传热学第章对流换热的理论基础幻灯片
第6章-对流换热1PPT课件
一、换热微分方程
由牛顿冷却定律:
q w ,xh x(tw-t ) W m 2
由傅里叶定律与牛顿冷却公式:
对流换热过程
hxtw t y tw ,x
微分方程式
W (m 2C ) (62)
-
22
五、流动边界层
层流
过渡流
湍流
u
y
x
xc
层流底层 缓冲层
五、流动边界层
2. 实验测定 若用仪器测出壁面法向
一、牛顿公式
qht QhAt
15 16
只是对流换热系数 h 的一个定义式,它并没 有揭示 h 与影响它的各物理量间的内在关系
本章的目的就是要揭示这种联系,即求解表面换 热系数h的表达式。
6.2 影响对流换热的主要因素
影响对流换热系数 h 的因素有以下 5 方面 流体有无相变 流体流动的起因 换热表面的几何因素 流体的流动状态 流体的物理性质
6.3 对流换热微分方程组
一、能量微分方程
作为一种能量输运过程,对流换热过程必然 遵循能量守恒原理,对流过程中的流体温度场 应是能量守恒原理与对流换热具体的热量输运 形式相结合的表现形式,其数学描述称为能量 守恒微分方程,简称能量方程。
在对流换热过程中: 能量守恒原理 — 热力学第一定律; 热量输运形式 — 导热+对流。
质量*加速度=体积力+压力+粘滞力
D D u uu u xv u yw u z
(u
uuvu) x y
Fx
px (x2u2
y2u2)
(v
uvvv) x y
Fy
py (x2v2
y2v2)
二、动量守恒微分方程(Navier-Stokes)
稳态下自然对流:
传热学(第三版)(张靖周,常海萍,谭晓茗编著)PPT模板
0 1 4.1对流换热概述
0 2 4.2对流换热过程的数学描写
03
4.3对流换热的边界层微分方程 组
0 4 4.4湍流对流换热边界层微分方程组
0 5 4.5边界层类比 0 6 4.6管内层流充分发展对流换热理论
解
第4章对流换热的 理论分析
思考题 练习题 参考文献
05
第5章单相流体对流 换热的准则关联式
7.2黑体辐 射基本定 02 律
7.3实际
05
03
固体和液
思考题
04
体的辐射
7.4气体辐
特性
射特性
第7章热辐射的理 论基础
参考文献
08
第8章辐射换热的 计算
第8章辐射换热的计算
8.1被透明介质隔开的两
1
表面间辐射换热
8.2被透明介质隔开的封
闭系统表面间辐射换热
2
8.3遮热板
3
8.4气体与包壳间的辐射
附录5空气在不 同压力和温度下
的热物理性质
附录6干饱和水 蒸气的热物理性
质
A
B
C
D
E
F
附录8大气压力下过热水 蒸气的热物理性质
附录10几种饱和液体的热 物理性质
附录12材料发射率
附录
1 2 3 4 5 6
附录7大气压力下标准烟 气的热物理性质
附录9饱和水的热物理性 质
附录11液态金属的热物理 性质
单击此处添加文本具体内 容,简明扼要的阐述您的 观点。根据需要可酌情增 减文字,以便观者准确的 理解您传达的思想。
第9章几个专题
练习题 参考文献
10
附录
附录
附录1常用单位 换算表
传热学对流传热的理论基础课件
特征数方程中的 几位人物
传热学对流传热的理论基础课件
(4) 与 t 之间的关系及 Pr
对于外掠平板的层流流动: uco,n st
动量方u程 u x: v u y y 2u 2
d d
p 0 x
此时动量方程与能量方程的形式完全一致:
u
t x
v
t y
a
2t y2
表明:此情况下动量传递与热量传递规律相似
上述理论解与实验值吻合。
普朗特边界层理论在流体力学发展史上具有划时代的意义!
