欧拉图与哈密顿图

合集下载

欧拉图与哈密顿图

欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图
证明 若G是平凡图,结论显然成立。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图

例 “一笔划”问题——G中有欧拉 通路

实例
上图中,(1) ,(4) 为欧拉图
中国邮递员问题-模型
数学模型:
构造无向权图G,以道路为边,路长为权 问题的解 ——G 中包含所有边的回路权最小,称为 最优回路(未必是简单回路)。 当G是欧拉图,则最优回路即欧拉回路。
周游世界的游戏
1859 哈密尔顿 “周游世界”游戏: 20个城市,每个城市恰游一次,回到出发地

a
10 12 9
从a出发的“较好的”回路 , a
7
14Biblioteka b7 13 11d
6
c
8
e
5
b
14
a
c
5
6
8
长度:40
e
e
d
算法精度下限
设算法所得的回路长度为d, d0 是最小H_
回路的长度,G有n点,则

d / d0 ½ [ln(n)+1]+ ½
改进:
如果在已有回路中,W(vi,vj)+ W(vi+1,vj+1)< W(vi,vi+1)+ W(vj,vj+1),
货郎担/旅行推销员(TSP)问题:
在一个赋权的完全图中,找出一个具有最小权 的H_回路,也即回路边的权之和最小 对该赋权图上的边,满足三角不等式(距离不 等式) W(a,b) W(a,c) + W(c,b)
数学模型
构造无向带权图G, VG中的元素对应于每个城市, EG中每 个元素对应于城市之间的道路,道路长度用相应边的权表示。 则问题的解对应于G中包含所有边的权最小的哈密尔顿回路。 G是带权完全图,总共有n!/2条哈密尔顿回路。因此,问题 是如何从这n!/2条中找出最短的一条 eg:含20个顶点的完全图中不同的哈密尔顿回路有约6000万 亿条-(1.216451017)/2,若机械地检查,每秒处理10万条,需 2万年

欧拉图与哈密顿图

欧拉图与哈密顿图

例15.3 在图15.6中给出的三个图都是 二部图。它们中的那些是哈密顿图?哪些 是半哈密顿图?为什么? 解 在(1)中,易知互补顶点子集 V1={a,f},V2={b,c,d,e}。设此二部图为G1, 则G1=<V1,V2,E>. p(G1-V1)=4>|V1|=2,由 定理15.6及其推论可知,G1不是哈密顿 图,也不是半哈密顿图。
是在G'中存在u到v的路径Г2,显然Г1 与Г2边不重,这说明u,v处于Г1∪Г2 形成的简单回路上。
三、求欧拉图中欧拉回路的算法
设G为欧拉图,一般来说G中存 在若干条欧拉回路,下面介绍两种求 欧拉回路的算法。
1.Fleury算法,能不走桥就不走桥: (1)任取v0∈V(G),令P0=v0. (2)设Pi=v0e1v1e2…eivi已经行遍, 按下面方法来从E(G)-{e1,e2,…,ei}中选 取ei+1: (a)ei+1与vi相关联; (b)除非无别的边可供行遍, 否则ei+1不应该为Gi=G-{e1,e2,…,ei}中的 桥。 (3)当(2)不能再进行时,算法停止。
p(C-V1)达到最大值|V1|,而当V1中顶点在C 上有彼此相邻的情况时,均有p(C-V1)<|V1|, 所以有p(C-V1)≤|V1|.而C是G的生成子图, 所以,有p(G-V1)≤p(C-V1)≤|V1|. 本定理的条件是哈密顿图的必要条件, 但不是充分条件。可以验证彼得松图(图 14.3中(1)所示)满足定理中的条件,但 它不是哈密顿图。当然,若一个图不满足 定理中的条件,它一定不是哈密顿图。
2.逐步插入回路法 设G为n阶无向欧拉图,V(G)={v1,v2,…,vn}, 求G中欧拉回路的逐步插入回路法的算法如下: 开始 i←0,v*=v1,v=v1,P0=v1, G0=G. 1.在Gi中任取一条与V关联的边 e=(v,v'),将e及v’加入到Pi中得到Pi+1. 2.若v '=v*,转3,否则i←i+1,v=v' , 转1.

