2FSK信号的解调与抗噪声的性能分析报告
2FSK调制解调实验
电子信息工程学系实验报告课程名称:《通信原理》实验项目名称:2FSK调制解调实验实验时间:2013.6.3班级:电信102姓名:杨恒俊学号:010706233实验目的:1. 掌握利用systemview进行仿真的方法;2. 掌握2FSK调制解调的基本原理。
实验环境:电脑,systemview5.0软件。
实验原理:1.调制原理如果用数字信号来键控载波的频率,即信号的符号“0”对应于载波频率f1,而符号“1”对应于载波频率f2(与f1不同的另一载波频率),这种调制称为二进制频移键控(2FSK)。
2FSK信号的产生方法有两种:(1)直接调频法直接调频是用数字基带信号直接控制载波振荡器的振荡频率。
同模拟调制一样,利用一个矩形脉冲序列对一个载波进行调频而获得2FSK信号,如图1(a)所示。
这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。
这种方法产生的调频信号相位是连续的。
虽然直接调频实现方法简单,但其频率稳定度较低,同时频率转换速度不能太快。
(2)频移键控法频移键控法也称为频率选择法,其原理框图如图1(b)所示。
它有两个独立的振荡器,在二进制基带脉冲序列的控制下通过开关电路对两个不同的频率源进行选择,使得在一个码元持续时间内输出其中的一路载波。
键控法产生的2FSK信号频率稳定度高且没有过渡频率,除此之外它还具有很高的转换速度。
但是,频移键控在转换开关发生转换的瞬间,两个高频振荡器的输出电压通常是不相等的,于是,得到的2FSK信号在基带信息变换时电压会发生跳变,这种现象称为相位不连续现象,这是频移键控特有的情况。
图1 2FSK信号的产生原理框图2. 2FSK信号的解调二进制频移键控信号可以采用非相干解调和相干解调两种方法来解调,其相应的原理图如图2所示。
二进制频移键控信号的解调原理是将二进制频移键控信号分解为上下两路二进制振幅键控信号,分别进行解调,通过对上下两路的抽样值进行比较最终判决出输出信号。
FSK信号的解调与抗噪声性能分析
F S K信号的解调与抗噪声性能分析Prepared on 21 November 2021课程设计课程设计名称:通信综合专业班级:学生姓名:学号:指导教师:课程设计时间:2014年电子信息工程专业课程设计任务书目录2FSK信号的解调与抗噪声性能分析一.课程设计的目的和意义基本要求掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。
课程设计的目的及意义本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。
通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。
要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。
能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。
对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。
在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。
可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。
也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。
本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。
2FSK数字通信系统,即频移键控的数字调制通信系统。
频移键控是利用载波的频率变化来传递数字信息。
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。
因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。
实验八-数字频带系统—2FSK系统
西安邮电大学《通信原理》软件仿真实验报告实验名称:实验八数字频带系统——2FSK系统院系:通信与信息工程学院专业班级:通工学生姓名:学号:(班内序号)指导教师:报告日期:2013年5月15日实验八数字频带系统——2FSK系统●实验目的:1、掌握2FSK信号的波形和产生方法;2、掌握2FSK信号的频谱特点;3、掌握2FSK信号的解调方法;4*、掌握2FSK系统的抗噪声性能。
●仿真设计电路及系统参数设置:数字频带系统——2FSK系统仿真设计电路图1 数字频带系统——2FSK系统仿真设计电路时间参数:No. of Samples =8192;Sample Rate =10000Hz单极性不归零码Rate = 100Hz,Amp =1V,Offset = 1V;载波1Amp = 1V,Freq = 1000Hz;载波2Amp = 1V,Freq= 500Hz;功率谱密度选择(dBm/Hz 1 ohm);带通滤波器8、22参数为850Hz-1150Hz,带通滤波器9、23参数为350Hz-650Hz;低通滤波器14、15、26、27参数为0-250Hz;采样器采样频率为100Hz;比较器,Compare=“>=”,True output=2v,False output=0v;仿真波形及实验分析:1、采用键控法,记录2FSK信号的波形和功率谱密度;2、调整载频,观察并记录2FSK信号功率谱密度的变化;载波1Amp = 1V,Frep = 1000Hz;载波2Amp = 1V,Frep =900Hz;带通滤波器8、22参数改为850Hz-1150Hz,带通滤波器9、23参数为750Hz-1050Hz;图2-1 2FSK信号的功率谱密度分析:由上看出2FSK信号功率谱由连续谱和离散谱两部分构成,离散谱出现在f1和f2位置,连续谱由两个中心位于f1和 f2处的双边谱叠加而成。
