高效液相流动相的选择

合集下载

高效液相流动相的选择

高效液相流动相的选择

高效液相色谱流动相选择流动相1.流动相的性质要求一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征;流动相选择1:由强到弱:一般先用90%的乙腈或甲醇/水或缓冲溶液进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂乙腈或甲醇的比例;2:三倍规则:每减少10%的有机溶剂甲醇或乙腈的量,保留因子约增加3倍,此为三倍规则;这是一个聪明而又省力的办法;调整的过程中,注意观察各个峰的分离情况; 3:粗调转微调:当分离达到一定程度,应将有机溶剂10%的改变量调整为5%,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变;选择流动相时应考虑以下几个方面:①流动相应不改变填料的任何性质;低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质;碱性流动相不能用于硅胶柱系统;酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统;②纯度;色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时;③必须与检测器匹配;使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小;当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度;④粘度要低应<2cp;高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长;最好选择沸点在100℃以下的流动相;⑤对样品的溶解度要适宜;如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化;⑥样品易于回收;应选用挥发性溶剂;流动相的pH值采用反相色谱法分离弱酸3≤pKa≤7或弱碱7≤pKa≤8样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术;对于弱酸,流动相的pH值越小,组分的k值越大,当pH 值远远小于弱酸的pKa值时,弱酸主要以分子形式存在;对弱碱,情况相反;分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液;分析弱碱样品时,通常在流动相中加入少量弱碱,常用50mmol/L磷酸盐缓冲液和30mmol/L三乙胺溶液;注:流动相中加入有机胺可以减弱碱性溶质与残余硅醇基的强相互作用,减轻或消除峰拖尾现象;所以在这种情况下有机胺如三乙胺又称为减尾剂或除尾剂;三乙胺triethylamine 氨分子中的氢原子被3个乙基取代的产物;分子式CH3CH23N;易挥发的无色液体,有氨的气味;熔点-114.7℃,沸点89.3℃,相对密度20/4℃;溶于水和乙醇、乙醚等有机溶剂;三乙胺有碱性,与无机酸能生成易溶于水的盐类;可由N,N- 二乙基乙酰氨与氢化铝锂反应制取,也可用乙醇胺进行气相烷基化反应合成;用于制橡胶硫化促进剂、润湿剂和杀菌剂等,也可用作溶剂和用于合成四级铵化合物;如何选择缓冲液PH值在选择缓冲液PH值之前,应先了解被分析物的Pka,高于或低于Pka两个PH 值单位的,有助于获得好的、尖锐的峰,从HH公式:PH=Pka+logA-/A得知,溶液PH值高于或低于Pka两个单位,化合物中99%以一种形式存在,而一种形式存在的化合物才能获得好的尖锐的峰;显示的是它的离子形式和中性化合物的转变,苯甲酸的Pka等于,理论上由HH公示得知,当溶液PH值等于时,99%的苯甲酸以中性化合物存在,PH值等于时99%的苯甲酸以离子形式存在,所以当缓冲液PH 值等于时,中性化合物以羧酸形式保留于反相柱,表1列出了一般缓冲液和他们的缓冲范围;从表1知磷酸盐和柠檬酸盐缓冲液能用于PH值等于;当化合物只有氨基时,缓冲体系的选择十分简单,大多数氨基化合物在PH值小于9时都被质子化,所以所有PH值在7或更低的溶液均适合应用,你也许会问水的PH值大约是7,为什么还用缓冲盐,因为缓冲盐有助于增加方法的可靠性,以及色谱峰的尖锐性,PH值的降低有助于氨基化合物保留的减弱,减小化合物与硅胶表面硅羟基的作用,而使峰更尖锐,从表 1 可值,任何缓冲液均可应用于氨基化合物的分析,但我们认为PH值等于3的磷酸钾盐最适合用于氨基化合物的分析;在上面两个例子中,PH=3的磷酸钾盐都能获得良好的应用,在一般情况下,它是含羧基和氨基化合物分析中最好的缓冲液,并且我们认为在氨基化合物分析中钾盐比钠盐更好;流动相的脱气HPLC 所用流动相必须预先脱气,否则容易在系统内逸出气泡,影响泵的工作;气泡还会影响柱的分离效率,影响检测器的灵敏度、基线稳定性,甚至使无法检测;噪声增大,基线不稳,突然跳动;此外,溶解在流动相中的氧还可能与样品、流动相甚至固定相如烷基胺反应;溶解气体还会引起溶剂pH的变化,对分离或分析结果带来误差;溶解氧能与某些溶剂如甲醇、四氢呋喃形成有紫外吸收的络合物,此络合物会提高背景吸收特别是在260nm以下,并导致检测灵敏度的轻微降低,但更重要的是,会在梯度淋洗时造成基线漂移或形成鬼峰假峰;在荧光检测中,溶解氧在一定条件下还会引起淬灭现象,特别是对芳香烃、脂肪醛、酮等;在某些情况下,荧光响应可降低达95%;在电化学检测中特别是还原电化学法,氧的影响更大;除去流动相中的溶解氧将大大提高UV检测器的性能,也将改善在一些荧光检测应用中的灵敏度;常用的脱气方法有:加热煮沸、抽真空、超声、吹氦等;对混合溶剂,若采用抽气或煮沸法,则需要考虑低沸点溶剂挥发造成的组成变化;超声脱气比较好,10~20分钟的超声处理对许多有机溶剂或有机溶剂/水混合液的脱气是足够了一般500ml溶液需超声20~30min方可,此法不影响溶剂组成;超声时应注意避免溶剂瓶与超声槽底部或壁接触,以免玻璃瓶破裂,容器内液面不要高出水面太多;离线系统外脱气法不能维持溶剂的脱气状态,在你停止脱气后,气体立即开始回到溶剂中;在1~4小时内,溶剂又将被环境气体所饱和;在线系统内脱气法无此缺点;最常用的在线脱气法为鼓泡,即在色谱操作前和进行时,将惰性气体喷入溶剂中;严格来说,此方法不能将溶剂脱气,它只是用一种低溶解度的惰性气体通常是氦将空气替换出来;此外还有在线脱气机;一般说来有机溶剂中的气体易脱除,而水溶液中的气体较顽固;在溶液中吹氦是相当有效的脱气方法,这种连续脱气法在电化学检测时经常使用;但氦气昂贵,难于普及;流动相的滤过所有溶剂使用前都必须经µm或µm滤过,以除去杂质微粒,色谱纯试剂也不例外除非在标签上标明“已滤过”;用滤膜过滤时,特别要注意分清有机相脂溶性滤膜和水相水溶性滤膜;有机相滤膜一般用于过滤有机溶剂,过滤水溶液时流速低或滤不动;水相滤膜只能用于过滤水溶液,严禁用于有机溶剂,否则滤膜会被溶解溶有滤膜的溶剂不得用于HPLC;对于混合流动相,可在混合前分别滤过,如需混合后滤过,首选有机相滤膜;现在已有混合型滤膜出售;流动相的贮存流动相一般贮存于玻璃、聚四氟乙烯或不锈钢容器内,不能贮存在塑料容器中;因许多有机溶剂如甲醇、乙酸等可浸出塑料表面的增塑剂,导致溶剂受污染;这种被污染的溶剂如用于HPLC系统,可能造成柱效降低;贮存容器一定要盖严,防止溶剂挥发引起组成变化,也防止氧和二氧化碳溶入流动相;磷酸盐、乙酸盐缓冲液很易长霉,应尽量新鲜配制使用,不要贮存;如确需贮存,可在冰箱内冷藏,并在3天内使用,用前应重新滤过;容器应定期清洗,特别是盛水、缓冲液和混合溶液的瓶子,以除去底部的杂质沉淀和可能生长的微生物;因甲醇有防腐作用,所以盛甲醇的瓶子无此现象;卤代有机溶剂应特别注意的问题卤代溶剂可能含有微量的酸性杂质,能与HPLC系统中的不锈钢反应;卤代溶剂与水的混合物比较容易分解,不能存放太久;卤代溶剂如CCl4、CHCl3 等与各种醚类如乙醚、二异丙醚、四氢呋喃等混合后,可能会反应生成一些对不锈钢有较大腐蚀性的产物,这种混合流动相应尽量不采用,或新鲜配制;此外,卤代溶剂如CH2Cl2与一些反应性有机溶剂如乙腈混合静置时,还会产生结晶;总之,卤代溶剂最好新鲜配制使用;如果是和干燥的饱和烷烃混合,则不会产生类似问题;。