传热学对流传热的理论基础课件
5.3 流体外掠等温平板传热的理论分析
当壁面与流体间有温差时,会产生温度梯度很大的温度 边界层(热边界层, thermal boundary layer )
厚度t 范围 — 热边界层或温度边界层
预期解的形式
传热学对流传热的理论基础课件
4. 如何指导实验
• 同名的已定特征数相等 • 单值性条件相似:初始条件、边界条件、几何条件、
物理条件
实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
传热学对流传热的理论基础课件
关联式中的待定参数需由实验数据确定,通常由图解法 和最小二乘法确定。如通过相似原理或理论分析,预期
第章传热学基本知识PPT资料
教学目的:
➢理解稳定传热的根本概念; ➢理解稳定导热、对流换热和辐射换热的根
本概念; ➢理解稳定传热的过程及传热的加强与削弱。
▪ 传热学是研究热量传送过程规律的一门学 科。
▪ 本章介绍传热的根本方式,分析导热、热 对流和辐射的根本特性及应用。
§2-1 稳定传热的根本概念
一、温度与热量 1、温度 定义:用来表示物体冷热水平的物理量。 丈量温度的仪表:温度计,玻璃管温度
温度不同的物体直接接触,温度较高的物体把热能传给温度较低的物体,或在同一物体内部,热能从温度较高的部分传给温度较低部
d -墙壁的厚度。 分的传热现象。
〔4〕换热外表的几何尺寸、形状与大小 热量是一个过程量,只要在物体通过热传送交换热能才谈得上热量。
t -墙壁内外表的温度。 工程单位制中:cal,kcal
4、影响对流换热的因素 〔1〕流动的起因 自然对流 受迫对流 〔2〕流体的流动状态 层流 紊流 〔3〕流体的物理性质 导热系数、热容、密度、动力粘度等。
二、对流换热计算
Q(tbt1)F
q(tb t1)
Q -单位时间的对流换热量。
q -对流换热热流强度。
F -墙壁的换热面积。
t b -墙面的温度。 t 1 -流体的温度。 -对流换热系数,
透明体:能透过全部热射线的物体,1 即 。
t 2 -墙壁外外表的温度。 -墙体资料的导热系数。
➢ 热流强度:单位时间内通过单位面积的热量。
q
d
(t 1t2 )
q
t1 t2 d
t1 t2 R
▪ 墙体资料的导热系数λ ,是资料导热性能的一个指标,由 资料自身决定。
▪ 资料导热系数大,导热性能好;反之,导热性能差 。 ▪ Rλ称为热阻,是热流通过墙壁时遇到的阻力,或者说墙
传热学对流换热ppt课件
优化对流换热过程,提高传热效率是传热学的重要研究方向。
详细描述
对流换热是传热过程中的重要环节,优化对流换热过程、提高传热效率对于节能减排、提高能源利用 效率具有重要意义。未来研究将进一步探索对流换热的优化方法和技术,为实现高效传热提供理论支 持。
THANKS
感谢观看
02 通过求解这些方程,可以得到流体温度场和物体 温度场的分布,进而分析对流换热的规律和特性 。
02 对流换热的数学模型是研究对流换热问题的重要 工具,可以用于预测和分析各种实际工程中的传 热问题。
03
对流换热的影响因素
流体物性参数
01 密度
密度越大,流体质量越大,流动时受到的阻力也 越大,对流传热速率相对较快。
,提高能源利用效率。
工业炉的热能回收主要涉及对流 换热器的设计和优化,需要考虑 传热效率、热损失、设备成本等
因素。
通过对流换热技术回收工业炉的 热量,可以降低能源消耗和减少
环境污染。
建筑物的自然通风设计
建筑物的自然通风设计利用对流 换热原理,通过合理设计建筑布 局、窗户位置和大小等,实现自
然通风,降低室内温度。
传热学对流换热ppt 课件
目录
• 对流换热的基本概念 • 对流换热原理 • 对流换热的影响因素 • 对流换热的实际应用 • 对流换热的实验研究方法 • 对流换热研究的未来展望
01
对流换热的基本概念
对流换热定义
总结词
对流换热是指流体与固体表面之间的热量传递过程。
详细描述
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本现象。当流体与固 体表面接触时,由于温度差异,会发生热量从固体表面传递到流体的过程。
在对流换热过程中,热传导与对流同时存在,共 02 同作用,两者相互关联,共同决定热量传递的速
(完整PPT)传热学
(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。
01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。
02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。
热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。
非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。
