高数求极限方法总结
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ2. (i )数列{}n x a 的 (ii )f x ∞→lim ( (iii)x f x x →lim)( (iv)(v (vi )柯西条件是:ε>∀1.2.洛必达(L’ho x 趋如告诉f (x ),并且注意导数分母不能为0。
洛必达法则分为3种情况:(i )“00”“∞∞”时候直接用 (ii)“∞∙0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通项之后,就能变成(i)中的形式了。
即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;)()(1)(1)(1)()(x g x f x f x g x g x f -=-(iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即ex f x g x g x f )(ln )()()(=,这样就能把幂上的函数移下来了,变成“∞∙0”型未定式。
3.泰勒公式(含有xe 的时候,含有正余弦的加减的时候)12)!1(!!21+++++++=n xn xx n e n x x x e θ ;3211253)!32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m mxm x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ4.5.6.0>>>c b a ,n x =a(2)求⎥⎦⎤⎢⎣⎡++++∞→222)2(1)1(11lim n n nn解:由n nn n n n n 1111)2(1)1(110222222=+++<++++< ,以及010limlim==∞→∞→nn n 可知,原式=0 (3)求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解:由nn nn n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 ,以及11111limlimlim 2=+=+=∞→∞→∞→nnn n n n n 得,原式=17.数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1)。
大一高数知识点总结求极限

大一高数知识点总结求极限大一的高等数学课程对于许多学生来说是一个挑战。
其中,求极限是一个重要的知识点,在解决数学问题和理解数学概念时起到关键的作用。
本文将对大一高数中与求极限相关的知识做一个总结。
一、数列极限在大一高数中,数列极限是一个基础而重要的概念。
数列极限可以通过数学定义和一些常用的极限定理来求解。
1. 数列极限的定义数列极限的定义是:对于一个数列{an},当n趋近于无穷时,如果存在一个实数A,使得对于任意给定的正数ε(无论多么小),都存在正整数N,使得当n > N时,有|an - A| < ε成立,则称数列的极限为A。
2. 常用的数列极限定理在实际计算中,可以根据一些常用的数列极限定理简化计算过程。
常用的数列极限定理包括:- 夹逼准则:当数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=L,那么lim(n→∞)bn=L。
- 唯一性定理:如果数列{an}与数列{bn}有相同的极限,即lim(n→∞)an=lim(n→∞)bn=L,那么可以推出lim(n→∞)(an ±bn)=2L。
- 四则运算法则:对于两个数列{an}和{bn},如果它们的极限存在,可以利用四则运算计算它们的极限。
即lim(n→∞)an ± bn = lim(n→∞)an ± lim(n→∞)bn,lim(n→∞)an · bn =lim(n→∞)an · lim(n→∞)bn,lim(n→∞)an / bn = (lim(n→∞)an) / (lim(n→∞)bn)(其中,lim(n→∞)bn ≠ 0)。
二、函数极限在大一高数中,函数极限是求极限的另一个重要方面。
函数极限的计算可以通过代入法、夹逼定理和洛必达法则等方法进行。
1. 函数极限的代入法对于一些常见的函数极限,可以通过代入法进行计算。
例如,对于以下函数极限的计算:lim(x→a)f(x),当x趋近于某个实数a时,可以通过直接将x代入f(x)的表达式中,计算得到极限值。
高数中求极限的16种方法