简述高效液相色谱法中流动相的要求

简述高效液相色谱法中流动相的要求

简述高效液相色谱法中流动相的要求高效液相色谱法(High-performance liquid chromatography,HPLC)是一种用于分离和分析化学、生物和制药样品的色谱技术。

在高效液相色谱过程中,流动相的选择和性能对分析的准确性和分离效果有着重要的影响。

下面将详细介绍高效液相色谱法中流动相的要求。

1.基础流动相特性:流动相应具有一定的极性和溶解性能。

常用的流动相包括水和有机溶剂,如甲醇、乙醇和乙腈等。

流动相的选择应考虑到待分离组分的性质和分析目的,要保证样品能够溶解并很好的分离。

常用的流动相配比为水/有机溶剂(如乙腈)的比例,比如常见的70:30、50:50等。

2.pH值调节:根据待分离物和色谱柱的性质,适当调节流动相的pH值可以改变待分离物的电离状态,从而影响它们在色谱柱上的分配行为。

比如,对于具有酸性基团的分析物,可以通过酸或碱的加入来调节流动相的pH值,以影响它们与色谱固定相之间的相互作用。

3.离子强度调节:有些样品中可能存在电解质,其离子强度会对分离产生影响。

在这种情况下,可以通过添加相应的盐来调节流动相的离子强度,以改变分析物与色谱固定相的相互作用。

常用的盐有甲酸铵、硫酸铵、三氟乙酸等。

4.流速控制:流动相的流速也对色谱分离的效果有着重要的影响。

流速过快可能导致分离不充分,流速过慢则会增加分析时间。

流速的选择需根据待分离物的性质、色谱柱的尺寸和色谱仪的性能等因素综合考虑。

5.除气和过滤:流动相中的气泡和杂质会影响液相的流动性和检测信号的稳定性。

因此,在使用前应对流动相进行除气处理,以减小气泡对色谱分离的干扰。

同时,对流动相进行过滤处理,可以去除其中的固体颗粒和微生物等。

通常使用0.45μm的滤膜进行过滤。

6.流动相稳定性:流动相应具有良好的稳定性,以保证分析结果的准确性和重复性。

一般来说,流动相中的溶液成分要充分溶解,不发生相分离和析出现象。

所以,流动相的配制要求严格,要遵循相应的配方和混合方法,并在使用前进行充分的搅拌和均匀。

简述高效液相色谱法中流动相的要求

简述高效液相色谱法中流动相的要求

简述高效液相色谱法中流动相的要求
高效液相色谱法是一种分离和分析化学样品的优秀技术。

在高效液相
色谱法中,流动相的选择是非常重要的,因为它不仅影响色谱分离的效率,也决定了检测灵敏度和分离度。

在高效液相色谱法中,流动相的要求主要包括以下几个方面:
1.溶解度:流动相应当是对分离物有较好的溶解度。

如果流动相的溶
解度不够好,则可能会导致某些物质无法被很好地分离出来。

此外,流动
相的溶解度过高则可能导致某些物质在固定相上直接沉淀或附着。

2.稳定性:流动相应当在一定时间内保持稳定,以便对样本进行分离
和分析。

如果流动相的稳定性不够好,则可能会出现峰形变、噪声等问题。

3.精度:流动相应当具备一定的精度,以便保证样品分离和检测结果
的准确性和可重复性。

如果流动相的精度不够好,则可能导致结果不一致
或无法进行复现性研究。

4.兼容性:流动相应当与固定相兼容,以便保证正确的分离。

如果流
动相与固定相不兼容,则可能导致某些固定相材料受损,影响分离质量。

5.选择性:流动相应当具备一定的选择性,以便对不同化学物质进行
分离。

选择不同的流动相可以实现对物质的不同选择性和分离效果。

液相色谱流动相的选择依据及使用注意事项

液相色谱流动相的选择依据及使用注意事项

液相色谱(Liquid Chromatography, LC)是一种常用的分离和分析方法,它使用液体作为流动相,在不同组分之间进行分配和分离。

在液相色谱分析中,流动相是至关重要的,它直接影响分离效果、分析速度和结果准确度。

合理选择液相色谱流动相并注意使用时的一些问题是非常重要的。

一、液相色谱流动相的选择依据1. 样品的性质液相色谱中流动相的选择应考虑样品的性质,包括溶解性、稳定性、挥发性等。

对于极性样品,常使用极性溶剂作为流动相;对于不容易溶解的非极性样品,可以选择非极性溶剂作为流动相。

2. 柱子的选择不同的柱子需要选择不同的流动相,以保证分离效果。

对于反相色谱柱,一般使用的是乙腈或甲醇和水的混合物作为流动相;对于正相色谱柱,则需要选用不同的极性溶剂作为流动相。

3. 分离效果流动相的选择应考虑到所需的分离效果。

对于需要高分离效果的分析,流动相的组成和流速需要进行精细调控;对于一些不需要高分离效果的分析,可以适当简化流动相的组成,提高分析效率。

4. 色谱柱的保护对于某些对色谱柱有损害的物质,可以考虑在流动相中添加一些保护剂,以延长柱子的使用寿命。

二、使用注意事项1. 流动相的配制在使用液相色谱分析时,需要注意流动相的配制。

流动相的配制应准确、稳定,避免在实验中因流动相的质量问题导致结果失真。

2. 流速的控制流速的控制对于分析结果的准确性和重现性有着重要影响。