连续谱的形状随着两个载频之差|f1-f2|的大小而变化,若|f1-f2|≤fs则出现单峰;若|f1-f2|>fs,出现双峰。
2FSK信号的解调与抗噪声性能分析
2FSK信号的解调与抗噪声性能分析课程设计课程设计名称:通信综合专业班级:学生姓名:学号:指导教师:课程设计时间: 2014年电子信息工程专业课程设计任务书学生姓名专业班级学号题目2FSK信号的解调与抗噪声性能分析课题性质仿真课题来源自拟课题指导教师同组姓名主要内容用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。
目录一.课程设计的目的和意义 (7)1.1基本要求 (7)1.2课程设计的目的及意义 (7)二,2FSK的基本原理和实现 (8)2.1 2FSK的产生 (8)2.2 2FSK滤波器的调解及抗噪声性能 (10)三.仿真设计步骤 (13)(1)首先要确定采样频率fs和两个载波f1,f2的值。
(13)四.仿真程序 (14)五.仿真结果及分析 (17)5.1、仿真波形图如图5-1至图5-5所示: (17)5.2、仿真结果的分析 (21)六、课程设计总结 (22)参考文献 (22)2FSK信号的解调与抗噪声性能分析一.课程设计的目的和意义1.1基本要求掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。
1.2课程设计的目的及意义本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。
通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。
要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。
能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。
对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。
2fsk相干解调法
2fsk相干解调法2FSK相干解调法是一种常用的调制解调技术,用于数字通信系统中将数字信号转换为模拟信号进行传输和接收。
本文将介绍2FSK相干解调法的原理、应用以及其在通信系统中的优缺点。
我们来了解一下2FSK相干解调法的原理。
2FSK相干解调法是通过将数字信号转换为两个不同频率的正弦波进行调制,接收端利用相干解调的方法将接收到的信号转换回数字信号。
在2FSK相干解调法中,两个频率分别代表两个二进制数字,例如0和1,通过改变频率来表示不同的数字。
在实际应用中,2FSK相干解调法广泛应用于无线通信系统和调频广播系统中。
无线通信系统中,2FSK相干解调法可以提供高效可靠的数据传输,适用于需要高速传输和抗干扰能力的场景。
调频广播系统中,2FSK相干解调法可以实现多个频道的切换,使得广播系统能够同时传输多个信号。
2FSK相干解调法的优点之一是具有较高的抗干扰能力。
由于数字信号转换为模拟信号进行传输,抗干扰能力较强,可以有效地抵抗信道噪声和干扰信号的影响。
同时,2FSK相干解调法还具有较高的传输速率,可以满足大容量数据传输的需求。
然而,2FSK相干解调法也存在一些缺点。
首先,由于在解调过程中需要进行相干解调,对于接收端的要求较高,需要较复杂的电路设计和算法实现。
其次,2FSK相干解调法对于频率误差较为敏感,如果发射端和接收端的频率不一致,会导致解调错误。
为了克服2FSK相干解调法的一些缺点,还有一种改进的方法,即非相干解调法。
非相干解调法不需要进行相干解调,可以简化接收端的设计,提高系统的鲁棒性。
但是非相干解调法的传输速率较低,抗干扰能力较弱。
2FSK相干解调法是一种常用的调制解调技术,具有较高的传输速率和抗干扰能力。
它在无线通信系统和调频广播系统中得到广泛应用。
尽管2FSK相干解调法存在一些缺点,但通过不断的改进和优化,可以进一步提高系统的性能和可靠性。
未来随着通信技术的发展,相信2FSK相干解调法将继续在各种应用场景中发挥重要作用。
2FSK调制与解调实验
广州大学学生实验报告“FSK判决电压调节”单稳1相加单稳2LPF 抽样判决调制输入解调输出电压判决BS输入单稳输出1单稳输出2过零检测滤波输出判压输出旋转电位器图14-32FSK 解调过零检测法原理框图2FSK 信号的过零点数随不同载频而异, 故检出过零点数可以得到关于频率的差异。
“单稳输出1”和“单稳输出2”两波形相加, 得“过零检测”信号, 即对应2FSK 已调信号全部的过零点有一个尖脉冲。
“过零检测”信号经二阶低通滤波器滤除高频分量, 得“滤波输出”信号。
“滤波输出”信号再经电压比较器判决, 得“判压输出”信号。
用来作比较的判决电压电平可通过“FSK判决电压调节”旋转电位器来调节。
最后“判压输出”信号经位同步抽样判决, 得“解调输出”信号。
过零检测判压输出判决电平解调输出NRZ码调制输入滤波输出单稳输出1单稳输出211100111000011001图14-4 2FSK 解调各测试点波形四、实验步骤1.将信号源模块、数字调制模块、数字解调模块小心地固定在主机箱中, 确保电源接触良好。