传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。
生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。
解决高速飞行时的高温问题,保证航空航天器的安全运行。
机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。
能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。
建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。
传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。
热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。
热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。
导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。
温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。
压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。
在稳态导热过程中,热流密度和温度分布保持恒定。
非稳态导热物体内部各点温度随时间变化而变化的导热过程。
传热学第一章 热量传递的基本方式ppt课件
*
太原理工大学
8 / 51
主要体现在以下几个方面
Thermal
➢ 温度场的测算和换热量的计算; ➢ 环境变化对温度场的影响;
➢ 极限温度的控制:为使一些设备能安全经济地运 行,需要对热量传递过程中物体关键部位的温度进 行控制。
*
太原理工大学
24 / 51
(2)对流换热的分类
• 无相变:强制对流和自然对流换热
Thermal
• 有相变:沸腾、凝结、凝固、熔化等。
自然对流:由于流体冷热各部分的密度不同而引起流 体的流动。 如:暖气片表面附近受热空气的向上流动 强制对流:流体的流动是由于水泵、风机或其它压差 作用所造成的。 如油冷却器、空气预热器等。
两黑体表面间的辐射换热
*
太原理工大学
33 / 51
(6)总 结
Thermal
在实际问题中,这三种热量传递方式往往不是单独 出现的,这不仅表现在互相串联的几个环节中,而 且同一个环节也常常如此。例如: 一块高温钢板在厂 房中的冷却散热。
*
太原理工大学
28 / 51
(2)辐射换热的特点
Thermal
• 任何物体,只要温度高于0 K,就会不停地向周围空 间发出热辐射(热辐射是物体本身的属性,等温时为 动态平衡);
• 可以在真空中传播,不需要中间介质,而且在真空中 辐射能的传递最有效;
• 不仅有能量的转移,而且还伴随有能量形式的转换;
Thermal
§1-1 传热学的研究对象及其在安全工程 技术中的应用
一、研究对象及内容
研究由温差引起的热量传递规律的科学,具体来讲主要有 热量传递的机理、规律、计算和测试方法,其内容包括:
传热学-对流换热PPT课件
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
[课件]中文版_传热学-第一章PPT
属性
特点
2018/12/3
15
(1) 对流换热的基本计算公式——牛顿冷却公式
Φ hA ( t t ) W w
q ΦA
2 h ( tw tf ) W m
— 热流量[W],单位时间传递的热量
2 q — 热流密度 W m
2 W (m K) h — 表面传热系数
0
2018/12/3
20 C
Q
x
突然加 热到 800C
0
20 C
x
10
导热
定义
§1-1 热量传递的三种基本方式
对流 辐射
属性
特点
2018/12/3
11
1 导热(热传导)
(1) 导热的基本定律: 1822年,法国数学家Fourier:
t
dx
Φ d t W q 2 A d x m
dt
Q
d t Φ A d x
W
0
x
2018/12/3
12
1 导热(热传导)(续)
(2) 导热系数 表征材料导热能力的大小,是一种物性 参数,与材料种类和温度有关。
t
t w1
dt
dx
金属 非金属固体 液体 气体
(3) 一维稳态导热及其导热热阻 如图右图所示,稳态 q = const,于是
2018/12/3 8
3 传热学应用实例(续)
生物医学:肿瘤高温热疗; 生物芯片;
组织与器官的冷冻保存
军 制 事:飞机、坦克;激光武器;弹药贮存 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 新 能 源:太阳能; 燃料电池
材料科学工程课件23对流换热