在选择流速时,需要根据分离效果的要求以及柱子的性能来进行合理的设定。

3. 流动相的贮存流动相在储存和使用过程中需要注意避免受到污染和氧化。

定期更换和清洗流动相的储存容器,保持流动相的纯净度和稳定性。

4. 流动相的回收在实验结束后,应注意对流动相进行回收和处理,避免对环境造成污染。

总结回顾:液相色谱分析中流动相的选择和使用是至关重要的。

合理选择流动相,可以提高分析的准确性和重现性;注意使用时的一些问题,可以延长柱子的使用寿命并保护环境。

需要根据样品的性质、柱子的选择以及分离效果来综合考虑流动相的配制和使用。

高效液相色谱流动相

高效液相色谱流动相

高效液相色谱流动相高效液相色谱的流动相(Mobile Phase)液相色谱流动相通常是各种低沸点溶剂和水溶液。

与气相色谱相比较,液相色谱流动相不仅可选择范围比较大,而且它是影响分离的一个非常重要的可调节因素。

在实际工作中,流动相的选择和优化是确定色谱分析的主要工作。

一、流动相溶剂的选择高效液相色谱中所选用的流动相溶剂必须能保证该色谱系统的分离过程可重复进行:溶剂的纯度和化学特性必须满足色谱过程的稳定性和重复性的要求;溶剂应当不干扰检测器的工作;在制备分离中, 溶剂应当易于除去, 不干扰对分离组分的回收。

从实用角度考虑,溶剂应当价格低廉,容易购得,使用安全,纯度要高。

对液相色谱溶剂的要求: 1)溶剂要有一定的化学稳定性, 不与固定相和样品组分起反应。

2)溶剂应与检测器匹配,不影响检测器正常工作。

3)溶剂对样品要有足够的溶解能力,以提高检测灵敏度。

4) 溶剂的粘度要小,保证合适的柱压降。

5) 溶剂的沸点低,有利于制备色谱的样品回收。

液相色谱流动相溶剂的选择步骤选择具有合适物理性质的溶剂,如沸点、粘度、紫外截止波长等选择合适洗脱强度的溶剂:简单样品,2 ? k'? 5;复杂样品,0.5 ? k'? 20 改变溶剂的选择性,使被分离组分具有较高的α值二、表征溶剂特性的重要参数 1)溶剂沸点、分子量、相对密度、介电常数、偶极距、折射指数、紫外吸收截止波长、与液相色谱分离密切相关的最重要的溶剂特性参数是溶剂强度参数?? ,溶解度参数?? ,极性参数P'和粘度η。

2) 溶剂洗脱强度溶剂洗脱强度指流动相中溶剂的洗脱能力。

在吸附色谱中, "溶剂洗脱强度"与溶剂极性成正比;而在反相色谱中,溶剂极性越大, 洗脱能力越小。

在液相色谱常用混合溶剂作流动相。

混合溶剂的P'具有加和性: P'ab= ??aP'a,?? bP'b , ??为某一溶剂的体积分数。

关于高效液相色谱仪流动相的选择如何呢

关于高效液相色谱仪流动相的选择如何呢

关于高效液相色谱仪流动相的选择如何呢高效液相色谱仪(High Performance Liquid Chromatography, HPLC)是一种常用的分离和分析技术,广泛应用于生命科学、化学、医药、环境等多个领域。

其中,流动相的选择对于色谱分离性能和分析结果的准确性有着重要的影响。

一、流动相的组成流动相是指用于在高效液相色谱仪中运载样品溶液,推动样品通过固定相柱的溶剂体系。

一般情况下,流动相由溶剂和缓冲剂组成。

溶剂用于将样品带入色谱柱,而缓冲剂则用于调整流动相的pH值。

在选择流动相的溶剂时,主要要考虑以下因素:1.溶剂极性:色谱柱的固定相特性和待分析的样品特性决定了所需的溶剂极性。

一般来说,溶剂可以选择非极性溶剂、极性溶剂或者两者的混合物,以适应不同的分析要求。

2.溶剂选择:常用的溶剂包括甲醇、乙醇、丙酮、乙腈等有机溶剂,以及水。

甲醇和乙腈是最常用的有机溶剂,由于它们的极性较低,因此溶解性广泛。

水是最常用的极性溶剂,可以提供更好的分离效果。

3.透过性:一些样品需要在其中一种溶剂中分离,因此选择适当的溶剂对于分析结果的准确性至关重要。

在选择缓冲剂时,需要考虑以下因素:1.pH值的调整:一些分析需要在特定的pH值下进行,需选择合适的缓冲剂,以维持所需的pH值。

2.缓冲能力:缓冲剂应具有良好的缓冲能力,以维持流动相的pH值的稳定性,避免pH值对分离效果的干扰。

3.溶解度:缓冲剂应具有较高的溶解度,以便在高浓度下使用,从而提供稳定的pH值。

二、常用的流动相系统1.等相流动相系统(Isocratic elution):等相流动相系统是指流动相组成在整个分析过程中保持不变。

这种系统适用于分离度较差的样品,具有简单、稳定、易操作的特点。

2. 梯度流动相系统(Gradient elution):梯度流动相系统是指在分析过程中,通过改变流动相组成来实现样品的分离。

这种系统适用于需要分离程度较高的样品,提供了更好的分离效果。

高效液相色谱的工作原理及操作注意事项

高效液相色谱的工作原理及操作注意事项

高效液相色谱的工作原理及操作注意事项高效液相色谱的工作原理及操作注意事项一、高效液相色谱的工作原理高效液相色谱(HPLC)是一种常用的分离和分析技术,主要应用于化学、生物、医药等领域。

