平均数-中位数-众数课件-PPT
合集下载
《平均数中位数众数》课件
03
众数
众数的定义
众数是一组数据中出 现次数最多的数值。
众数反映了一组数据 的集中趋势,是描述 数据分布的重要统计 量。
在一组数据中,众数 可能存在一个、多个 或不存在。
众数的计算方法
01
02
03
观察法
通过观察数据,找出出现 次数最多的数值即为众数 。
频数统计法
统计每个数值在数据集中 出现的次数,出现次数最 多的数值即为众数。
在统计学中的应用
参数估计
平均数、中位数和众数可以用来 估计总体参数,如总体均值、总
体中位数和总体众数。
假设检验
在假设检验中,平均数、中位数 和众数可以用来构建检验统计量 ,帮助我们判断样本数据是否符
合预期。
相关分析
平均数、中位数和众数可以作为 变量之间相关关系的度量,例如
计算变量之间的相关系数。
在日常生活中的应用
消费水平评估
通过比较不同家庭的平均收入、中位数收入和众数收入,可以评 估一个地区的消费水平。
人口普查数据
在人口普查中,平均数、中位数和众数被用来描述人口数据的分布 情况,帮助政府制定相关政策。
市场调研
在市场调研中,平均数、中位数和众数被用来分析消费者对产品或 服务的满意度和需求。
THANKS
感谢观看
平均数与众数的比较
众数是一组数据中出现次数最多的数值 ,表示数据的普遍水平;
平均数是所有数据之和除以数据个数, 而众数只关注出现次数;
平均数反映数据的总体“平均水平”, 而众数则反映数据的“普遍水平”。在 数据量较大时,平均数和众数可能相差 较大;在数据量较小时,平均数和众数
可能较为接近。
中位数与众数的比较
人教版高中数学必修3课件第二章众数、中位数、平均数
∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2 =0.3,
∴前三个小矩形面积的和为 0.3,而第四个小矩形面积 为 0.03×10=0.3,0.3+0.3>0.5,
∴中位数应位于第四个小矩形内. 设其底边为 x,高为 0.03,令 0.03x=0.2 得 x≈6.7,故 中位数约为 70+6.7=76.7.
2.下列说法中,不正确的是( ) A.数据 2,4,6,8 的中位数是 4,6 B.数据 1,2,2,3,4,4 的众数是 2,4 C.一组数据的平均数、众数、中位数有可能是同一个 数据 D.8 个数据的平均数为 5,另 3 个数据的平均数为 7, 则这 11 个数据的平均数是8×5+117×3
解 在 17 个数据中,1.75 出现了 4 次,出现的次数最
多,即这组数据的众数是 1.75.上面表里的 17 个数据可看成
是按从小到大的顺序排列的,其中第 9 个数据 1.70 是最中
间的一个数据,即这组数据的中位数是 1.70;这组数据的平
均数是-x
=117×(1.50×2+
1.60×3
+…+
(1)这 50 名学生成绩的众数与中位数; (2)这 50 名学生的平均成绩.(答案精确到 0.1)
解 (1)由众数的概念可知,众数是出现次数最多的 数.在直方图中高度最高的小长方形框的中间值的横坐标即 为所求,所以由频率分布直方图得众数应为 75.
由于中位数是所有数据中的中间值, 故在频率分布直方图中体现的是中位数的左右两边频 数应相等,即频率也相等,从而就是小矩形的面积和相等. 因此在频率分布直方图中将频率分布直方图中所有小 矩形的面积一分为二的直线所对应的成绩即为所求.
(3) 一 个 样 本 按 从 小 到 大 的 顺 序 排 列 为 10,12,13 , x,17,19,21,24,其中中位数为 16,则 x=____1_5___.
《平均数中位数众数》课件
中位数
将数值按大小顺序排列,取中间 位置的数值。
众数
统计每个数值出现的次数,找出 出现次数最多的数值。
总结及注意事项
1
总结
平均数、中位数和众数都是描述一组数
注意事项
2
值特征的统计量。
当数据集中有异常值或极端值时,不同
的统计量可能会产生不同的结果。
3
应用广泛
平均数、中位数和众数在各行各业的数 据分析和决策中都有广泛应用。
《平均数中位数众数》 PPT课件
这个PPT课件旨在介绍平均数、中位数和众数的概念、计算方法以及它们之间 的比较与分析。通过举例演示,帮助大家更好地理解这些重要的统计概念。
什么是平均数?