2、插上电源线, 打开主机箱右侧的交流开关, 再分别按下三个模块中的电源开关, 对应的发光二极管灯亮, 三个模块均开始工作。
3.信号源模块设置 (1)“码速率选择”拨码开关设置为8分频, 即拨为00000000 00001000。
24位“NRZ 码型选择”拨码开关任意设置。
(2)调节“384K 调幅”旋转电位器, 使“384K 正弦载波”输出幅度与“192K 正弦载波”输出幅度相等, 为3.6V 左右。
4.2FSK 调制(1)实验连线如下:信号源模块 数字调制模块NRZ ———————— NRZ 输入(数字键控法调制) 384K 正弦载波————载波1输入(数字键控法调制) 192K 正弦载波————载波2输入(数字键控法调制)(2)数字调制模块“键控调制类型选择”拨码开关拨成1010, 即选择2FSK 调制方式。
FSK调制解调_标准实验报告
实验十六 FSK调制解调实验【实验目的】加深理解FSK调制工作原理及电路组成。
加深理解利用锁相环解调FSK的原理和实现方法。
【实验环境】双踪示波器通信原理实验箱【实验原理】(一)FSK调制电路工作原理图1 FSK调制电原理框图数字调频又可称作移频键控(FSK),它是利用载频频率变化来传递数字信息。
这种调制解调方式容易实现,抗噪声和抗衰减性能较强,因此在中低速数据传输系统中得到了较为广泛的应用。
本实验电路中,载频频率经过本实验电路分频而得到的两个不同频率的载频信号,则为相位连续的数字调频信号。
图1为 FSK 调制器原理框图。
图2为 FSK 调制器电路图。
由图2可知,输入的基带信号由转换开关K904转接后分成两路,一路控制32KHz 的载频,另一路经倒相去控制 16KHz 的载频。
当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=32KHz ,当基带信号为"0"时,模拟开关1关闭,模拟开关2开通。
此时输出f2=16KHz ,于是可在输出端得到已调的FSK 信号。
电路中的两路载频(f1,f2)由内时钟信号发生器产生,经过开关K9Ol ,K902送入。
两路载频分别经射随、选频滤波、射随、再送至模拟开关U9Ol:A 与U90l:B(4066)。
(二) FSK 解调电路工作原理FSK 集成电路模拟锁相环解调器由于性能优越,价格低廉,体积小,所以得到了越来越广泛的应用。
FSK 集成电路模拟锁相环解调器的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK 的一个载频f1上,对应输出高电平,而对另一载频f2失锁,对应输出低电平,那么在锁相环路滤波器输出端就可以得到解调的基带信号序列。
FSK 锁相环解调器中的集成锁相环选用了MCl4046。
MCl4046集成电路内有两个数字式鉴相器(PDI 、PDII)、一个压控振荡器(VCO),还有输入放大电路等,环路低通滤波器接在集成电路的外部,引脚排列图见3所示,引脚功能说明见表1所示图3 MC14046引脚排列图稳定状态指示PC1OUT相位比较输入VCO输出禁止振荡C1a C1b VssV CC对Vss有齐纳二极管稳压(+6V)信号输入PC2OUT R2R1SFOUT VCO控制12345678910111213141516表1:引脚功能说明FSK解调器框图如图4所示,解调器电路图如图5所示。
2FSK信号的产生和解调
通信原理大作业(二)题目:2FSK信号的产生与解调班级:1302031学号: :万康一、设计任务按照2FSK 生成模型和解调模型分别产生2FSK 信号和高斯白噪声,经过信道传输进行解调,对调制、解调过程中的波形经行时域和频域观察,并经行误码率测量。
二、FSK 信号介绍1、2FSK 信号的产生2FSK 是利用数字基带信号控制在波的频率来传送信息。
例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。
故其表示式为{)cos()cos(21122)(θωθωϕ++=t A t A FSK t 时发送时发送"1""0"式中,假设码元的初始相位分别为1θ和2θ;112f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。
2FSK 信号的产生方法有两种:(1)模拟法,即用数字基带信号作为调制信号进行调频。
如图1-1(a )所示。
(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。
如图1-1(b )所示。
这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。
(a) (b)图2-1 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即)cos(])([)cos(])([)cos(·)()cos()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞-∞=∞-∞=t nT t g a t nT t g a t t g t t g t n s n n s n FSK其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。
24-1 2ASK相干解调系统的抗噪声性能
ri ( t )
sT ( t )
r (t )
ri ( t )
ni ( t )
2 cos ω c t
接收机
y( t )
接收机:发的 到底是0还是1?
