弧长公式扇形面积公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
】本讲教育信息【
一. 教案内容:
弧长及扇形的面积
圆锥的侧面积
二. 教案要求
1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。
2、了解圆锥的侧面积公式,并会应用公式解决问题。
三. 重点及难点
重点:
1、弧长的公式、扇形面积公式及其应用。
2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。
难点:
1、弧长公式、扇形面积公式的推导。
2、圆锥的侧面积、全面积的计算。
[知识要点]
知识点1、弧长公式
因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是
,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的
半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。
(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。
知识点2、扇形的面积
如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面°的扇形面积等于圆面积,所以圆360积是它所在圆的面积的一部分,因为圆心角是,由此得圆心角为n°的扇形面积的积形的1角心为°扇面是计算公式是。
,所以又得到扇形面,扇形面积又因为扇形的弧长
。积的另一个计算公式:
3、弓形的面积知识点)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形
叫做弓(1 形。2)弓形的周长=弦长+弧长(3)弓形的面积(如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要AmB的面积。的面积和△AOB的面积计算出来,就可以得到弓形把扇形OAmB
1所示,当弓形所含的弧是劣弧时,如图所示,当弓形所含的弧
是优弧时,如图2当弓形所含的弧是半圆时,如图3所示,)45°,则图中阴影部分的面积是(的半径为2,∠ABC=例:如图所示,⊙O 表示)(结果用
∠AOC由圆周角定理可知∠ABC,所以=分析:由图可知是直角三角形,所以°,所以△=2
∠ABC=90OAC∠AOC,
所以注意:(1)圆周长、弧长、圆面积、扇形面积的计算
公式。圆面积弧长圆周长扇形面积
公式
(2)扇形与弓形的联系与区别
)扇形与弓形的联系与区别2(.
面
积
4、圆锥的侧面积知识点,r,底面圆的半径为圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,圆锥的侧面积,圆锥的l,扇形的弧长为2那么这个扇形的半径为全面积
说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。
(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。
知识点5、圆柱的侧面积
圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周
长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积
知识小结:圆锥与圆柱的比较圆柱圆锥名称
图形
绕直A旋转一周
面积计算方法