其工作原理是利用不同物质在固定相和移动相之间的分配平衡,实现对待测组分的高效分离。

以下是高效液相色谱的工作原理:1.流动相:高效液相色谱中的流动相也称为溶剂或载体,是携带待测组分通过色谱柱的介质。

流动相的选择应根据样品的性质、检测器的类型以及分离效果等因素进行选择。

2.固定相:高效液相色谱中的固定相是色谱柱中的填料,通常是涂布在硅胶或氧化铝等载体上的高分子聚合物。

不同物质根据其在固定相和流动相之间的分配系数进行分离。

3.洗脱过程:在高效液相色谱中,待测组分随流动相通过色谱柱,经过固定相和流动相之间的分配平衡实现分离。

分离后的组分会按照其在固定相和流动相之间的分配系数依次流出色谱柱,进入检测器进行检测。

4.检测器:高效液相色谱中使用的检测器根据待测组分的性质和检测要求进行选择,常见的有紫外-可见光检测器、荧光检测器、电导检测器等。

检测器的作用是将组分的浓度转化为可测量的电信号,以便进行记录和分析。

二、高效液相色谱的操作注意事项在使用高效液相色谱进行实验操作时,需要注意以下事项:1.样品准备:在进行高效液相色谱分析前,需要对样品进行必要的处理和制备。

应尽可能避免样品中的杂质和干扰物质对分离和分析的影响。

同时,样品的浓度应适中,以避免色谱柱过载或检测器过载。

2.流动相选择:流动相的选择对高效液相色谱的分离效果和分析结果至关重要。

应根据样品的性质、实验要求以及分离效果等因素选择合适的流动相。

同时,应注意流动相的纯度和稳定性,以保证实验结果的可靠性。

3.色谱柱选择:高效液相色谱中使用的色谱柱是分离和分析的关键元件。

应根据样品的性质、待测组分的类型以及分离要求等因素选择合适的色谱柱。

同时,应注意色谱柱的粒径、孔径和填料性质等参数,以确保达到最佳的分离效果。

高效液相色谱流动相的选择课件

高效液相色谱流动相的选择课件
,在选择流动相时,需要综合考虑各种因素,以达到最佳的分离效果。
THANKS
感谢观看
20世纪80年代
HPLC技术进一步发展,出现了微径 柱和超高效液相色谱(UPLC),提 高了分离效率和灵敏度。
20世纪90年代至今
HPLC技术不断改进和完善,应用领 域不断扩大,成为一种重要的分离分 析手段。
02
流动相的基本知识
流动相的定义和作用
定义
流动相是高效液相色谱法中携带样品 通过色谱柱的液体,也称为载液。
案例三:分离手性化合物的流动相选择
总结词
手性化合物在高效液相色谱中的分离通常需要使用手性固定相,而流动相的选择对于分 离效果具有重要影响。
详细描述
手性流动相通常用于调节手性固定相的选择性。常见的流动相包括天然手性化合物、合 成手性化合物和手性离子液体等。这些流动相的选择应根据目标手性化合物的性质和分 离要求进行优化。此外,流动相的浓度、pH值和温度等因素也会影响分离效果。因此
准备流动相
根据实验需求,准备适量 的流动相,确保其纯度和 质量符合实验要求。
实验操作技巧
调整流动相比例
优化实验条件
通过调整流动相的比例,可以改变样 品的溶解度和分配系数,从而优化分 离效果。
在实验过程中,需要不断优化实验条 件,如温度、检测波长等,以提高分 离效果和准确度。
控制流动相流速
合适的流动相流速有助于提高分离效 果和缩短分析时间,需要根据实验需 求进行适当调整。
实验后处理
清洗和维护色谱柱
在实验结束后,需要清洗色谱柱 ,去除残留的样品和杂质,以延
长色谱柱的使用寿命。
数据处理和分析
对实验数据进行处理和分析,包括 峰识别、定量和定性分析等,以获 得准确的实验结果。

hplc常用的流动相

hplc常用的流动相

hplc常用的流动相HPLC常用的流动相HPLC(高效液相色谱)是一种常用的分离和分析技术,广泛应用于化学、生物、制药等领域。

在HPLC中,流动相是至关重要的组成部分,它在样品分离和分析中起着重要的作用。

本文将介绍HPLC 常用的流动相,包括有机溶剂、水和缓冲液。

有机溶剂是HPLC中最常用的流动相之一。

有机溶剂具有较低的极性和较高的溶解能力,适用于许多有机化合物的分离和分析。

常用的有机溶剂包括甲醇、乙醇、丙酮和乙腈等。

甲醇是最常用的有机溶剂之一,它具有良好的溶解性和较低的毒性。

乙腈在HPLC中也得到广泛应用,它具有较高的溶解能力和较低的毒性。

水是另一种常用的流动相。

水是一种无机溶剂,具有较高的极性和良好的溶解能力。

在HPLC中,水常用于极性化合物的分离和分析。

水的极性使其能够有效地与极性溶质相互作用,从而实现溶质的分离。

缓冲液也是HPLC中常用的流动相之一。

缓冲液是由酸和碱以及其它化学品组成的溶液,可以调节溶液的pH值。

在HPLC中,缓冲液常用于分离和分析离子化合物、药物和生物分子等。

常用的缓冲液包括磷酸缓冲液、乙酸缓冲液和三甲胺缓冲液等。

缓冲液的选择应根据样品的性质和分析的目的来确定。

除了以上介绍的常用流动相外,还有其他一些特殊的流动相在HPLC中得到应用。

例如,有机溶剂和水的混合物可以调节流动相的极性,从而适应不同的分析需求。

此外,一些特殊的流动相,如气体和超临界流体,也可以在某些特定的HPLC应用中使用。

HPLC常用的流动相包括有机溶剂、水和缓冲液等。

它们在HPLC 中起着重要的作用,能够实现样品的有效分离和分析。

在选择流动相时,应根据样品的性质和分析的目的来确定,以获得准确、可靠的分析结果。

高效液相色谱法的基本原理

高效液相色谱法的基本原理

高效液相色谱法的基本原理
高效液相色谱法(High Performance Liquid Chromatography,
简称HPLC)是一种以液相为工作介质的色谱分析技术。

其基
本原理包括以下几个方面:
1. 选择合适的固定相:HPLC中的固定相多数是疏水材料,常
见的包括疏水性化合物、正相材料和离子交换树脂等。

固定相的选择要根据待分离物的性质和目标进行,以实现分离的目的。

2. 样品的进样:待分离的样品通过自动进样器进入HPLC系统,通常通过注射器来确保精确的进样量。

3. 流动相的选择:流动相是在HPLC柱中进行分离的介质,
包括溶剂和缓冲溶液,可以根据实验要求选择不同的组合。

常见的流动相如水、有机溶剂、酸、碱等。

4. 柱子的选择:HPLC中的柱子一般由不同材质制成,如不锈钢、硅胶、聚合物等。

根据待分离物的性质和目标,选择合适的柱子进行分离。

5. 进行分离:样品进入柱子后,固定相将会提供分离作用,不同组分会按照其相互作用力的大小而在柱子中发生分离。

分离的时间取决于各组分与固定相之间的相互作用力。

6. 检测和分析:通过检测器对分离出的组分进行检测,一般使用紫外光谱、荧光检测器等进行定量分析,从而得到各组分的峰高、峰面积等信息。

7. 数据处理和解释:对检测到的数据进行处理和解释,包括峰识别、峰面积计算、定量分析等。

总之,高效液相色谱法的基本原理是利用液相中溶质与固定相之间的相互作用力的差异来实现样品的分离和定量分析。

高效液相色谱分析法(仪器+组成+分离类型+流动相选择)