Pe
均值为0,双边功率谱密度
4
2
《通信原理》 国防科技大学电子科学与工程学院 马东堂 _____________________________
f1 ( y ) =
⎧ ( y − a )2 ⎫ 1 exp⎨ − ⎬ 2σ 2 2π σ n n ⎩ ⎭
¾ 发送“0”时,y的一维概率密度函数
f0 ( y) =
⎧ y2 ⎫ 1 exp⎨ − 2 ⎬ 2π σ n ⎩ 2σ n ⎭
8
4
《通信原理》 国防科技大学电子科学与工程学院 马东堂 _____________________________
⇒
P (1)
* * 2 ⎧ ( y0 ⎧ ( y0 ) ⎫ − a )2 ⎫ P (0) exp ⎨ − exp ⎨ − ⎬= 2 2 ⎬ 2σ n ⎭ 2πσ n 2πσ n ⎩ ⎩ 2σ n ⎭
9 最佳判决门限
a σ2 P ( 0) y = + n ln 2 a P (1)
* 0
12
6
《通信原理》 国防科技大学电子科学与工程学院 马东堂 _____________________________
⎧[a + nc ( t )] cos ωc t − ns ( t ) sin ωc t 发“1”时 r (t ) = ⎨ 发“0”时 ⎩ nc ( t ) cos ωc t − ns ( t ) sin ωc t ¾ r(t)与相干载波2cosωct 相乘,再经低通滤波器滤除高
FSK调制及解调实验报告
实验四FSK调制及解调实验一、实验目的1、掌握用键控法产生FSK信号的方法。
2、掌握FSK非相干解调的原理。
二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图FSK调制及解调实验原理框图2、实验框图说明基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。
四、实验步骤实验项目一FSK调制概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。
本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。
将9号模块的S1拨为0000。
调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。
3、此时系统初始状态为:PN序列输出频率32KH。
4、实验操作及波形观测。
(1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。
(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。
实验项目二FSK解调概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。
实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。
观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK 解调原理。
2FSK信号的频谱分析及解调的实现
《数字信号处理》课程设计报告题目:2FSK信号的频谱分析及解调的实现专业: 信息与计算科学学号:组长:指导教师:成绩:2010年1月8日2FSK 信号的频谱分析及解调的实现1、课程设计目的及分组综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解。
1.2 课程设计分组1.2.1 组长:肖 兴组员:汪 洋 汤致鹏 匡亚兵1.2.2 分工情况肖 兴:课程设计全过程的监督及对各组员的协助汪 洋: 2FSK 信号的分析汤致鹏: 设计基本原理和系统框图匡亚兵:各单元电路设计和系统仿真2、课程设计基本要求(1)学会MATLAB 的使用,掌握MATLAB 的程序设计方法。
(2)掌握数字信号处理的基本概念、基本理论和基本方法。
(3)掌握功率谱的计算;(4)掌握MATLAB 设计FIR 和IIR 数字滤波器的方法。
(5)学会用MATLAB 对信号进行分析和处理。
3、课程设计内容以调制信号为分析对象,对信号进行频谱分析;设计数字滤波器,对调制信号进行频域滤波,比较原信号与滤波后信号的频谱。
4、课程设计实现步骤1、产生2FSK 信号,t w t S t w t S t e c c21c o s )(c o s )()(+=,其中)()(b nn nT t g a t S -=∑为基带信号,测试信号:n a ={11010010};2、画出2FSK 信号的功率谱;3、解调端先用带通滤波器将t w t S c 1cos )(和t w t S c 2cos )(分开,再分别进行相干解调,设计低通滤波器,滤除高频分量,画出解调后信号的时域波形和频谱。
一、2FSK 信号的分析2FSK 信号采用同步检测法性能分析模型如图5-14所示。
BPF 1LPF BPF 2LPF 解调器抽 样判决器定时脉冲)(2t x )(t s '中心频率1f 2f t 2cos 2ω)(2t y )(1t y )(1t z )(2t z 信道发送端)(t s T )(t n )(t y i t 1cos 2ω)(1t x ⨯⨯图5-14 2FSK 信号采用同步检测法性能分析模型假定信道噪声)(t n 为加性高斯白噪声,其均值为0,方差为2n σ;在一个码元持续时间(0,b T )内,发送端产生的2FSK 信号可表示为⎩⎨⎧==”,发“”,发“0cos 1cos )()(212t A t A t s t s FSK T ωω (5-38)则,接收机输入端合成波形为()()⎩⎨⎧++=”,发“”,发“0cos 1cos )(21t n t a t n t a t y i ωω(5-39)其中,为简明起见,认为发送信号经信道传输后除有固定衰耗外,未受到畸变,信号幅度:a A →。
