无功功率减小了,有功的输送量提高,使设备容量得到充分利用。

(2)降低网络功率损耗和电能损耗。

当负荷电流流过线路时,其功率损耗为ΔP=[( P2 +Q2)/U2](R x10-3) (KW)线路输送的无功由补偿后的Q减少到Q'时,线路的功率损耗下降,每年的线路上和变压器中的电能损耗也下降。

(3)改善电压质量。

潮流计算得到的线路电压损耗的公式为ΔU=(PR+QX)/U (V)从公式可以看出,减少线路输送的无功功率,则电压损耗有所下降,改善了电力网和用户的电压质量。

可见无功补偿是保证电能质量的重要措施。

2.1.3无功补偿的一般方法无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。

低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。

通过控制、保护装置与电机同时投切。

低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。

高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。

电力系统中的无功功率补偿装置可以根据补偿的过程和功能,分为静止无功补偿和动态无功补偿两大类。

还可以根据补偿的方式分为串联补偿和并联补偿两类。

静止无功补偿装置包括并联电容器,中、低压和超高压并联电抗器。

动态无功补偿包括调相机、静止补偿装置等。

在各种补偿设备中,中、底压并联电抗器的主要功能是从系统中吸收过剩的感性无功功率,以保证电压水平不超限。

超高压并联电抗器主要是补偿超高压线路的充电功率,可降低系统的工频过电压。

2.3.1电容器(1)电容器的分类①按安装方式分:户内式和户外式电容器。

②按相数分:单相和三相电容器。

③按接入电力系统的方式分:并联和串联电容器。

并联电容器用于补偿感性无功功率。

串联电容器用于补偿电力线路的感抗。

④按额定电压分:高压和低压电容器。

高压电容器的额定电压为1.05、3.15、6.3、10.5、11、12、19KV等。

单相高电压电容器的容量有30、50、100、200、334kvar等,可产生1000、1200、1667kvar等大容量电容器。

三相主要有100、200kvar两种电容器,可生产单台容量为1200、1500、1800、3600kvar的特大容量三相高压并联电容器。

低压电容器的额定电压为0.23、0.4、0.525、0.69KV。

容量为1~100kvar。

⑤按用途分:高压交流滤波电容器,交流电动机电容器,耦合电容器,电容分压器,电热电容器,断路器电容器,脉冲电容器,防护电容器,直流滤波电容器等。

⑥按结构分:电解电容器,纸、膜、复合介质电容器,金属化、金属箔电容器,自愈式电容器,压缩气体电容器,浸渍、干式、水冷式电容器。

(2)电容器的型号电容器的型号由系列代号、介质代号、设计代号、额定电压、额定容量、相数或频率、尾注号或使用环境等部分组成,符号代号一般用汉语拼音字头表示。

2.3.2同步调相机同步调相机是最早采用的一种无功功率补偿设备。

它能提供短路电流,动态响应时间较快,在动态过程中是支撑电压的一种重要手段。

同步调相机是一种特殊设计的,显著过励磁或欠励磁,只能发出或吸收无功功率的发电机,总是在cosΦ≈0的工况下运行,需要消耗电力系统中一定的有功功率,维持自身的运转。

过励磁运行时相当于并联电容器,发出无功功率:欠励磁运行时相当于并联电抗器,吸收无功功率。

调相机可用来改善电网的功率因数,或用作调整输电线路终端和中间各点的电压数值。

2.3.3静止无功补偿装置静止无功补偿装置是由并联电容器C 和各种容量无级连续可调的并联感性无功设备L 联合组成的一种装置,简称静补。

它可以进相、滞相运行,向电力网提供可快速无级连续调节的容性和感性无功,降低电压波动和波形畸变率,全面提高电压质量。

静止无功补偿装置可分为电磁型和晶闸管控制型两大类,晶闸管控制型又可分为开关控制和相位控制两种。

2.4.4电抗器电抗器是在电路中用于限流、稳流、无功补偿、移相等的一种电感元件。

(1)电抗器的分类①按绕组内有无铁芯分:空心式、铁芯式和饱和式电抗器。

②按绝缘介质分:油浸式和干式电抗器。

③按用途分:限流电抗器、并联电抗器、消弧线圈、中性点电抗器、启动电抗器、滤波电抗器、阻波器、阻尼电抗器、平波电抗器、电炉电抗器和调节用电抗器。

(2)电抗器的型号电抗器型号的构成有几种形式,主要由产品型号代号、设计序号、额定容量(kvar )、电压等级(kv )、额定电流(A )、电抗(%)和尾注等组成。

2.4无功补偿容量的确定无功补偿装置的用途就是为电网补偿无功功率,但是对电网的无功补偿容量不是随意的,需要根据电网的运行情况来确定,因此确定无功补偿容量成为必不可少的步骤。

确定无功补偿容量最直接的方法就是从提高功率因数的需要来确定补偿容量。

如果补偿线路有功功率为P 1,补偿前的功率因数为cosφ1,补偿后的功率因数为cosφ2,则补偿容量可以用下述公式计算:()⎪⎪⎭⎫ ⎝⎛---=-=1cos 11cos 1tan tan 22121211ϕϕϕϕP P Q C (4-1) 上式中Q C 表示线路中需要的补偿容量。

有时,为了迅速的求出补偿容量,可用查表法。

对于补偿后的功率因数cosφ2的设定要适当,通常设为0.9~1.0之间的某个合适的值,该值不宜设的过高。

相关文档
最新文档