No Image
传热学
(1) 竖夹层 恒壁温条件下空气在竖夹层的准则关系式为:
2yu2y
能量守恒方程
共3个方程,包含了4个未知数(ux, uy,p,t)。虽然方程组是封闭的, 原则上可以求解,然而由于Navier - Stokes方程的复杂性和非线性的特 点,要针对实际问题在整个流场内数学上求解上述方程组却是非常困难 的,这种局面直到1904年德国科学家普朗特(L. Prandtl) 提出著名的 边界层概念,并用它对Navier一Stokes方程进行了实质性的简化后才有 所改观,使数学分析解得到发展。后来,波尔豪森(E. Pohlhausen )又 把边界层概念推广应用于对流传热问题,提出了热边界层的概念,使对 流传热问题的分析求解也得到了发展。
当Gr>109时,自然对流边界层就会失去稳定 而从层流状态转变为紊流状态。
No Image
传热学
工程中广泛使用的是下面的关联式:
NuC(GrPr)n
式中:定性温度采用 tm(twt)/2;
特征长度的选择:竖壁和竖圆
柱取高度,横圆柱取外径。
No Image
传热学
E-Mail: 202.114.88.54/new/clgcjc/web/
ddyuuyuxuxyuyuyyuzuzy fy1 p y2uy ddzuuz uxuxz uyuyz uzuzz fz1 p z2uz
No Image
传热学
热现象 (3)不可压缩、常物性、无内热源 时, 能量守恒定律:
1 竖板 2 水平管 3 水平板 4 竖直夹板
No Image
传热学
3.4.1 无限空间中的自然对流换热
1) 换热过程分析
No Image
传热学理论基础 ppt课件
15
ppt课件
导热问题的数值分析技术
参见 “热分析技术”专题
16
ppt课件
对流换热
定义:流动的流体与其相接触的物体(固体、流体、汽体), 由于温差的原因所产生的能量与热量的传递过程。 条件:a. 质点的宏观位移(流动); b. 两个物体间有 t 存在。
特点:对流换热是包括对流和导热二个过程同时存在,它既 有流体分子之间、流体与固体间的导热作用,又有流体本身 的对流作用,受到导热、对流两种规律的支配。
自然对流特征分析
流体内各部分温度的不均匀,引起流体密度的不均匀,流体受热密 度减小,形成热流体上升,冷流体下降的对流循环 体上升的浮升力。 流体自然对流有两种流态,即层流和紊流。
。其动力是受热流
35
ppt课件
自然对流换热计算
不同情况下的自然对流换热
竖平板及竖柱体 水平圆柱体 水平板热面朝上 水平板热面朝下
k
k
29
ppt课件
对流换热—量纲分析法
hc—f (w , , , cp , k , D) = 0
(1,2,3)= 0
如果某个齐次方程的物理变量有7个,其中近4个基本量纲量,则该方 程也可以用3个独立的无量纲数组来支配。
任选hc= f (w , , , cp , k , D) 中的D, , , k 为基本变量,可得:
t t 0; 0
4
ppt课件
导热
因物质的原子和分子之间的随机运动而导致的从高能级 →低能级的一种能量传输过程。简单地说:导热的产生必 需具备二个条件:t 和相互接触。 1822 年法国数学家 J.Fourier, 研究了固体的导热现象后,提 出:物质在纯导热时,通过垂 直于热流方向的面积( dA)的 热流量( dQ),与该处的温度 变化率(梯度)成正比,方向 与温度梯度相反。
对流传热原理PPT课件
y
0,u
y ,u
0,v 0,t u,t
热边界层厚度:
tw t
t
Pr1/3
第12页/共27页
§5-4 流体外掠平板传热层流分析解及比拟理论
局部表面传热系数: Nux 0.332 Re1x/2 Pr1/3
(1) 努塞尔数Nux
Nux
hx x
(2) 雷诺数
Rex
u x
(3) 层流流动的判别条件:Re<Rec=5×105
(4)对于长度为l 的平板,其平均努塞尔数:
Nul 0.664 Re1l/2 Pr1/3
第13页/共27页
Rel
ul
Nul
hml
例2:来流温度为20℃、速度为4m/s空气沿着平板
流动,在距离前沿点为2m处的局部切应力为多大?
如果平板温度为60℃,该处的对流传热表面传热
系数是多少?
定性温度
t
m
=
20
h
0.664
Num
m
l
Re1lm/2
hl
m Prm1/3
0.664
Re
1/ 2 lm
Prm1/ 3
0.664 2.96 102 (4 104 )1/2 0.6941/3 17.4W / (m K ) 0.2
hAt 17.4 0.2第240页./共127页(100 40) 20.88W
=0.008kg
/
(m
s2)
Nux
hx x
0.332 Re1x/2
Pr1/3
hx
0.332
x
Re1x/2
Pr1/3
0.332 2.76 102 4.7 105 0.5 0.6991/3 2
传热学基础(第二版)第一章教学三种热量传递的基本方式分解PPT课件
20/65
.