高效液相色谱分析法(仪器+组成+分离类型+流动相选择)
1、流 程
2、主 要 部 件
(1) 高压输液泵
主要部件之一,压力:30MPa以上。 为了获得高柱效而使用粒度很小的固定相( <10μm),液体的流动相高速通过时,将产生 很高的压力,因此高压、高速是高效液相色谱 的特点之一。 应具有压力平稳、脉冲小、 流量稳定可调、耐腐蚀等特性
(2)梯度淋洗装置
3.离子交换色谱分离固定相
结构类别: (1)薄壳型离子交换树脂
薄壳玻璃珠为担体,表 面涂约1%的离子交换树脂; (2)离子交换键合固定相
薄壳键合型;微粒硅胶 键合型(键合离子交换基团)
树脂类别: (1) 阳离子交换树脂(强酸 性、弱酸性) (2) 阴离子交换树脂(强碱 性、弱碱性)
4. 空间排阻分离固定相
liquid-solid adsorption chromatography 固定相:固体吸附剂如硅胶、氧化铝等,较
常使用的是5~10μm的硅胶吸附剂;
流动相:各种不同极性的一元或多元溶剂。 基本原理:利用溶质分子占据固定相表面吸 附活性中心能力的差异;适用于分离相对分子 质量中等的油溶性试样,对具有官能团的化合 物和异构体有较高选择性; 缺点:非线形等温吸附常引起峰的拖尾;
GC:H = A + B / u + C • u (填充柱)
A = 2λ • dp
A ∝ λ • dp
B = 2γ • Dm = 2γ • Dg B ∝ t R ,B ∝ Dg
Dg

T η
或Dg

T M
B = 2γ • Dm
Dm

T η
柱温T ↓低,流动相η ↑大 ⇒B相忽略
在高效液相色谱中, 液体的扩散系数
(4) 高效分离柱

HPLC原理及基本操作

HPLC原理及基本操作

HPLC原理及基本操作HPLC(高效液相色谱法)是一种广泛应用于分析化学和制药工业中的分离技术。

它基于液相色谱法,通过将样品溶解在流动相中,并通过固定填料进行分离和分析。

1.样品的溶解:样品通常是固体或液体,在HPLC中需要将其溶解在流动相中。

流动相可以是水、有机溶剂或它们的混合物。

2.固定相填料的选择:HPLC中的填料通常是高度吸附性和具有大表面积的细小颗粒。

这些颗粒被填充在色谱柱中,提供了分离和分析的平台。

3.流动相选择:流动相的选择取决于样品的性质和目标分析的目的。

流动相的成分和配比可以根据需要进行调整,以改变分离效果和分辨率。

4.注射样品:将样品通过注射器引入HPLC系统,注射器将样品推入色谱柱中。

5.流动相的微量泵:流动相的微量泵非常重要,它通过控制流动相的流速将样品推过填料。

6.色谱分离:样品在填料中根据其亲水性(亲水性成分被保留在固定相上,疏水性成分则被推至溶剂流动相)进行分离。

固定相越亲水,则与样品中的亲水性成分相互作用越强;固定相越疏水,则与样品中的疏水性成分相互作用越强。

7.检测器:色谱柱的末端通常装有检测器,用于检测样品溶液中目标化合物的浓度。

8.数据处理:使用计算机系统分析检测器输出的图形数据,然后计算和解释结果。

HPLC基本操作:1.准备样品:将样品溶解在适当的溶剂中。

2.准备色谱柱:将填料装入色谱柱中,并使其适当压实。

3.连接色谱柱:将装有填料的色谱柱连接至HPLC系统。

4.设置流动相:根据需要设置流动相的组成和配比,通过微量泵提供流动相。

5.设置检测器:根据需要设置检测器,选择适合目标化合物的检测方法。

6.注射样品:使用自动或手动注射器将样品引入HPLC系统。

7.运行分析:通过微量泵控制流速,运行HPLC系统使样品通过色谱柱,分离和分析目标化合物。

8.数据处理:使用计算机系统分析检测器输出的图形数据,进行峰面积计算、峰高定量等数据处理。

9.结果解释:根据分析结果解释样品中的目标化合物的存在和浓度。

高效液相色谱法常用的流动相

高效液相色谱法常用的流动相

高效液相色谱法常用的流动相
高效液相色谱法(HPLC)是一种常用的分离和分析技术,其流动相的选择对分离效果至关重要。

常用的流动相分为以下几种:
1. 甲醇:甲醇是一种常用的有机溶剂,具有良好的溶解性和极性。

在反相色谱中,甲醇常与水混合作为流动相,以实现对极性物质的分离。

2. 乙腈:乙腈是一种有机溶剂,具有较高的极性。

与甲醇类似,乙腈也可以与水混合作为流动相,用于反相色谱中对极性物质的分离。

3. 水:水是一种无机溶剂,具有良好的极性。

在正相色谱中,水常与有机溶剂(如甲醇、乙腈等)混合作为流动相,以实现对极性物质的分离。

4. 乙酸乙酯:乙酸乙酯是一种有机溶剂,具有较弱的极性。

在正相色谱中,乙酸乙酯可以与水混合作为流动相,用于分离弱极性物质。

5. 庚烷:庚烷是一种非极性有机溶剂,适用于分离非极性物质。

在反相色谱中,庚烷可以与甲醇或乙腈混合作为流动相。

6. 混合溶剂:根据被测物的极性和分离需求,可以选用两种或多种溶剂混合作为流动相。

例如,甲醇与水混合用于反相色谱,乙腈与水混合用于正相色谱等。

流动相的选择应考虑以下因素:
1. 被测物的极性:根据被测物的极性选择相应的流动相,以实现良好的分离效果。

2. 固定相的选择:根据固定相的极性,选择与之匹配的流动相。

3. 检测器的要求:某些检测器对流动相的极性有要求,需根据检测器类型选择合适的流动相。

4. 实验条件:如流速、柱温等实验条件,也会影响流动相的选择。

在高效液相色谱法中,常用的流动相包括甲醇、乙腈、水、乙酸乙酯、庚烷等,具体选择需根据被测物的极性、固定相、检测器要求等因素综合考虑。

关于高效液相色谱仪流动相的选择如何呢

关于高效液相色谱仪流动相的选择如何呢

关于高效液相色谱仪流动相的选择如何呢高效液相色谱仪(High-Performance Liquid Chromatography,HPLC)是一种将混合物分离成单一组分的有效工具。