定义
平均数是一组数值的总和除以数值的个数。
ቤተ መጻሕፍቲ ባይዱ
计算方法
将所有数值相加,然后除以数值的个数。
应用
平均数常用于表示某个数据集或样本的典型数值。
什么是中位数?
定义
计算方法
中位数是将一组数值按照大小顺 序排列后,处于中间位置的数值。
如果数值个数是奇数,直接取处 于中间位置的数值;如果数值个 数是偶数,取中间两个数的平均 值。
应用
中位数常用于表示某个数据集或 样本的中心趋势。
什么是众数?
1
定义
众数是一组数值中出现次数最多的数值。
计算方法
2
统计每个数值出现的次数,找出出现次
数最多的数值即为众数。
3
应用
众数常用于表示一组数据中的最常见数 值,来描述数据的分布。
平均数 vs. 中位数 vs. 众数
1 平均数
求和后除以个数,用于表示典型值。
2 中位数
排序后中间位置的数值,用于表示中心趋势。
平均数,中位数,众数PPT课件
众数
定义:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
(1) 众数是一组数据中的原数据,而不是相应的次 数,这一点学生很容易混淆. (2) 一组数据中的众数有时不只一个,如数据2,3,-1,2,1,3中,2和3都出现了两次,它们都是这组数据的众 数. (3)有时一组数据中的每一个数据出现次数都相同 的时候,则称没有众数.如2,2,3,3,4,4,这组数据就没有 众数.
55,57,61,62,98
中位数定义:将一组数据从小到大 引依出次中排位列数的,定把义处: 将在一最组数中据间从位小到置大的依一次排列,把处 在个最数中据间位(置或的最一个中数间据两叫做个这数组据数据的的平中均位数.
数)叫做这组数据的中位数.
类比三个统计量:
联系:三个统计量都可代表一组数据,表示数据的“平 均水平,中等水平或多数水平”,都反映数据的集中趋 区别:三个统计量从不同的势侧。面提供了一组数据的面貌. 1、 平均数反映一组数据中各数据的平均大小,最为常用;
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
2、一组数据按大小排序后,中位数将一组数据平分为两部 分,这组数据以中位数分界,大于或小于这个数的个数相等;
3、众数反映了一组数据中出现次数最多的数据。
注意: 1、统计数据个数时,相等的数据都应分别算作一个数据;
2、 一组数据可以有不止一个众数,也可以没有众数.
❖三个数据代表的存在性和意义:
平均数
中位数
众数
存在性 意义
一个 平均水平
一个(奇、偶 有别)
中等水平
一个、多个或 没有
多数水平
例:在一次中学生田径运动会上,参加男 子跳高的17名运动员的成绩如下表所示:
定义:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
(1) 众数是一组数据中的原数据,而不是相应的次 数,这一点学生很容易混淆. (2) 一组数据中的众数有时不只一个,如数据2,3,-1,2,1,3中,2和3都出现了两次,它们都是这组数据的众 数. (3)有时一组数据中的每一个数据出现次数都相同 的时候,则称没有众数.如2,2,3,3,4,4,这组数据就没有 众数.
55,57,61,62,98
中位数定义:将一组数据从小到大 引依出次中排位列数的,定把义处: 将在一最组数中据间从位小到置大的依一次排列,把处 在个最数中据间位(置或的最一个中数间据两叫做个这数组据数据的的平中均位数.
数)叫做这组数据的中位数.
类比三个统计量:
联系:三个统计量都可代表一组数据,表示数据的“平 均水平,中等水平或多数水平”,都反映数据的集中趋 区别:三个统计量从不同的势侧。面提供了一组数据的面貌. 1、 平均数反映一组数据中各数据的平均大小,最为常用;
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
2、一组数据按大小排序后,中位数将一组数据平分为两部 分,这组数据以中位数分界,大于或小于这个数的个数相等;
3、众数反映了一组数据中出现次数最多的数据。
注意: 1、统计数据个数时,相等的数据都应分别算作一个数据;
2、 一组数据可以有不止一个众数,也可以没有众数.