千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
高数大一求极限知识点总结

高数大一求极限知识点总结高等数学中的极限是一个重要且基础的概念,它在微积分和数学分析等学科中起到了至关重要的作用。
大一学习高数过程中,掌握极限的相关知识点对于进一步深入学习数学和应用数学是至关重要的。
本文将对大一高数中的极限知识点进行总结,以帮助同学们回顾复习和加深理解。
1. 极限的定义极限是指当自变量趋向于某一特定值时,函数值或数列的趋势。
对于函数而言,当自变量逐渐接近某个特定值时,函数值是否逐渐趋于确定的有限值或无穷大,这个确定的值就是该函数的极限。
2. 极限的性质- 唯一性:如果一个函数存在极限,那么极限是唯一的。
- 有界性:如果一个函数在某个点附近存在极限,那么该函数在该点附近有界。
- 保号性:如果一个函数在某个点附近极限存在,且极限大于(或小于)0,那么在该点附近函数的值也大于(或小于)0。
3. 极限的四则运算在计算函数的极限时,可以利用四则运算的法则来简化问题。
以下是常见的四则运算法则:- 两个函数相加(减)的极限等于两个函数的极限的和(差)。
- 一个函数与一个常数相乘的极限等于函数的极限乘以常数。
- 两个函数相乘的极限等于两个函数的极限的乘积。
- 一个函数除以另一个函数的极限等于函数的极限除以另一个函数的极限。
4. 极限存在的充分条件为了判断一个函数在某点是否存在极限,可以利用以下常见的充分条件:- 函数在该点附近有定义。
- 左极限和右极限存在且相等。
- 函数在该点附近有界。
- 函数在该点附近单调。
- 函数在该点附近保号。
5. 常见的极限计算方法- 代入法:直接将自变量代入函数中,求函数值来确定极限。
- 消去法:通过分子有理化、分母有理化等方法,将复杂的表达式转化为简单的形式,进而计算极限。
- 夹逼定理:当存在两个函数,它们在某点附近夹住待求函数,并且这两个函数的极限相等,那么待求函数的极限也等于这个共同的极限。
6. 无穷小量与无穷大量- 无穷小量:当自变量趋于某一特定值时,函数的极限趋近于0,这个极限称为无穷小量。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
大一高数求极限的方法总结

大一高数求极限的方法总结极限是高数学中一个重要的概念。
学习高数,理解和计算极限是大学生必须掌握的能力之一。
极限不仅可以用于理论推导,而且还可以帮助学生更好地应用极限,来解决实际数学问题。
极限有两种计算方法:一种是柱状法,一种是流程。
柱状法指的是使用微积分的方法来解决问题;而流程指的是通过分析函数的特征,从而求取极限的方法。
第一,柱状法。
柱状法是基于极限定义的,在求取极限的时候,可以利用定义,来确定极限的值。
例如求函数$y=frac{2x^{2}+5x+1}{(x-1)}$的极限,首先我们需要将函数分成上下两部分:$y_1=2x^{2}+5x+1$,$y_2=x-1$,分别给出它们的极限:$lim_{x to 1^{+}}y_1=6$,$lim_{x to 1^{-}}y_2=2$,然后将它们带入极限定义:$lim_{x to 1}y=lim_{x to1}frac{y_1}{y_2}=frac{lim_{x to 1^{+}}y_1}{lim_{x to1^{-}}y_2}=frac{6}{2}=3$,即得出极限值为$3$。
第二,流程。
流程是使用分析函数特征来求取极限的方法,常用于求一元函数(如指数函数、对数函数等)的极限。
例如求函数$y={frac{sqrt{x+2}-2}{x-3}}$的极限,在求这个函数的极限之前,我们可以先分析函数的特征,此函数在$x=3$处发生拐点,因此可以推测函数在$x=3$处的极限值应该为无穷大。
然后,我们可以使用流程法,将函数中的分子除以分母,将形式变成$frac{k_1}{0}$的形式,从而得到极限值无穷大。
最后,我们总结柱状法和流程法的不同之处。
在求取极限的时候,柱状法是依据定义求取极限的,而流程法则是利用函数的特征来求解极限。
因此,建议大家在学习高数的时候,还是要了解柱状法和流程法,将两种方法结合起来,更好地求取极限,并能够更好地应用到实际数学问题中去。
以上就是有关极限的求解方法总结。
高等数学求极限的17种常用方法(附例题和详解)

(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:
;
cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
高数求极限的方法总结