2fsk调制解调实验报告
2fsk调制解调实验报告FSK(ASK)调制解调实验报告实验6FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与ASK.FSK.PSK.QPSK 调制模块,位号:A,B 位 2.FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号:G 位4.100M 双踪示波器三、实验内容:观测m序列(1,0,0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一)FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK,OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习ASK,FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过JCLK 和JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成ASK 或FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
2FSK信号非相干检测法解调抗干扰性能仿真分析
扰, 只要 两 者 的 幅度 差 较 大 , 波 : 1就 有 较 大 信 号 输 出 , 滤 器 接 收 机 将 正 确 接 收 。而 当 ≈ U , 时 多数 情 况 滤 波 器 1 有
2 对 F K 信 号 干 扰 的 信 干 比 一 码 率 关 S 误
系 ] 析 分
二进制 移频键 控信号 ( F K) 由两个 不 同频率 的载 2S 是
Cls a sNumb TM 1 er 5
1 引 言
随着 通 信 的不 断 发 展 , 字 通 信 已逐 渐 取 代 模 拟 通 信 , 数
成 为通信方式 的主体 。因此 , 在通信对抗试 验中 , 为了客观 评估被试装备 的通信对抗能力 , 尤其是通信 干扰能力 , 误码 率 已成为通信干扰效果评估重要基准参数 。而在 实际测量 中, 信干 比的测算相对较为容易 , 因此 , 行信干 比 误 码率 进
王烟青 袁仕继 张英杰 邱 丙 益
44 5 ) 5 60 ( 中国人民解放军 6 8 8部队 38 摘 要 济源
分析 了 F K信号的产生原理及非相干检测法解调 原理 , S 针对通 信对抗试验 中常用 的 2 S F K信号 , 运用仿 真软件 S se iw ytmve 通信对抗 ;2 S F K;非相干解调;抗干扰 ; 仿真
干 扰 为
(完整word版)2FSK通信原理实验报告
实验课程名称:__通信原理_____________掌握简单实用电路的分析方法和工程设计方法;了解与课程有关的电子电路以及元器件工程技术规范,能按综合实验设计任务书的技术要求,编写设计说明,能正确地反映设计和实验成果,能正确的绘制电路图。
三、FSK调制与解调系统整体方案设计3。
1 调制设计方案设信息源发出的是由二进制符号0,1 组成的序列, 且假定0 符号出现的概率为p,1 出现的概率为1— p,它们彼此独立,那么,2FSK 信号便是1 符号对应于载频ω1,而0 对应于载频ω2( 与ω1不同的另一个载频) 的已调波形,而且ω1、ω2的改变是瞬间就能完成的。
容易想到,2FSK 可以利用一个矩形脉冲序列对一个载波进行调频,使其能够输出2 个不同频率的码元。
2FSK信号的产生,可以采用模拟调频法来实现,也可以采用数字键控的方法来实现。
图3-1是数字键控法产生2FSK信号的原理图:图3-1数字键控法实现2FSK信号的原理图图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。
由图1-1可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0"时,门1断开,门2接通,输出频率为f2。
在一个码元Tb期间输出ω1或ω2两个载波之一.由于两个频率的振荡器是独立的,故输出的2FSK信号:在码元“0”“1”转换时刻,相邻码元的相位有可能是不连续的.这种方法的特点是转换速率快,波形好,频率稳定度高,电路简单,得到广泛应用。
对应图3-1(a)和(b),2FSK调制器各点的时间波形如图1-2所示,图中波形g可以看成是两个不同频率载波的2ASK 信号波形e 和波形f 的叠加。
可见,2FSK 信号由两个2ASK 信号相加构成。
其信号的时域表达式:()()()()()∑∑+-++-=kbkkbkFSK t kT t g a t kT t g a t S 2211cos cos ϕωϕω图3—2 2FSK 调制器各点的时间波形本次综合设计实验调制部分正是采用此方法设计的。
2FSK的调制和解调(键控调制 相干解调)
用SYSTEMVIEW实现2FSK键控调制与相干解调实验报告01091036 贺冰涛01091037 罗名川用SystemView仿真实现2FSK键控的调制1、实验目的:(1)了解2FSK系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2DPSK系统中的基带信号、载波及已调信号;(3)熟悉系统中信号功率谱的特点。
2、实验内容:以PN码作为系统输入信号,码速率Rb=20kbit/s。
(1)采用键控法实现2FSK的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2FSK等信号的波形。