❖三个数据代表的存在性和意义:
平均数
中位数
众数
存在性 意义
一个 平均水平
一个(奇、偶 有别)
中等水平
一个、多个或 没有
多数水平
例:在一次中学生田径运动会上,参加男 子跳高的17名运动员的成绩如下表所示:
高中数学必修三《2.2.众数、中位数、平均数》课件
频率 组距
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65 2 3 2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因 如此 ,与众数、中位数比较起来,平 均数可以反映出更多的关于样本数据 全体的信息,但平均数受数据中的极 端值的影响较大,使平均数在估计时 可靠性降低。
众数、中位数、平均数的 简单应用 例 某工厂人员及工资构成如下:
人数
分别求这些运动员成绩的众数,中位数与 平均数
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70; 这组数据的平均数是
人教版八年级数学下册:平均数、中位数和众数的应用【精品课件】
故录取丙.
(2)甲的平均成绩:
7050% 50 30% 80 20%=6( 6 分)
乙的平均成绩:
9050% 7530% 4520%=76.( 5 分)
丙的平均成绩:
5050% 60 30% 85 20%=6( 0 分)
故录取乙.
6.某地某个月中午12时的气温(单位:℃)如下:
22 31 25 13 18 23 13 28 30 22
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
(1)出售时这些鸡的平均质量是多少(结果保留小 数点后一位)? 1.5kg
(2)质量在哪个值的鸡最多? 1.5kg (3)中间的质量是多少? 1.5kg
8.下图是交警在一个路口统计的某个时段来往 车辆的车速情况.
22.35mm
4.在一次青年歌手演唱比赛中,评分办法采 用10位评委现场打分,每位选手的最后得 分为去掉最低、最高分后的平均数.已知 10位评委给某位歌手的打分是: 9.5 9.5 9.3 9.8 9.4 8.8 9.6 9.5 9.2 9.6 求这位歌手的最后得分.
9.45分
5.某商场招聘员工一名,现有甲、乙、丙三人 竞聘.通过计算机、语言和商品知识三项测 试,他们各自成绩(百分制)如下表所示.
知识成绩分别占50%,30%,20%计算三名应试者
的平均成绩.从成绩看,应该录取谁?
解: (1)甲的平均成绩:70 2 50 3 80 5 =6(9 分)
235
(2)甲的平均成绩:
7050% 50 30% 80 20%=6( 6 分)
乙的平均成绩:
9050% 7530% 4520%=76.( 5 分)
丙的平均成绩:
5050% 60 30% 85 20%=6( 0 分)
故录取乙.
6.某地某个月中午12时的气温(单位:℃)如下:
22 31 25 13 18 23 13 28 30 22
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
(1)出售时这些鸡的平均质量是多少(结果保留小 数点后一位)? 1.5kg
(2)质量在哪个值的鸡最多? 1.5kg (3)中间的质量是多少? 1.5kg
8.下图是交警在一个路口统计的某个时段来往 车辆的车速情况.
22.35mm
4.在一次青年歌手演唱比赛中,评分办法采 用10位评委现场打分,每位选手的最后得 分为去掉最低、最高分后的平均数.已知 10位评委给某位歌手的打分是: 9.5 9.5 9.3 9.8 9.4 8.8 9.6 9.5 9.2 9.6 求这位歌手的最后得分.
9.45分
5.某商场招聘员工一名,现有甲、乙、丙三人 竞聘.通过计算机、语言和商品知识三项测 试,他们各自成绩(百分制)如下表所示.
知识成绩分别占50%,30%,20%计算三名应试者
的平均成绩.从成绩看,应该录取谁?
