11.1 变量与函数1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 变量与函数
第一教时 11.1.1 变 量
教学要求:通过课本上的五个问题,引入并理解常量、变量的概念,会求函数自变量的取值范围
教学重点:针对具体问题,分清常量与变量
教学难点:在不同的变化过程中,常量与变量并不是固定不变的
教学过程:
一、导入新课:
1.有关图形的体积、面积、周长公式:
图形的周长:C 圆=2лR ;C 正方形=4a ;
图形的面积:S △ABC =
21×ah ; S 圆=лR 2;S 梯形=2
1×(a+b)h ; 图形的体积:V 圆柱=лR 2h , V 圆锥=31лR 2h ;V 正方体=a 3. 2.从实际问题出发,出于从具体到抽象在认识事物的考虑,列举课本上的物理问题、销售问题、几何问题等,要求学生会用填表、求值、写解析式等
二、新授:
1.常量、变量:在一个变化过程中,数值发生变化的量叫变量;数值不发生变化的量叫常量
两个变量之间相互依赖、互相制约、互相转化.如在匀速直线运动中,当速度是常量,时间
和路程都是变量,即s=vt ;当路程一定时,速度、时间是变量.例如,v=t s , t=v s
.
2.共同解答例子:
[例1]下表是某市2000年统计的该市男学生各年龄组(岁)的平均身高(cm).
(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?
(2)该市男学生的平均身高从哪一岁开始迅速增加?
(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是函数?
[思维点拨] 借助表格,可以直接找到自变量与函数的具体对应值.从中挖掘有用的信息.
[解] (1)从表中能看出该市14岁的男学生的平均身高为146.1㎝;
(2)该市男学生的平均身高是从14岁开始迅速增加(在14~17岁之间,后一年比上一年的身高分别增加了8.7cm,8.1cm,5.3cm);
(3)表中反映了2000年某市男生的平均身高与学生年龄的关系.
三、小结:由学生举一实际问题,说明哪些量是变量?哪些量是常量?
四、课堂练习:课本18页第1、2、8、9题.
五、教学后记:
第二教时 11.1.2 函 数
教学要求:通过经历从具体到抽象的认识过程,理解函数的概念、函数的单值对应. 教学重点:针对具体问题,利用表格、解析式和图象,体会相关变量之间的对应关系 教学难点:变量之间的单值对应关系
教学过程:
一、导入新课:
从上节课的五个实际问题出发,直接导入新课
二、新授:
1.理解单值对应:
变量之间的单值对应关系,当一个变量取定一个值时,单值对应有两重含义:(一)另一变量有对应值;(二)对应值只有一个
2.理解函数的概念
一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.
函数的定义中包括了对应值的存在性和唯一性,函数是对变量而言的;函数值是对具体数值而言的。
3.自变量:在变化过程中居于主导地位的变量;
函数:随之变化且对应值有唯一确定性的另一个变量
4.不是所有具有函数关系的两个变量都互为函数
5、讲例子:
[例1]阅读下面材料,再回答问题:
一般地,如果函数)(x f y =对于自变量取值范围内的任意x ,都有)()(x f x f -=-,那么)(x f 就叫做奇函数;如果函数)(x f y =对于自变量取值范围内的任意x ,都有)()(x f x f =-,那么)(x f y =就叫做偶函数。
例如
x x x f +=3)(,当x 取任意实数时, )()()()(333x x x x x x x f +-=--=-+-=-,
即)()(x f x f -=-,所以
x x x f +=3)(是一个奇函数; 又如x x f =)( ,当x 取任意实数时,x x x f =-=-)(,
即)()(x f x f =-,所以x x f =)(是一个偶函数.
问题(1):下列函数中①4x y =; ②12+=x y ; ③3
1x y =; ④1+=x y ; ⑤x x y 1+=.
所有的奇函数是 ,所有的偶函数是 (只填写序号)
问题(2):请你再分别写出一个奇函数,一个偶函数:
奇函数为 ;偶函数为______________.
[思维点拨]什么是奇函数、偶函数?当自变量互为相反数时,其函数值相等,则它是偶函数;
当自变量互为相反数时,其函数值也互为相反数,则它是奇函数.例如,
1)(2+=x x f ,当x 取
任意实数时,
11)()(22+=+-=-x x x f ,而1)(2+=x x f ,
即)()(x f x f =-,所以12+=x y 是一个偶函数; 又如x x x f 1)(+
= ,当x 取任意实数时,)1(1)(x x x x x f +-=-+-=-,
即)()(x f x f -=-,所以
x x y 1
+=是一个奇函数. [解](1)奇函数③⑤; 偶函数①②;
(2)奇函数如x
y 1=,3x y =; 偶函数如2x y =,4x x y -=. 出于从具体到抽象在认识事物的考虑,列举课本上的物理问题、销售问题、几何问题等,要求学生会用填表、求值、写解析式等
三、小结:由学生自己归纳函数、自变量、函数值的定义
四、作业:课本18页第3题;第20页10、11题
五、教学后记:
第三教时 11.1.2 函 数
教学要求:进步理解函数、自变量的概念;会求自变量的取值范围;根据题意列出函数的解析式.
教学重点:借用表格、解析式和图象,确定自变量的取值范围
教学难点:求函数自变量的取值范围
教学过程:
一、复习:
函数、自变量、函数值的概念
二、新授:
1.讲例1 一辆汽车的油箱中现有汽油50L ,如果不再加油,那么油箱中的油量(单位:L )随行驶里程(单位:Km )的增加而减少,平均耗油量为0.1L /Km .
(1)写出表示y 与x 的函数关系的式子.
(2)指出自变量x 的取值范围.
(3) 汽车行驶200Km 时,油箱中的还有多少汽油?
①由同桌的两个同学共同讨论,合作完成
②点名学生口述解答过程,教师板书
2.使函数有意义的自变量的取值的全体,叫函数的自变量的取值范围.
(1)如果解析式只含有一个自变量,且解析式是一个整式,则自变量的取值范围是一切实数;
(2)如果解析式中的分母含有字母,则自变量的取值是分母不为0的实数;(3)偶次方根表示的函数,自变量取值范围是使被开方数为非负数的实数;
(4)对于实际问题,其自变量的取值范围应使具体问题有实际意义.
函数值:对于自变量在取值范围内的一个确定的值,如x=a 时,函数有惟一确定的对应值,这个对应值叫做当x=a 时的函数值,简称为函数值.