(2)获取主要信号的功率谱密度。
3、实验原理:数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
2FSK键控法利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。
键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。
2FSK信号的产生方法及波形示例如图所示。
图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。
abcde 2FSK信号ttttt二进制移频键控信号的时间波形根据以上2FSK 信号的产生原理,已调信号的数字表达式可以表示为(5-1)其中,s(t)为单极性非归零矩形脉冲序列(5-2)(5-3)g(t)是持续时间为、高度为1的门函数;为对s(t)逐码元取反而形成的脉冲序列,即(5-4)是的反码,即若 =0,则 =1;若=l,则 =0,于是(5-5)分别是第n个信号码元的初相位。
一般说来,键控法得到的与序号n无关,反映在上,仅表现出当与改变时其相位是不连续的;而用模拟调频法时,由于与改变时的相位是连续的,故不仅与第n 个信号码元有关,而且之间也应保持一定的关系。
由式(5-1)可以看出,一个2FSK信号可视为两路2ASK信号的合成,其中一路以s(t)为基带信号、为载频,另一路以为基带信号、为载频。
FSK信号调制与解调技术
1 引言1.1 研究的背景与意义现代社会中人们对于通信设备的使用要求越来越高,随着无线通信技术的不断发展,人们所要处理的各种信息量呈爆炸式地增长。
传统的通信信号处理是基于冯·诺依曼计算机的串行处理方式,利用传统的冯·诺依曼式计算机来进行海量信息处理的话,以现有的技术,是不可能在短时间内完成的。
而具于并行结构的信息处理方式为提高信息的处理速度提供了一个新的解决思路。
随着人们对于通信的要求不断提高,应用领域的不断拓展,通信带宽显得越来越紧张。
人们想了很多方法,来使有限的带宽能尽可能的携带更多的信息。
但这样做会出现一个问题,即:信号调制阶数的增加可以提升传送时所携带的信息量,但在解调时其误码率也相应显著地提高。
信息量不断增加的结果可能是,解调器很难去解调出本身所传递的信息。
如果在提高信息携带量的同时,能够找到一种合适的解调方式,将解调的误码率控制在允许的范围内,同时又不需要恢复原始载波信号,从而降低解调系统的复杂程度,那将是很好的。
通信技术在不断地发展,在现今的无线、有线信道中,有很多信号在同时进行着传递,相互之间都会有干扰,而强干扰信号也可能来自于其它媒介。
在军事领域,抗干扰技术的研究就更为必要。
我们需要通信设备在强干扰地环境下进行正常的通信工作。
目前常用的通信调制方法有很多种,如FSK、QPSK、QAM等。
在实际的通信工程中,不同的调制制式由于自身的特点而应用于不同场合,而通信中不同的调制、解调制式就构成了不同的系统。
如果按照常规的方法,每产生一种信号就需要一个硬件电路,甚至一个模块,那么要使一部发射机产生几种、几十种不同制式的通信信号,其电路就会异常复杂,体积重量都会很大。
而在接收机部分,情况也同样是如此,即对某种特定的调制信号,必须有一个特定的对应模块电路来对该信号进行解调工作。
如果发射端所发射的信号调制方式发生改变,这一解调模块就无能为力了。
实际上,随着通信技术的进步和发展,现代社会对于通信技术的要求越来越高,比如要求通信系统具有最低的成本、最高的效率,以及跨平台工作的特性,如PDA、电脑、手机使用时所要求的通用性、互连性等。
24-3 2FSK系统的抗噪声性能
Q ( z, 0 ) = ∫ tI 0 ( zt )e − ( t
∞ 0
2
+ z2 )/ 2
−z / 2 = e−r 2 dt = 1 ⇒ P ( 0 / 1) = 2 e 2
2
1
1
¾ 同理可求得发送“0”时判为“1”的错误概率
P (1 / 0) = P (V1 > V2 ) = 1 −r 2 e 2
1
⎛ r⎞
干解调时2FSK系统的平均误码率
Pe = ⎛ 1 erfc ⎜ ⎜ 2 ⎝ r 2 ⎞ ⎟ ⎟ ⎠
⇒ Pe ≈
r − 1 e 2(大信噪比下) 2π r
9
2FSK系统的抗噪声性能
二、包络检波法的系统抗噪声性能
分析模型
V1 ( t )
ω1
e 2 FSK ( t )
ω2
V2 ( t )
10
率ω2的载波,则在一个码元间隔Ts内,发送端产生的2FSK 信号
⎧ u ( t ) 发送“1”时 sT ( t ) = ⎨ 1T ⎩ u0T ( t ) 发送“0”时
⎧ A cos ω1t 0 < t < TS u1T ( t ) = ⎨ 0 其它t ⎩
⎧ A cos ω 2 t 0 < t < TS u0T ( t ) = ⎨ 0 其它t ⎩
4
2
《通信原理》 国防科技大学电子科学与工程学院 马东堂 _____________________________
2FSK系统的抗噪声性能
¾ 经过信道传输后,接收端的输入波形
⎧ Ku ( t ) + ni ( t ) 发送“1”时 ri ( t ) = ⎨ 1T ⎩ Ku0T ( t ) + ni ( t ) 发送“0”时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理实验报告学院:信息科学与工程学院专电子信息工程专业课程设计任务书目录一.课程设计的目的和意义 (3)1.1基本要求 (3)1.2课程设计的目的及意义 (4)二,2FSK的基本原理和实现 (4)2.1 2FSK的产生 (5)2.2 2FSK滤波器的调解及抗噪声性能 (7)三.仿真设计步骤 (9)(1)首先要确定采样频率fs和两个载波f1,f2的值。