解: (1)甲的平均成绩:70 2 50 3 80 5 =6(9 分)
235
平均数、中位数、众数精选教学PPT课件
当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。 我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师――戴尔·泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。 那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不
若一组数据中,有两个或两个以上数据出现 的频数并列最多,那么这两个或两个以上的 数据都为众数
一组数据中出现频数最多的数据叫做这组数 据的众数
众数一定是原数据中的一个,而不是出现的频数
若一组数据中,有两个或两个以上数据出现的频数 并列最多,那么这两个或两个以上的数据都为众数
若一组数据中所有数据出现的频数都相同,此时, 我们说这组数据没有众数
方法:划线,去掉两端逐渐接近中心
得到:奇数个数据时,中位数为 n 1 2
21 23 24 26 26 26 27 27
27 28 29 29 29 30 30 30 31 32 32 32 32 33 33 33
34 34 35 35 36 36 36 36
如果是偶数个城市,最后也只剩下 唯一一个没被划去的数据吗? 偶数个数据时,中位数为中间两数的平均数
小时候,我可以在母亲的背上无忧无虑的长大,是母亲编织了女儿的梦,点燃了心中那盏灯,伴我走过人生那坎坷的路程。
我想不起病重的母亲是怎样背着我走路,我是怎样在母亲背上长大,可想而知,有病的母亲比健康的人更艰难。是母亲让我学会了人之初,做人做事的道理。当时我不懂母亲的心,她的爱她的温柔,她的关怀和牵挂,不懂事的我在母亲的包容下慢慢地长大,当我知道 和读懂母亲的时候,母亲含着眼泪,带着多少担忧与牵挂永远的离开了我。
人教版小学六年级数学下册《统计与概率-平均数-中位数和众数》课件
平均数、中位数和众数
例4
1.4 1.4 1.4 1.4 1.5 1.5 1.5 身高 0 3 6 9 2 5 8
/m 人数 1 体重 30 /kg 人数 2
3 33 4
5 36 5
10 39 12
12 42 10
6 45 4
3 48 3
平均数、中位数和众数 ① 在上面两组数据中, 各是多少? a. 找出中位数和众数。 b. 计算平均数。 ② 不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗 ? 学生在小组中交流,说一说各自的思维过程和结果。 ③ 你认为用什么数表示上面两组数据的一般水平比较合适? 让学生说出自己的看法,并说明理由。
某公司员工的月工资如下:
这组数据中个别数据严重偏小,会使平均数变小。
名称 平均数
相同点
不同点 平均数反映一组数据的平均水平,它 的大小与一组数据里的每个数据 均有关系。
中位数
众数
都是描述 一组数 中位数代表一组数据的一般水平,则 仅与数据的排列位置有关,某些 据的集 数据的变动对它的中位数没有影 中趋势 响。 的特征 数 众数反映一组数据的集中情况,其大 小只与这组数据中的部分数据有 关。
六(2)班同学身高、体重情况如下表:
身高 /m 人数 体重 /kg 人数 1.40 1.43 1.46 1.49 1.5
36
10
39
12
42
6
45
3
48
2
4
5
12
10
4
3
在上面两组数据中,平均数、中位数和众数各是什么?
1、什么叫平均数?
平均数是指在一组数据中所有数据之和再除以数据的个数。平均数是 表示一组数据集中情况。
例4
1.4 1.4 1.4 1.4 1.5 1.5 1.5 身高 0 3 6 9 2 5 8
/m 人数 1 体重 30 /kg 人数 2
3 33 4
5 36 5
10 39 12
12 42 10
6 45 4
3 48 3
平均数、中位数和众数 ① 在上面两组数据中, 各是多少? a. 找出中位数和众数。 b. 计算平均数。 ② 不用计算,你能发现上面两组数据的平均数,中位数和众数之间的大小关系吗 ? 学生在小组中交流,说一说各自的思维过程和结果。 ③ 你认为用什么数表示上面两组数据的一般水平比较合适? 让学生说出自己的看法,并说明理由。
某公司员工的月工资如下:
这组数据中个别数据严重偏小,会使平均数变小。
名称 平均数
相同点
不同点 平均数反映一组数据的平均水平,它 的大小与一组数据里的每个数据 均有关系。
中位数
众数
都是描述 一组数 中位数代表一组数据的一般水平,则 仅与数据的排列位置有关,某些 据的集 数据的变动对它的中位数没有影 中趋势 响。 的特征 数 众数反映一组数据的集中情况,其大 小只与这组数据中的部分数据有 关。
六(2)班同学身高、体重情况如下表:
身高 /m 人数 体重 /kg 人数 1.40 1.43 1.46 1.49 1.5
36
10
39
12
42
6
45
3
48
2
4
5
12
10
4
3
在上面两组数据中,平均数、中位数和众数各是什么?
1、什么叫平均数?
平均数是指在一组数据中所有数据之和再除以数据的个数。平均数是 表示一组数据集中情况。
众数、中位数和平均数PPT课件
人员 周工资 人数 合计 经理 2200 1 2200 管理人员 250 6 1500 高级技工 220 5 1100 工人 200 10 2000 学徒 合计 100 1 23 100 6900
四
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
频率 组距
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65 2 3 2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
3、平均数是频率分布直方图的“重 心”. 是直方图的平衡点. n 个样本数据的平均 数由公式: 1 X= n ( x1 x 2 x n ) 给出.下图显示了居民月均用水量的平 均数: x=1.973
频率 组距
四
(1)指出这个问题中周工资的众数、中 位数、平均数 (2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
频率 组距
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65 2 3 2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
3、平均数是频率分布直方图的“重 心”. 是直方图的平衡点. n 个样本数据的平均 数由公式: 1 X= n ( x1 x 2 x n ) 给出.下图显示了居民月均用水量的平 均数: x=1.973
频率 组距
人教版数学八年级下册《平均数、中位数和众数的应用》PPT课件
课堂检测
4.某餐厅共有10名员工,所有员工工资的情况如下表:
人员 经理 厨师 厨师 会计 服务 服务 勤杂
甲乙
员甲 员乙 工
人数 1 1 1 1 1 3 2
工资额 20000 7000 4000 2500 2200 1800 1200
请解答下列问题:(1)餐厅所有员工的平均工资是多少? (2)所有员工工资的中位数是多少? 解:(1)平均工资为4350元. (2)工资的中位数为2000元.