为了实现这种分离,高效液相色谱需要两种相:固定相和流动相。

其中,流动相是高效液相色谱仪中至关重要的组成部分之一,因为它决定着分离效果和分离时间。

因此,选择正确的流动相对于分离的精度和效率来说非常重要。

流动相简介流动相是指在柱床中连续流动的溶液。

在高效液相色谱中,流动相主要由溶剂和缓冲液组成。

溶剂是用于将样品分离的液体,在高效液相色谱仪中通常采用多种溶剂的混合物,称为流动相溶剂或者移动相溶剂。

缓冲液是在溶剂中加入的一种化学物质来调节流动相的pH值,缓冲液的作用是保持样品成分的稳定性和防止封堵柱床。

流动相的选择取决于样品的特性、分离要求和分析环境的条件。

因此,选择合适的流动相是高效液相色谱仪分离分析的关键因素之一。

流动相的分类根据溶剂的极性,流动相可分为两种类型:有机相和水相。

具体分类如下:有机相有机相通常由疏水性的有机溶剂组成,这些有机溶剂的极性比水低。

主要有以下三类:•极性较小的有机溶剂:含有醚、酮或者类似于苯、四氢呋喃等非极性有机溶剂的混合物。

•极性中等的有机溶剂:含有乙腈、甲醇、乙醇等极性有机溶剂的混合物。

•极性较大的有机溶剂:如乙二醇、N-甲基吡咯烷酮等。

水相水相是由水和缓冲液组成的混合物。

水是极性溶剂,本身具有良好的溶解性和稳定性。

缓冲液是在水中加入的一种化学物质来调节流动相的pH值。

流动相的选择原则在选择流动相时,需要考虑分析的目标和样品的特性。

下面列举几种常见的流动相选择原则:根据分析目标选择流动相首先,需要根据分析目标选择流动相。

如果需要分离极性物质,则应选择相对极性较强的水相,如果需要分离非极性物质,则应选择相对极性较弱的有机相。

如果需要同时分离多种溶质,则可以选择相组合。

根据样品的特性选择流动相如果样品是非极性的,则应选择相对极性较弱的有机相,例如乙酸乙酯-甲醇体系。

HPLC方法开发——流动相的选择

HPLC方法开发——流动相的选择

HPLC方法开发——流动相的选择高效液相色谱法(HPLC)是一种常用的分析技术,广泛应用于各个领域的分析和质量控制。

在HPLC方法开发中,流动相的选择是非常重要的一步,它直接关系到分析物的分离和检测的灵敏度。

在选择流动相时,需要考虑以下几个因素:1.溶解性:流动相应具有较好的溶解性,以溶解待测样品,保证样品能够均匀地进入和流出色谱柱,并使分离柱表面保持通透性。

2.酸碱性:流动相的pH值对于分离和保护色谱柱都有一定的影响。

如果待测物具有弱酸或弱碱性,应选择酸性或碱性流动相,以提供足够的离子态物质,促进待测物与色谱柱的相互作用。

3.性能物质:流动相中的性能物质可分为有机和无机两类。

有机性能物质通常用作有机试剂,如甲醇、乙酸乙酯等。

无机性能物质通常用作缓冲剂,如磷酸二氢钠、草酸钠等。

4.流动相比例:流动相比例指的是有机相和水相的比例。

比例的选择应该根据待测样品的特性、分析目的以及色谱柱的类型和性能来确定。

一般来说,比例的选择应该尽量保证样品在色谱柱中保持均匀分布。

5.流速:流动相的流速直接影响色谱柱的分离效果和分析时间。

一般来说,流速越快,分离效果可能越差,但分析时间会缩短。

因此,在流速选择时需要在分离效果和分析时间之间做一个权衡,使得两者达到一个较好的平衡。

在选择流动相时,还需要考虑其他可能的影响因素,如温度、压力等。

温度对于很多分析物的分离效果有重要影响,通常来说,提高温度可以加快分离速度,但也可能导致一些物质不稳定。

压力对于色谱柱的分离效果和寿命有一定影响,高压可以提高分离速度,但也可能损坏色谱柱。

综上所述,流动相的选择在HPLC方法开发中是非常重要的一步。

通过合理选择溶剂、酸碱性、性能物质、比例和流速,可以得到一个合适的流动相组合,以获得较好的分离效果和检测灵敏度。

在选择过程中还需要考虑其他可能的影响因素,以确保色谱分析的准确性和可靠性。

高效液相流动相的选择

高效液相流动相的选择

高效液相流动相的选择 The Standardization Office was revised on the afternoon of December 13, 2020高效液相色谱流动相选择流动相1.流动相的性质要求一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。

流动相选择1:由强到弱:一般先用90%的乙腈(或甲醇)/水(或缓冲溶液)进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂(乙腈或甲醇)的比例。

2:三倍规则:每减少10%的有机溶剂(甲醇或乙腈)的量,保留因子约增加3倍,此为三倍规则。

这是一个聪明而又省力的办法。

调整的过程中,注意观察各个峰的分离情况。

3:粗调转微调:当分离达到一定程度,应将有机溶剂10%的改变量调整为5%,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变。

选择流动相时应考虑以下几个方面:①流动相应不改变填料的任何性质。

低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。

碱性流动相不能用于硅胶柱系统。

酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。

②纯度。

色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。

③必须与检测器匹配。

使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。

当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。

④粘度要低(应<2cp)。

高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。

最好选择沸点在100℃以下的流动相。

⑤对样品的溶解度要适宜。

如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。

⑥样品易于回收。

应选用挥发性溶剂。

流动相的pH值采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。

关于高效液相色谱色谱柱、流动相以及检测器的选择

关于高效液相色谱色谱柱、流动相以及检测器的选择

关于高效液相色谱色谱柱、流动相以及检测器的选择1.概述高效液相色谱已成为化学、医学、工业和法学等学科领域中一项十分重要的分离分析技术。

近年来,我国对食品安全有了更高的关注度,越来越多的研究人员将高效液相色谱应用于食品安全检测中,获得了良好的效果。

高效液相色谱是色谱法中十分重要的一个分支,这项技术采用高压输液系统将具有不同极性的单一溶剂或不同比例的混合溶剂作为流动相,由流动相携带需测定的混合物液体泵入有固定相的色谱柱中,而在色谱柱中各成分能够得到有效的分离,分离完成后将其输送到检测器中进行检测,能帮助工作人员对样本进行有效的分析,了解其中存在的不同物质。