(9)四.仿真程序 (10)五.仿真结果及分析 (13)5.1、仿真波形图如图5-1至图5-5所示: (13)5.2、仿真结果的分析 (18)六、课程设计总结 (19)参考文献 (19)2FSK信号的解调与抗噪声性能分析一.课程设计的目的和意义1.1基本要求掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。
1.2课程设计的目的及意义本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。
通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。
要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。
能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。
对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。
在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。
可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。
也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。
本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。
2FSK数字通信系统,即频移键控的数字调制通信系统。
频移键控是利用载波的频率变化来传递数字信息。
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。
因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。
可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。
二,2FSK的基本原理和实现二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。
由于二进制数字信息只有两个不同的符号,所以调制后的已调信号有两个不同的频率f1和f2,f1对应数字信息“1”,f2对应数字信息“0”。
二进制数字信息及已调载波如图3-1所示。
图3-1 2FSK信号2.1 2FSK的产生在2FSK信号中,当载波频率发生变化时,载波的相位一般来说是不连续的,这种信号称为不连续2FSK信号。
相位不连续的2FSK通常用频率选择法产生,如图3-2所示:图3-2 2FSK信号调制器两个独立的振荡器作为两个频率发生器,他们受控于输入的二进制信号。
二进制信号通过两个与门电路,控制其中的一个载波通过。
调制器各点波形如图3-3所示:图3-3 2FSK调制器各点波形由图3-3可知,波形g是波形e和f的叠加。
所以,二进制频率调制信号2FSK可以看成是两个载波频率分别为f1和f2的2ASK信号的和。
由于“1”、“0”统计独立,因此,2FSK信号功率谱密度等于这两个2ASK信号功率谱密度之和,即(3-1)2FSK信号的功率谱如图3-4所示:图3-4 2FSK信号的功率谱由图3-4看出,2FSK信号的功率谱既有连续谱又有离散谱,离散谱位于两个载波频率f1和f2处,连续谱分布在f1和f2附近,若取功率谱第一个零点以的成分计算带宽,显然2FSK信号的带宽为(3-2)为了节约频带,同时也能区分f1和f2,通常取|f1-f2|=2fs,因此2FSK信号的带宽为(3-3)当|f1-f2|=fs时,图3-4中2FSK的功率谱由双峰变成单峰,此时带宽为(3-4)对于功率谱是单峰的2FSK信号,可采用动态滤波器来解调。
此处介绍功率谱为双峰的2FSK信号的解调。
2.2 2FSK滤波器的调解及抗噪声性能2FSK信号的解调也有相干解调和包络解调两种。
由于2FSK信号可看做是两个2ASK信号之和,所以2FSK解调器由两个并联的2ASK解调器组成。
图3-5为2FSK相干和包络解调。
图3-5 2FSK信号调解器相干2FSK抗噪声性能的分析方法和相干2ASK很相似。
现将收到的2FSK信号表示为(3-5)波频率为f1,信号能通过上支路的带通滤波器。
上支路带通滤波器的输出是信号和窄带噪声ni1(t)的叠加(噪声中的下标1表示上支路窄带高斯噪声),即(3-6)此信号与同步载波cos2πf1t相乘,再经低通滤波器滤除其中的高频成分,送给取样判决器的信号为(3-7)上式中未计入系数1/2。
与此同时,频率为f1的2FSK信号不能通过下支路中的带通滤波器,因为下支路中的带通滤波器的中心频率为f2,所以下支路带通滤波器的输出只有窄带高斯噪声,即(3-8)此噪声与同步载波cos2πf2t相乘,再经低通滤波器滤波后输出为(3-9)上式中未计入系数1/2。
定义(3-10)取样判决器对x(t)取样,取样值为(3-11)其中,nI1、 nI2都是均值为0、方差为的高斯随机变量,所以x是均值为a、方差为的高斯随机变量,x的概率密度函数为(3-12)概率密度曲线如图3-6所示:图3-6 判决值的函数示意图判决器对x进行判决,当x>0时,判发送信息为“1”,此判决是正确的;当x<0时,判决发送信息为“0”,显然此判决是错误的。
由此可见,x<0的概率就是发“1”错判成“0”的概率,即(3-13)当发送数字信号“0”时,下支路有信号,上支路没有信号。