你认为谁的数学 成绩最好呢?
分析:小华成绩的众数是_9_8___,中位数是_9_5___,平均数是_8_9_._4_;
小明成绩的众数是_6_2___,中位数是__9_8__,平均数是_8_4_._2_;小丽
成绩的众数是__9_9__,中位数是__8_5__,平均数是__7_7__.
因为他们之中,小华的平均数最大,小明的中位数最大,小丽
探究新知
请说说平均数、众数和中位数这三个统计量的各自特点. 平均数计算要用到所有的数据,任何一个数据的变动都会 相应引起平均数的变动,它能够充分利用所有的数据信息,但 它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关 心的一个量,众数不受极端值的影响,这是它的一个优势,缺点 是当众数有多个且众数的频数相对较小时可靠性小,局限性大.
(2)为了提高大多数工人的积极性,管理者准备实行“每天定
额生产,超产有奖”的措施.如果你是管理者,从平均数、中位
数、众数的角度进行分析,你将如何确定这个“定额”?
链接中考
解:(1)x =(9×1+10×1+11×6+12×4+13×2+15×2+16×2
+19×1+20×1)÷20=13(个);
20.平均数、中位数和众数的选用PPT课件(华师大版)
知2-讲
例2 某公司10名销售员,去年完成的销售额情况如下表: 求销售额的平均数、众数、中位数; 今年公司为了调动员工积极性,提高年销售额,准 备采取超额有奖的措施,请根据的结果,通过比较, 合理确定今年每个销售员统一的销售额标准是多少 万元?
销售额/万元 3 4 5 6 7 8 10
人数
132 1 1 1 1
若确定以中位数5万元为标准,多数人能完成 或超额完成,少数人经过努力也能完成,故以5万 元为标准较合理.
总结
知2-讲
选择具有代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数作
为这组数据的代表值;当有极端值时,用中位数或 众数作为这组数据的代表值.
知2-练
1 某公司员工的月工资如下:
知2-讲
导引:利用公式x=- (n1x1+x2+…+xn)计算平均数; 将10名销售员去年的销售额按从小到大的顺序排 列为3,4,4,4,5,5,6,7,8,10,最中间两 个数均为5,所以中位数为 5 5 =5(万元);出现 2 次数最多的数据为4,所以众数为4万元; 制定的标准要使大多数人能够完成,才能起到
知2-练
2 从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产
品,对其使用寿命进行跟踪调查,结果如下(单位:年): 甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12. 三个厂家在广告中都称该产品使用寿命为8年,根据调查结 果判断厂家在广告中分别运用了平均数、众数、中位数中哪 一个反应集中趋势的特征量. 甲:________,乙:________,丙:________.
知2-讲
为准备班级的新年晚会,班长对全班同学爱吃香蕉、 橘子、柚子中的哪一种水果作了民意调查. 最终买 什么水果,显然由众数决定较好,因为它代表了全 班多数同学的意愿.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、 可选用哪个公式求这组数据的平均数?所求得的平 均数能说明什么?
7
1、 平均数反映一组数据中各数据的平均大小,最为常用;
2、一组数据按大小排序后,中位数将一组数据平分为两部 分,这组数据以中位数分界,大于或小于这个数的个数相等;
3、众数反映了一组数据中出现次数最多的数据。
注意: 1、统计数据个数时,相等的数据都应分别算作一个数据; 2、 一组数据可以有不止一个众数,也可以没有众数.
人数
2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位 数与平均数
6
成绩 (单位:米)
1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90
人数
2
3
2
3
4
1
1
1
分析回答下列问题:
1、 表中共有多少个数据?其中哪个数据出现的次数最多? 这组数据的众数是什么?说明什么?
2、 表里的17个数据可看成是按什么顺序排列的?其中第 几个数是最中间的数据?这组数据的中位数是多少?说明 什么?