高效液相色谱在应用过程中可通过选择固定相和流动相以及调节流动相比例达到最优的分离效果,不仅速度较快且重复性较高,检测时间能控制在十几分钟至几十分钟。

同时高效液相色谱柱能反复使用,在进样分离测定时为仪器自动化处理,具有较高的分析精度,可减少人为干扰及误差。

2.高效液相色谱色谱柱的选择童优芸[1]等人使用高效液相色谱法同时检测液体食品中6种人工合成色素,该研究选择的色谱柱为美国安捷伦XDB-C18(4.6 mm×250 mm, 5 μm)。

色谱柱是分离的核心,选择色谱柱的要求是柱效高、选择性好、分析速度快等。

市售的用于HPLC的各种微粒填料如多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3、5、7、10 μm等。

C18和C8色谱柱的应用较为广泛,都属于反相色谱柱。

C8适合分析大分子类的物质,其对同一个物质的保留能力比C18柱弱,保留时间比C18柱早,一些物质出峰过于靠前时使用C8柱很难实现分离。

C18柱对中等极性化合物保留最强,主要应用于羧基、脂肪酸、苯胺、甘油酯等物质的测定,对分子量较小的物质有较好的分离效果。

因此,考虑合成色素的保留时间和分离度,选用C18柱作为此次试验的色谱分析柱。

刘艳荣[2]等人在保健食品中叶黄素总量的高效液相色谱分析测定中选择的色谱柱为C18色谱柱,5μm,250 mm×4.6 mm(内径),在该研究中比较了C18和C30这两种色谱柱的分离效果,结果表明,叶黄素都能很好的出峰。

高效液相色谱法的原理

高效液相色谱法的原理

高效液相色谱法的原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的常用技术。

它基于样品在流动相中的相互作用,利用不同化学物质在固定相上的差异来实现分离。

HPLC的原理可以分为以下几个步骤:1. 流动相选择:HPLC中的流动相由溶剂组成,根据分析物性质的不同,可以选择不同的流动相。

溶剂的选择应使得分析物在流动相中有适当的溶解度,并且不与固定相发生显著的反应。

2. 固定相选择:HPLC中的固定相通常是一种多孔的固体材料,它具有较大的比表面积以增加分离效果。

常用的固定相有疏水性相、亲水性相、离子交换相等。

固定相的选择应根据分析物的化学特性和分离要求进行。

3. 样品处理:样品需要经过预处理,通常包括提取、浓缩、净化等步骤。

样品处理的目的是去除杂质和提高分离效果。

4. 进样:样品通过进样器引入色谱柱。

进样时要保证样品量的准确控制,以确保分析结果的准确性。

5. 色谱柱:样品在色谱柱中进行分离。

色谱柱是由固定相填充的管状结构,样品在固定相中的相互作用与时间有关,这将导致样品分离。

分离的准确性和效率取决于固定相的性能和色谱柱的尺寸。

6. 检测器:色谱柱输出的混合物被送入检测器进行检测。

常见的检测器包括紫外可见光检测器、荧光检测器、质谱检测器等。

检测器将染料信号转化为电信号,通过数据处理系统得到分析结果。

7. 数据处理:色谱仪将检测到的信号传输到计算机上进行数据处理和结果分析。

数据处理的步骤包括峰面积和峰高计算,峰的定性和定量分析等。

通过以上步骤,HPLC可以实现对复杂混合物的高效分离和定量分析。

它在制药、环境监测、食品分析等领域被广泛应用。

简述高效液相色谱一般操作流程

简述高效液相色谱一般操作流程

简述高效液相色谱一般操作流程
高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种常用的分离和分析技术,广泛应用于化学、生物、医药等领域。

其一般操作流程如下:
1. 样品制备:将待分离的混合物或化合物溶解在适当的溶剂中,通常需要进行前处理,如过滤、离心、稀释等。

2. 色谱柱选择:根据样品的性质和分离要求选择合适的色谱柱,如反相色谱柱、离子交换色谱柱、凝胶过滤色谱柱等。

3. 流动相选择:根据色谱柱的性质和样品的特点选择合适的流动相,如水、有机溶剂、缓冲液等,通常需要进行优化。

4. 色谱条件设置:根据样品的性质和分离要求设置合适的色谱条件,如流速、温度、检测波长等。

5. 样品注入:将样品注入色谱柱,通常采用自动进样器或手动进样器。

6. 色谱分离:样品在色谱柱中进行分离,不同成分在色谱柱中的停留时间不同,从而实现分离。

7. 检测:通过检测器检测样品分离后的成分,如紫外检测器、荧光检测器、质谱检测器等。

8. 数据分析:对检测到的数据进行分析和处理,如峰面积计算、质量浓度计算等。

以上就是高效液相色谱的一般操作流程,不同的样品和分离要求可能需要进行不同的优化和调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱流动相选择
流动相
1.流动相的性质要求
一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。

流动相选择
1:由强到弱:一般先用90%的乙腈(或甲醇)/水(或缓冲溶液)进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂(乙腈或甲醇)的比例。

2:三倍规则:每减少10%的有机溶剂(甲醇或乙腈)的量,保留因子约增加3倍,此为三倍规则。

这是一个聪明而又省力的办法。

调整的过程中,注意观察各个峰的分离情况。

3:粗调转微调:当分离达到一定程度,应将有机溶剂10%的改变量调整为5%,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变。

选择流动相时应考虑以下几个方面:
①流动相应不改变填料的任何性质。

低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。

碱性流动相不能用于硅胶柱系统。

酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。

②纯度。

色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。

③必须与检测器匹配。

使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。

当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。

④粘度要低(应<2cp)。

高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。

最好选择沸点在100℃以下的流动相。

⑤对样品的溶解度要适宜。

如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。

⑥样品易于回收。

应选用挥发性溶剂。

流动相的pH值
采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。

对于弱酸,流动相的pH值越小,组分的k值越大,当pH值远远小于弱酸的pKa值时,弱酸主要以分子形式存在;对弱碱,情况相反。

分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液;分析弱碱样品时,通常在流动相中加入少量弱碱,常用50mmol/L磷酸盐缓冲液和30mmol/L三乙胺溶液。

注:流动相中加入有机胺可以减弱碱性溶质与残余硅醇基的强相互作用,减轻或消除峰拖尾现象。

所以在这种情况下有机胺(如三乙胺)又称为减尾剂或除尾剂。

(三乙胺triethylamine 氨分子中的氢原子被3个乙基取代的产物。

分子式(CH3CH2)3N。

易挥发的无色液体,有氨的气味。

熔点-114.7℃,沸点89.3℃,相对密度0.7275(20/4℃)。

溶于水和乙醇、乙醚等有机溶剂。

三乙胺有碱性,
与无机酸能生成易溶于水的盐类。

可由N,N- 二乙基乙酰氨与氢化铝锂反应制取,也可用乙醇胺进行气相烷基化反应合成。

用于制橡胶硫化促进剂、润湿剂和杀菌剂等,也可用作溶剂和用于合成四级铵化合物。

)
如何选择缓冲液PH值
在选择缓冲液PH值之前,应先了解被分析物的Pka,高于或低于Pka两个PH值单位的,有助于获得好的、尖锐的峰,从HH公式:PH=Pka+log([A-]/[A])得知,溶液PH值高于或低于Pka两个单位,化合物中99%以一种形式存在,而一种形式存在的化合物才能获得好的尖锐的峰。