高数求极限的方法总结在高等数学中,求极限是一个非常重要的概念,它在微积分、数学分析等领域都有着广泛的应用。
求极限的方法有很多种,每一种方法都有其适用的范围和特点。
在本文中,我们将对高数求极限的方法进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学概念。
首先,我们来介绍一下常用的求极限方法。
在高等数学中,常见的求极限方法包括代数运算法、夹逼准则、洛必达法则、无穷小量代换法等。
这些方法在不同的情况下都能够发挥作用,可以说是数学分析中的利器。
代数运算法是求极限中最基本的方法之一。
它利用极限的性质和代数运算的性质,通过变形和化简来求解极限值。
夹逼准则则是一种比较常用的方法,它通常用于证明极限存在或不存在的情况。
洛必达法则则是用于求解不定型极限的重要方法,通过对函数求导来简化极限的计算。
无穷小量代换法则是在求解极限时,将函数中的变量替换成无穷小量,从而简化极限的计算过程。
除了以上介绍的常用方法外,还有一些特殊的求极限方法,比如泰勒展开、积分法等。
这些方法在一些特殊的情况下会发挥重要作用,能够帮助我们更好地理解和求解极限。
在实际的数学问题中,我们经常会遇到一些复杂的极限计算,这时候就需要根据具体的情况选择合适的方法来求解。
有时候,我们需要结合多种方法来求解一个极限,这就需要我们对各种方法有着深刻的理解和灵活的运用。
总的来说,求极限是高等数学中的一个重要概念,掌握好求极限的方法对于深入理解数学知识、解决实际问题都有着重要的意义。
希望本文对大家在高数求极限的学习和应用上有所帮助。
同时也希望大家能够在学习和研究中不断探索,不断提高自己的数学水平。
高数求极限的常用公式

高数求极限的常用公式求极限是高等数学中的一个重要概念,它在许多数学和科学领域中都有着重要的应用。
在求极限的过程中,我们可以利用一些常用的公式来简化计算,提高求解效率。
下面我们将介绍一些常用的求极限公式。
1. 常数的极限公式:当n趋向于无穷大时,常数a的极限为a,即lim(a) = a。
2. 幂函数的极限公式:当n趋向于无穷大时,幂函数x^n的极限为:若n>0,则lim(x^n) = ∞或lim(x^n) = -∞,具体取决于x的正负;若n=0,则lim(x^n) = 1;若0<n<1,则lim(x^n) = 0。
3. 指数函数的极限公式:当x趋向于无穷大时,指数函数a^x的极限为:若a>1,则lim(a^x) = ∞;若0<a<1,则lim(a^x) = 0。
4. 对数函数的极限公式:当x趋向于无穷大时,对数函数log_a(x)的极限为:若a>1,则lim(log_a(x)) = ∞;若0<a<1,则lim(log_a(x)) = -∞。
5. 三角函数的极限公式:当x趋向于无穷大时,三角函数的极限为:lim(sin(x)) = 不存在;lim(cos(x)) = 不存在;lim(tan(x)) = 不存在。
6. 指数与对数函数的极限公式:当x趋向于无穷大时,指数与对数函数的极限为:lim(e^x) = ∞;lim(ln(x)) = ∞。
通过以上常用的求极限公式,我们可以简化极限的计算过程,提高求解的效率。
在实际应用中,我们还可以根据具体问题,灵活运用这些公式,并结合其他数学知识来求解更复杂的极限问题。
求极限是高等数学中的重要内容,掌握这些常用公式对于深入理解极限概念和解决实际问题都具有重要意义。
高等数学极限求法总结

高等数学极限求法总结在高等数学中,极限是一个至关重要的概念,它在微积分、数学分析等领域中扮演着重要角色。
极限求法是数学学习中的一个关键技能,通过正确的方法和技巧能够更快地求解各种极限问题。
本文将系统总结常见的极限求法,包括极限的基本性质、洛必达法则、泰勒展开等内容,帮助读者更好地掌握和运用极限求法。
一、极限的基本性质1. 有界性如果一个函数在某点的一个邻域内有界,那么该函数在该点的极限存在且有限。
2. 夹逼准则如果函数f(x)在点a的某个邻域内除a点以外都满足0≤g(x)≤f(x)≤h(x),并且lim[g(x)]=lim[h(x)]=L,则由夹逼准则可得lim[f(x)]=L。
二、洛必达法则洛必达法则常用来解决0/0型或∞/∞型的极限。
若lim[f(x)]=0, lim[g(x)]=0,并且lim[f’(x)/g’(x)]存在,则lim[f(x)/g(x)]=lim[f’(x)/g’(x)]。
三、泰勒展开泰勒展开是在某一点附近用多项式逼近一个函数的方法。
简单来说,就是用一个多项式不断逼近原函数,使得在该点附近它们的表现尽量接近。
泰勒展开的公式如下:f(x)≈f(a)+f’(a)(x-a)+f’’(a)(x-a)2/2!+⋯+f n(a)(x-a)^n/n!+Rn(x)其中,f(x)是原函数,a是展开的点,f^(n)(a)表示f(x)在点a处的n阶导数,Rn(x)是泰勒余项,即多项式逼近的误差。
通过以上总结,我们可以看到,极限求法涉及到多方面的知识和技巧,需要结合具体问题选择合适的方法进行求解。
掌握极限求法不仅可以帮助我们更好地理解函数的性质,还可以在数学建模、物理学等领域中发挥重要作用。
希望通过本文的总结,读者能够更加熟练地运用各种极限求法,提升自己的数学水平。
求极限方法总结