用与上面分析完全相同的方法,可得到发“0” 码时错判成“1”码的概率P(1/0),容易发现,此概率与上式表示的P(0/1)相同,所以解调器的平均误码率为P e=P(1)P(0/1)+P(0)P(1/0)=P(0/1)[P(1)+P(0)]=P(0/1) (3-14)所以 (3-15)式中注意,式中无需“1”、“0”等概这一条件。
由相关调制解调的原理图输入的信号为:S(t)=[∑аn*g(t-nTs)]cosω1t+[ān*g(t-nTs)]cosω1t(ān是аn的反码)来设计仿真三.仿真设计步骤(1)首先要确定采样频率fs和两个载波f1,f2的值。
(2)先产生一个随机的信号,写出输入已调信号的表达式是s(t)。
由于s(t)中有反码的存在,则需要将信号先反转后在原信号和反转信号中进行抽样。
写出已调信号的表达式s(t)。
(3)在2FSK的解调过程中,根据解调的原理图,信号先通过带通滤波器,设置带通滤波器的参数,后用一维数字滤波函数filter对信号s(t)的数据进行滤波处理。
由于已调信号中有两个不同的载波,则经过两个不同频率的带通滤波器后输出两个不同的波形H1,H2。
(4)经过带通滤波器后的2FSK信号再分别经过相乘器,输出得到相乘后的两个不同的2FSK波形sw1,sw2。
(5)经过相乘器输出的波形再通过低通滤波器,设置低通滤波器的参数,用一维数字滤波函数filter对信号进行新的一轮的滤波处理。
输出经过低通滤波器后的两个波形st1,st2。
(6)将信号st1和st2同时经过抽样判决器,其抽样判决器输出的波形为最后的输出波形st。
对抽样判决器经定义一个时间变量长度i,当st1(i)>=st2(i)时,则st=1,否则st=0。
四.仿真程序fs=2000; %采样频率dt=1/fs; %采样间隔f1=50;f2=150; %两个载波信号的频率a=round(rand(1,10)); %产生原始数字随机信号g1=a;g2=~a; %将原始数字信号反转与g1反向g11=(ones(1,2000))'*g1; %进行抽样g1a=g11(:)'; %将数字序列变成列向量g21=(ones(1,2000))'*g2;g2a=g21(:)';t=0:dt:10-dt; %在0~10-dt之间取值,取值间隔为dtt1=length(t);fsk1=g1a.*cos(2*pi*f1.*t); %得到频率为f1的fsk1已调信号fsk2=g2a.*cos(2*pi*f2.*t); %得到频率为f2的fsk2已调信号fsk=fsk1+fsk2; %已产生2FSK信号figure(1)no=0.01*randn(1,t1); %产生的随机噪声sn=fsk+no;subplot(3,1,1);plot(t,no); %随机噪声的波形title('噪声波形')ylabel('幅度')subplot(3,1,2);plot(t,fsk); %2FSK信号的波形title('2fsk信号波形')ylabel('幅度')subplot(3,1,3);plot(t,sn);title('经过信道后的2fsk波形')ylabel('幅度')xlabel('t')figure(2) %fsk的解调b1=fir1(101,[48/1000 52/1000]);b2=fir1(101,[145/1000 155/1000]); %设置带通滤波器的参数H1=filter(b1,1,sn);H2=filter(b2,1,sn); %经过带通滤波器后的信号subplot(2,1,1);plot(t,H1); %经过带通滤波器1的波形title('经过带通滤波器f1后的波形')ylabel('幅度')subplot(2,1,2);plot(t,H2); %经过带通滤波器2的波形title('经过带通滤波器f2后的波形')ylabel('幅度')xlabel('t')sw1=H1.*H1; %经过相乘器1的信号sw2=H2.*H2; %经过相乘器2的信号figure(3)subplot(2,1,1);plot(t,sw1);title('经过相乘器h1后的波形')subplot(2,1,2);plot(t,sw2);title('经过相乘器h2后的波形')ylabel('幅度')xlabel('t')bn=fir1(101,[2/1000 52/1000]); %设置低通滤波器的参数figure(4)st1=filter(bn,1,sw1);st2=filter(bn,1,sw2);subplot(2,1,1);plot(t,st1); %经过低通滤波器1的波形title('经过低通滤波器sw1后的波形')ylabel('幅度')subplot(2,1,2);plot(t,st2); %经过低通滤波器1的波形title('经过低通滤波器sw2后的波形')ylabel('幅度')xlabel('t')for i=1:length(t)if(st1(i)>=st2(i))st(i)=1;else st(i)=0;endendfigure(5)subplot(2,1,1);plot(t,st); %经过抽样判决器后解调出的波形title('经过抽样判决器后解调出的波形')subplot(2,1,2);plot(t,g1a); %原始的数字序列波形title('原始数字序列的波形')ylabel('幅度');xlabel('t');五.仿真结果及分析5.1、仿真波形图如图5-1至图5-5所示:图5-1 噪声波形、2FSK信号波形和经过信道后的2FSK波形图图5-2 经过带通滤波器的波形图图5-3 经过相乘器的波形图图5-4 经过低通滤波器后的波形图图5-5 经过相干解调后与原始数字信号的波形的对比图5.2、仿真结果的分析2FSK信号的调制解调原理是通过带通滤波器将2FSK信号分解为上下两路2FSK信号后分别解调,然后进行抽样判决输出信号。