显示的是它的离子形式和中性化合物的转变,苯甲酸的Pka等于4.2,理论上由HH公示得知,当溶液PH值等于2.2时,99%的苯甲酸以中性化合物存在,PH值等于6.2时99%的苯甲酸以离子形式存在,所以当缓冲液PH值等于2.2时,中性化合物以羧酸形式保留于反相柱,表1列出了一般缓冲液和他们的缓冲范围。

从表1知磷酸盐和柠檬酸盐缓冲液能用于PH值等于2.2。

当化合物只有氨基时,缓冲体系的选择十分简单,大多数氨基化合物在PH 值小于9时都被质子化,所以所有PH值在7或更低的溶液均适合应用,你也许会问水的PH值大约是7,为什么还用缓冲盐,因为缓冲盐有助于增加方法的可靠性,以及色谱峰的尖锐性,PH值的降低有助于氨基化合物保留的减弱,减小化合物与硅胶表面硅羟基的作用,而使峰更尖锐,从表 1 可值,任何缓冲液均可应用于氨基化合物的分析,但我们认为PH值等于3的磷酸钾盐最适合用于氨基化合物的分析。

在上面两个例子中,PH=3的磷酸钾盐都能获得良好的应用,在一般情况下,它是含羧基和氨基化合物分析中最好的缓冲液,并且我们认为在氨基化合物分析中钾盐比钠盐更好。

流动相的脱气
HPLC 所用流动相必须预先脱气,否则容易在系统内逸出气泡,影响泵的工作。

气泡还会影响柱的分离效率,影响检测器的灵敏度、基线稳定性,甚至使无法检测。

(噪声增大,基线不稳,突然跳动)。

此外,溶解在流动相中的氧还可能与样品、流动相甚至固定相(如烷基胺)反应。

溶解气体还会引起溶剂pH的变化,对分离或分析结果带来误差。

溶解氧能与某些溶剂(如甲醇、四氢呋喃)形成有紫外吸收的络合物,此络合物会提高背景吸收(特别是在260nm以下),并导致检测灵敏度的轻微降低,但更重要的是,会在梯度淋洗时造成基线漂移或形成鬼峰(假峰)。

在荧光检测中,溶解氧在一定条件下还会引起淬灭现象,特别是对芳香烃、脂肪醛、酮等。

在某些情况下,荧光响应可降低达95%。

在电化学检测中(特别是还原电化学法),氧的影响更大。

除去流动相中的溶解氧将大大提高UV检测器的性能,也将改善在一些荧光检测应用中的灵敏度。

常用的脱气方法有:加热煮沸、抽真空、超声、吹氦等。

对混合溶剂,若采用抽气或煮沸法,则需要考虑低沸点溶剂挥发造成的组成变化。

超声脱气比较好,10~20分钟的超声处理对许多有机溶剂或有机溶剂/水混合液的脱气是足够了(一般500ml溶液需超声20~30min方可),此法不影响溶剂组成。

超声时应注意避免溶剂瓶与超声槽底部或壁接触,以免玻璃瓶破裂,容器内液面不要高出水面太多。

离线(系统外)脱气法不能维持溶剂的脱气状态,在你停止脱气后,气体立即
开始回到溶剂中。

在1~4小时内,溶剂又将被环境气体所饱和。

在线(系统内)脱气法无此缺点。

最常用的在线脱气法为鼓泡,即在色谱操作前和进行时,将惰性气体喷入溶剂中。

严格来说,此方法不能将溶剂脱气,它只是用一种低溶解度的惰性气体(通常是氦)将空气替换出来。

此外还有在线脱气机。

一般说来有机溶剂中的气体易脱除,而水溶液中的气体较顽固。

在溶液中吹氦是相当有效的脱气方法,这种连续脱气法在电化学检测时经常使用。

但氦气昂贵,难于普及。

流动相的滤过
所有溶剂使用前都必须经0.45µm(或0.22µm)滤过,以除去杂质微粒,色谱纯试剂也不例外(除非在标签上标明“已滤过”)。

用滤膜过滤时,特别要注意分清有机相(脂溶性)滤膜和水相(水溶性)滤膜。

有机相滤膜一般用于过滤有机溶剂,过滤水溶液时流速低或滤不动。

水相滤膜只能用于过滤水溶液,严禁用于有机溶剂,否则滤膜会被溶解!溶有滤膜的溶剂不得用于HPLC。

对于混合流动相,可在混合前分别滤过,如需混合后滤过,首选有机相滤膜。

现在已有混合型滤膜出售。

流动相的贮存
流动相一般贮存于玻璃、聚四氟乙烯或不锈钢容器内,不能贮存在塑料容器中。

因许多有机溶剂如甲醇、乙酸等可浸出塑料表面的增塑剂,导致溶剂受污染。

这种被污染的溶剂如用于HPLC系统,可能造成柱效降低。

贮存容器一定要盖严,防止溶剂挥发引起组成变化,也防止氧和二氧化碳溶入流动相。

磷酸盐、乙酸盐缓冲液很易长霉,应尽量新鲜配制使用,不要贮存。

如确需贮存,可在冰箱内冷藏,并在3天内使用,用前应重新滤过。

容器应定期清洗,特别是盛水、缓冲液和混合溶液的瓶子,以除去底部的杂质沉淀和可能生长的微生物。

因甲醇有防腐作用,所以盛甲醇的瓶子无此现象。

卤代有机溶剂应特别注意的问题
卤代溶剂可能含有微量的酸性杂质,能与HPLC系统中的不锈钢反应。

卤代溶剂与水的混合物比较容易分解,不能存放太久。

卤代溶剂(如CCl4、CHCl3 等)与各种醚类(如乙醚、二异丙醚、四氢呋喃等)混合后,可能会反应生成一些对不锈钢有较大腐蚀性的产物,这种混合流动相应尽量不采用,或新鲜配制。

此外,卤代溶剂(如CH2Cl2)与一些反应性有机溶剂(如乙腈)混合静置时,还会产生结晶。

总之,卤代溶剂最好新鲜配制使用。

如果是和干燥的饱和烷烃混合,则不会产生类似问题。

相关文档
最新文档