求极限方法总结求极限方法总结一,求极限的方法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos二,求极限的方法纵向总结:1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置2)用无穷小量与有界变量的乘积3)2个重要极限4)分式解法(上述)高数解题技巧。
高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
大一高数极限知识点

大一高数极限知识点大一高数中,极限是一个非常重要的概念。
极限在微积分学中具有重要的地位,是求导和积分的基础。
下面将介绍大一高数中极限的基本概念、性质以及一些常见的求解方法,希望对你的学习有所帮助。
1.极限的定义:极限的定义是通过数列的极限的概念引出来的。
对于函数f(x),当x无限接近于其中一点时,可以通过数列的极限来刻画这一过程。
如果存在一个数L,对于任意给定的ε>0,总存在一些δ>0,使得当0<,x - a,<δ时,有,f(x) - L,<ε,那么就说函数f(x)在x趋近于a时,极限是L,记作lim(x→a) f(x) = L。
2.极限的性质:(1)唯一性:如果函数f(x)在x趋近于a时存在极限,那么极限是唯一的,即极限值只有一个。
(2)有界性:如果函数f(x)在x趋近于a时存在极限,那么函数f(x)在x趋近于a的一些领域内是有界的。
(3)局部有界性:如果函数f(x)在x趋近于a时存在极限,那么函数f(x)在x趋近于a的一些领域内是局部有界的,即存在一个领域使得函数在该领域内有界。
(4)保号性:如果函数f(x)在x趋近于a时存在极限,且极限不为0,那么函数f(x)在x趋近于a的一些领域内的符号与极限的符号相同。
3.极限的计算方法:(1)代入法:对于简单的求极限问题,可以直接将x的值代入函数中计算得出极限。
(2)夹逼法:当函数f(x)无法直接计算得出极限时,可以通过夹逼法求出极限。
夹逼法基于夹逼定理:若对于x在(a,b)内的点,有g(x)≤f(x)≤h(x),且lim(x→a) g(x) = lim(x→a) h(x) = L,那么lim(x→a) f(x) = L。
(3)无穷小代换法:当函数f(x)在x趋近于一些点a时,计算得到的极限形式为“0/0”或“∞/∞”时,可以通过无穷小代换法求极限。
无穷小代换法主要有以下几种常见形式:a. a^x - 1 ≈ xlna(当a大于0且不等于1时)b. 1 - cosx ≈ (1/2)x^2(当x趋近于0时)c. ln(1 + x) ≈ x(当x趋近于0时)4.极限运算法则:在大一高数中,还有许多极限运算的法则可以简化计算的过程。
高数中求极限的16种方法

高数中求极限的16种方法——李健假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n 趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx 两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
大一高数求极限的方法总结