20
采用高等数学方法分析热传递过程, 总要假定所研究的对象是一个连续体, 即认为所研究对象内各点上的温度、密 度、速度等都是空间坐标的连续函数。
实际上,只要被研究对象的几何尺寸 远大于分子的平均自由行程,连续体的 假定即可成立。就本书涉及的内容而言, 连续体的假定都是成立的。
21/65
50/65
.
50
对于两个相距很近的黑体表面,由于一 个表面发射出来的能量几乎完全落到另 一个表面上,那么它们之间的辐射换热 量为 :
A(T14T24)
F
T1
Φ
T2
51/65
.
51
52/65
.
52
三种基本热量传递方式由于机理不同,
对流换热: (Convection heat transfer)流体与 温度不同的固体壁间接触时的热量交换过程
37/65
.
37
对流换热的特点
对流换热与热对流不同,既有热对流,也 有导热;不是基本传热方式
导热与热对流同时存在的复杂热传递过程
必须有直接接触(流体与壁面)和宏观运 动;也必须有温差。
物质的属性:
可以在固体、液体、气体中发生。
24/65
.
24
导热的特点
必须有温差 物体直接接触 依靠分子、原子及自由电子等微观粒子
热运动而传递热量 不发生宏观的相对位移
25/65
.
25
26/65
.
26
2.导热机理 气体:气体分子不规则热运动时相互碰
撞的结果。 导电固体:自由电子运动。 非导电固体:晶格结构的振动。 液体:很复杂。
T — 黑体表面的绝对温度(热力学温度)K b— 斯蒂芬-玻尔兹曼常数,5. 617 -0 8W (m 2K 4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算公式。
5.1.2 对流传热的影响因素
对流换热是流体的导热和热对流两种基本方式 共同作用的结果。因此凡是影响流体导热和对流 的因素都将对对流换热产生影响。
归纳起来,主要有以下五方面: 流动的成因(自然对流, 强制对流) 流动的流动状态(层流, 紊流) 换热时物体有无相变(沸腾, 凝结) 流体的物性(导热系数, 粘度, 密度, 比热容等) 换热表面的几何因素
Q A q xd A A h x(tw tf)xdA
tw-tf=Const
平均表面传热系数: u∞ tf
Q 1
h (twtf
)AAAhxdA
tw
qx twx hx
A
0
对流换热的核心问题
x
x
问题
牛顿冷却公式只是对对流传热表面传热系数h的一个定义式, 它没有揭示出表面传热系数与影响它的有关物理量之间的内 在联系。 对流传热的主要任务:揭示这种内在的联系。
2. 实验法; 是目前的主要途径。 相似原理和量纲分析理论。
3. 数值法:
对对流换热过程的特征和主要参数变化趋势作出预测。应 用越来越多。
4. 比拟法:
利用流体动量传递和热量传递的相似机理,建立表面传热 系数和阻力系数之间的相互关系。限制多,范围很小。
当粘性流体在壁面上流动时, 由于粘性的作用,在靠近壁面 处流体的流速逐渐减小;在贴 壁处流体将被滞止而处于无滑 移状态(即:y=0, u=0)—— 无滑移边界条件(流体力学)
发展成湍流状态。 ➢ 高粘度流体(油类)多处于层流状态,h较小。
5. 换热表面的几何因素
换热表面的几何形状,尺寸,相对位置, 表面状态(光滑或粗糙)等。
➢ 对对流换热有显著影响; ➢ 影响流态,速度分布,温度分布。 特征长度
热面朝上
d 管内流动
热面朝下
外部绕流
总结 影响对流换热的因素:
hf(u,l,,,,cp)
湍流边界层 层流底层:导热 湍流核心区:对流
u∞ tf
主流区 对流
u∞
δ
u
q
u∞
u 导热
层流底层
0 层流边界层 过渡区 湍流边界层
x
3. 流体有无相变
有相变 —— 沸腾换热,凝结换热。 流体发生相变时的换热规律及强度和单相流
体不同。
Fluid motion induced by vapour bubbles generated at the bottom of a pan of boiling water