众数
定义:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
(1) 众数是一组数据中的原数据,而不是相应的次 数,这一点学生很容易混淆. (2) 一组数据中的众数有时不只一个,如数据2,3,-1,2,1,3中,2和3都出现了两次,它们都是这组数据的众 数. (3)有时一组数据中的每一个数据出现次数都相同 的时候,则称没有众数.如2,2,3,3,4,4,这组数据就没有 众数.
55,57,61,62,98 中位数定义:将一组数据从小到大 引依出次中排位列数的,定把义处: 将在一最组数中据间从位小到置大的依一次排列,把处 在个最数中据间位(置或的最一个中数间据两叫个做这数组据数的据的平中均位数.
数)叫做这组数据的中位数.
3
类比三个统计量: 联系:三个统计量都可代表一组数据,表示数据的“平 均水平,中等水平或多数水平”,都反映数据的集中趋 区别:三个统计量从不同的势侧。面提供了一组数据的面貌.
1
练习:一家鞋店在一段时间销售了某种女鞋30双,其中各种 尺码的鞋的销售量如下表所示:
鞋的尺
码
22 22.5 23 23.5 24 24.5 25
(厘米)销售量Leabharlann (双)125
11
7
3
1
问: ①上述数据中,众数是什么? ②在这个问题里,鞋店比较关心的应该是什么?
2
中位数
请同学们看下面的问题: 在一次数学竞赛中,5名学生的成绩从低分到高分排列依次是:
4
三个数据代表的存在性和意义:
平均数
中位数
众数
存在性 意义
一个 平均水平
一个(奇、偶 有别)
中等水平
一个、多个或 没有
多数水平
5
例:在一次中学生田径运动会上,参加男 子跳高的17名运动员的成绩如下表所示:
成绩 (单位:米)
1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90
7
1、 平均数反映一组数据中各数据的平均大小,最为常用;
2、一组数据按大小排序后,中位数将一组数据平分为两部 分,这组数据以中位数分界,大于或小于这个数的个数相等;
3、众数反映了一组数据中出现次数最多的数据。
注意: 1、统计数据个数时,相等的数据都应分别算作一个数据; 2、 一组数据可以有不止一个众数,也可以没有众数.
人数
2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位 数与平均数
6
成绩 (单位:米)
1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90
人数
2
3
2
3
4
1
1
1
分析回答下列问题:
1、 表中共有多少个数据?其中哪个数据出现的次数最多? 这组数据的众数是什么?说明什么?
2、 表里的17个数据可看成是按什么顺序排列的?其中第 几个数是最中间的数据?这组数据的中位数是多少?说明 什么?
众数
定义:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
(1) 众数是一组数据中的原数据,而不是相应的次 数,这一点学生很容易混淆. (2) 一组数据中的众数有时不只一个,如数据2,3,-1,2,1,3中,2和3都出现了两次,它们都是这组数据的众 数. (3)有时一组数据中的每一个数据出现次数都相同 的时候,则称没有众数.如2,2,3,3,4,4,这组数据就没有 众数.
55,57,61,62,98 中位数定义:将一组数据从小到大 引依出次中排位列数的,定把义处: 将在一最组数中据间从位小到置大的依一次排列,把处 在个最数中据间位(置或的最一个中数间据两叫个做这数组据数的据的平中均位数.
数)叫做这组数据的中位数.
3
类比三个统计量: 联系:三个统计量都可代表一组数据,表示数据的“平 均水平,中等水平或多数水平”,都反映数据的集中趋 区别:三个统计量从不同的势侧。面提供了一组数据的面貌.
1
练习:一家鞋店在一段时间销售了某种女鞋30双,其中各种 尺码的鞋的销售量如下表所示:
鞋的尺
码
22 22.5 23 23.5 24 24.5 25
(厘米)销售量Leabharlann (双)125
11
7
3
1
问: ①上述数据中,众数是什么? ②在这个问题里,鞋店比较关心的应该是什么?
2
中位数
请同学们看下面的问题: 在一次数学竞赛中,5名学生的成绩从低分到高分排列依次是:
4
三个数据代表的存在性和意义:
平均数
中位数
众数
存在性 意义
一个 平均水平
一个(奇、偶 有别)
中等水平
一个、多个或 没有
多数水平
5
例:在一次中学生田径运动会上,参加男 子跳高的17名运动员的成绩如下表所示:
成绩 (单位:米)
1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90