大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高数求极限的方法总结

高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。
2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。
3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。
4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。
5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。
6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。
7. 自然对数的极限:自然对数的极限是1。
8. e的极限:e是一个常数,其极限是e。
9. 无穷小量的极限:无穷小量的极限为0。
10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。
请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章极限计算方法总结
一、极限定义、运算法则和一些结果 1.定义:
数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1
lim
2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞
→q q n n 当等。
定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限
作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则
定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim
(3))0(,)()(lim
成立此时需≠=B B
A
x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限
(1) 1sin lim 0=→x
x x (2) e x x x =+→1
0)1(lim ; e x x
x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。
(2)一定注意两个重要极限成立的条件。
例如:133sin lim
0=→x
x
x ,e x x
x =--→21
0)
21(lim ,e x x x =+∞
→3
)31(lim ;等等。
4.等价无穷小
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:
x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x
e 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价
关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2
x - ~ 2x -。
定理4 如果函数
)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,
)(x g ~)(1x g ,则当)()(lim 110x g x f x x →存在时,)()
(lim 0x g x f x x →也存在且等于)()(lim 1
10x g x f x x →。
5.连续性
定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内
的一点,则有)()(lim
00
x f x f x x =→ 。
求极限的一个方法。
6.极限存在准则
定理6(准则1) 单调有界数列必有极限。
定理7(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:
(1)
),3,2,1(, =≤≤n z x y n n n (2) a y n n =∞
→lim ,a z n n =∞
→lim
则极限∞
→n n x lim
一定存在,且极限值也是a ,即a x n n =∞
→lim 。
二、求极限方法举例
1. 用初等方法变形后,再利用极限运算法则求极限
例1
1
2
13lim
1
--+→x x x
解:原式=4
3
)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以用洛比达法则。
例2
)12(lim --+∞
→n n n n
解:原式=2
3
11213lim
1
2)]1()2[(lim
=
-++
=
-++--+∞
→∞
→n
n n n n n n n n
n 分子分母同除以。
例3 n
n n
n n 323)1(lim ++-∞→
解:原式
11)3
2(1)31
(lim 3
=++-=
∞→n
n n n
上下同除以 。
2. 利用函数的连续性(定理6)求极限 例4
x
x e
x 122
lim →
解:因为20=x 是函数x
e
x x f 12
)(=的一个连续点,
所以 原式=e e 42
2
12
= 。
3. 利用两个重要极限求极限 例5
203cos 1lim
x
x
x -→
解:原式=61
)
2
(122sin 2lim 32sin 2lim
22
02
2
=⋅=→→x x
x x x x 。
注:本题也可以用洛比达法则(第三章) 例6
x
x x 20
)sin 31(lim -→
解:原式=6sin 6sin 31
sin 6sin 310
]
)
sin 31[(lim )
sin 31(lim ---→-⋅
-→=-=-e x x x
x x
x x
x
x x 。
例7 n
n n n )1
2(
lim +-∞
→ 解:原式=31
33
11
331]
)1
3
1[(lim )1
3
1(lim -+--+∞
→+-⋅
-+∞
→=+-+
=+-+
e n n n n n n n n
n n 。
4. 利用定理2求极限
例8 x
x x 1sin
lim 2
→ 解:原式=0 (定理2的结果)。
5. 利用等价无穷小代换(定理4)求极限 例9
)
arctan()
31ln(lim
20
x x x x +→
解:)31ln(0x x +→时,
~x 3,)arctan(2
x ~2x ,∴ 原式=33lim 2
=⋅→x
x
x x 。
例10 x
x e e x
x x sin lim sin 0--→
解:原式=1sin )
sin (lim sin )1(lim sin 0sin sin 0=--=--→-→x
x x x e x x e e x x x x x x 。
注:下面的解法是错误的:
原式=1sin sin lim sin )1()1(lim
0sin 0=--=----→→x
x x x x x e e x x x x 。
正如下面例题解法错误一样: 0lim sin tan lim 3030
=-=-→→x
x
x x x x x x 。
例11
x
x x x sin )
1
sin tan(lim 20→
解:等价与是无穷小,时,当x
x x x x x x 1
sin )1sin tan(1sin
0222
∴→ , 所以, 原式=01sin lim 1
sin
lim
020
==→→x
x x x x x x 。
(最后一步用到定理2)
5. 利用极限存在准则求极限
例20 已知),2,1(,2,211
=+==+n x x x n n ,求n n x ∞
→lim
解:易证:数列}{n x 单调递增,且有界(0<n x <2),由准则1极限n n x ∞
→lim 存在,
设 a x n n =∞
→lim 。
对已知的递推公式 n
n x x +=+21两边求极限,得:
a
a +=2,解得:2=a
或1-=a (不合题意,舍去)
所以
2lim =∞
→n n x 。
例21 )12111(lim 2
2
2
n
n n n n ++
+++
+∞
→
解: 易见:
1
12
1
1
1
2
2
2
2
2+<
+++++
+<
+n n n
n n n n
n n
因为
1lim
2
=+∞
→n
n n n ,11
lim
2
=+∞→n n n
所以由准则2得:1)12
1
1
1
(
lim
2
2
2
=++
+++
+∞
→n
n n n n 。
上面对求第一章极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。
另外,求极限还有其它一些方法,如用洛必达、定积分求极限等,后面再作介绍。