学习内容:
对流传热的理论基础,旨在揭示对流传热过程的物理本质、 数学描述方法以及进行试验研究的基本原则。 首先从对流传热物理过程的角度,定性的分析对流传热的影 响因素,然后较深入的讨论对流传热的数学描述,在此基础 上导出边界层类型问题的简化方程,简述其积分解法和比拟 理论的概念。
研究目的:
计算在各种不同条件下的表面传热系数h 1.介绍影响对流传热的因素,确定对流换热表面传热系数h的
空气 cp1.2k 1/Jm (3C )
导热系数λ:
水的冷却能力强于空气
➢影响流体内部的热量传递过程和温度分布; ➢λ越大,导热热阻越小,对流换热越强烈。
常温下:水 0 .55 W /1 m (K ) 空气 0 .02 W 5 /m (7 K )
粘度μ:
➢ 影响速度分布与流态(层流,湍流); ➢ μ越大,分子间约束越强,相同流速下不易
1. 流动的起因 —— 强迫对流,自然对流。 流动的起因不同,流体内的速度分布,温度
分布不同,对流换热的规律也不同。 强迫对流:流体在泵,风机或其他外部动力作 用下产生的流动。 自然对流:由于流体内部的密度差产生的流动。
空气h: 自然对流 h52W 5/m (2K) 强迫对流 h1 010 W 0 /m (2K )
Condensation of water vapour on the outer surface of a cold water pipe
4. 流体的热物理性质
对对流换热的强弱有水非的常换大热能的力影远响高。于空气 密度和比热容:
➢体积热容 c p:单位体积流体热容量的大小。
常温下:水 cp41k8/Jm ( 63C )
传热学第章对流换热的理论基 础幻灯片
5.1 对流传热概说
5.1.1 对流传热的基本概念和计算公式
1. 对流(Convection): 是指流体各部分之间发生相对位移时,冷热
流体相互掺混所引起的热量传递现象 。
2. 对流换热(Convection heat transfer):
流体流过另一个物体表面时,流动方向 u∞
✓ tw — 固体表面的平均温度。
✓ tf — 流体温度。
tf
• 外部绕流(外掠平板,圆管) tf 为流体的主流温度。
外部绕流
• 内部流动 (各种形状槽道内的流动) tf 为流体的平均温度。
d
管内流动
4. 局部表面传热系数与平均表面传热系数 局部对流换热时局部热流密度:
qxhx(twtf)x
整个换热物体表面的总对流换热量:
2. 流动的流动状态 —— 层流流动,湍流流动。 层流 (Laminar flow):
➢ 流速缓慢; ➢ 沿轴线或平行于壁面作规则分层流动; ➢Байду номын сангаас热量传递:主要靠导热(垂直于流动方向)
u∞ tf
u∞ uq
导热
0 层流边界层
x
u∞
u
导热
q
管内层流流动
湍流 (Turbulent flow):
➢ 流体内部存在强烈脉动和旋涡运动; ➢ 各部分流体之间迅速混合; ➢ 热量传递:主要靠对流 。
tf
对流和导热联合起作用的
u
t
热量传递现象。
平壁表面的 传热机理
tw
Φ
wall
平壁上的对流换热
3. 牛顿冷却公式 (Newton’s law of cooling)
式中:
Ah(twt f ) qh(twtf )ht
流动方向 u∞
tf
u
t
tw
Φ
✓ h —固体表面的平均表面换热系数。wall
平壁上的对流换热
定性 用来确定物性参数数值的温度。 温度 例如:流体的平均温度;
流体与壁面温度的算术平均值等。
代表几何因素对换热的影响。
特征 长度
例如:管内换热以内径为特征长度;
沿平板流动以流动方向的尺寸为特征长度等。
对流换热分类
5.1.3 对流传热的研究方法
1. 分析法:
指对描写某一类对流传热问题的偏微分方程及定解条件进 行数学求解,从而获得速度场和温度场的分析解。 可得出精 确解或近似解。适用简单问题。采用数学分析求解的方法,有 指导意义。