8.欧拉图与哈密顿图

8.欧拉图与哈密顿图
所有圈遍历依次,显然符合v0是可以任意遍历的条件,但v0所不在的圈上的边没有经过

这与v0是可以任意遍历的相矛盾。
综合4.1.1和4.1.2,如果v0是任意行遍的,则G-v0中无圈。
2)充分性:4.2 证明如果G-v0中无圈,则v0是任意行遍的:
显然v0是G中所有圈的共同交点。
4.2.1 如果G是由1个圈组成,从v0出发,行遍这个圈。此时G上所有的边被遍历,形成一
(V v11,v12,...,v1n,V,v21,v22,...v2nV,v3.....,V)其实很容易证明,割点两侧的圈都
是连通的,且度数都为偶数,必要性得证
充分性
每个块都是欧拉图, 都是圈 其中得割点是V1,V2...,Vn,那么 V1,v11,v12,...,V2,v
G上哈密尔顿回路,G是哈密尔顿图。
11.,这道题又要画图,所以略,构成图的模型:把每个人看作顶点,如果两个人都会某种
语言,则这两个顶点之间连边!,所以能画出一个图,然后再在这个图上找出一条哈密顿
回路即可!
我找到 b a c e g f d b
12.今有2k个人去完成k项任务,已知每个人均能与另外2k-1个人中的k个人中的任何一个
那么内圈、外圈中分别还有1个点没有连接,根据回路的性质,外圈必须有2条1类边分别
和外圈的该点连接成一个通路,该通路的两端分别连接பைடு நூலகம்4条3类边中2条在外圈的端点,
显然此时至少有2条3类边不可能在回路中。因此不可能存在4条3类边的回路。
综合8.1和8.2,彼得森图不是哈密尔顿图。
9.设G为n阶无向简单图,边数m=1/2(n-1)*(n-2)+2,证明G为哈密顿图,再举例说明,当

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图

(b)中去掉结点u1和u2以后,p(G–{ u1,u2})=3, 由此 可以判定,这两个图都不是哈密尔顿图。
用正十二面体代表地球。游戏题的内容是:沿着正十二面体的棱寻
找一条旅行路线,通过每个城市恰好一次又回到出发城市。这便是 Hamilton回路问题。
欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。 具有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次 且仅一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈 密尔顿图。
解一
a
a:说英语; b:说英语或西班牙语; C: 说英语,意大利语和俄语; d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
b
d
c
e g
f
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边 (即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为 G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以 G是连通图. 因此, 上述7个人中任意两个人能交谈.
欧拉图算法
int main() { memset(g,0,sizeof(g)); cin >> n >> e; for (i = 1; i <= e; i++) { cin >> x >> y; g[y][x] = g[x][y] = 1; du[x]++; //统计每个点的度 du[y]++; } start = 1; // 如果有奇点,就从奇点开始寻找,这样找到的就是 for (i = 1; i <= n; i++) // 欧拉路。没有奇点就从任意点开始, if (du[i]%2 == 1) // 这样找到的就是欧拉回路。(因为每一个点都是偶点) start = i; circuitpos = 0; find_circuit(start); for (i = 1; i <= circuitpos; i++) cout << circuit[i] << ' '; cout << endl; return 0; }

欧拉图于哈密顿图

欧拉图于哈密顿图
§15.1 欧拉图
一、历史背景--哥尼斯堡七桥问题
}
1
二、定义 欧拉通路 (欧拉迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的回路。 欧拉图 ——存在欧拉回路的图。
}
2
三、无向图是否具有欧拉通路或回路的判定
(3) 具有哈密尔顿回路而没有欧拉回路,
解:
(4) 既没有欧拉回路,也没有哈密尔顿回路。
解:
}
14
作业
习题十五 2、11、14、15、20
}
15
余顶点的入度均等于出度, 这两个特殊的顶点中,一个 顶点的入度比出度大1,另一 个顶点的入度比出度小1。
D 有欧拉回路( D为欧拉图) D 连通, D 中所有
顶点的入度等于出度。
}
6
例3、判断以下有向图是否欧拉图。
}
7
§15.2 哈密尔顿图
一、问题的提出
1859年,英国数学家哈密尔顿,周游世界游戏。
(2)
解:是哈密尔顿图,
存在哈密尔顿回路和通路。
}
11
例1、判断下图是否具有哈密尔顿回路,通路。
(3)
解:不存在哈密尔顿回路,
也不存在哈密尔顿通路。
}
12
例2、画一个无向图,使它
(1) 具有欧拉回路和哈密尔顿回路,
解:
(2) 具有欧拉回路而没有哈密尔顿回路, 解:
}
13
例2、画一个无向图,使它
G 中只有两个奇度 G 有欧拉通路 G 连通,
顶点(它们分别是欧拉通路的
两个端点)。
G有欧拉回路( G为欧拉图) G 连通, G 中均

离散数学--第十五章 欧拉图和哈密顿图

离散数学--第十五章 欧拉图和哈密顿图
13
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图

04
欧拉图与哈密顿图的应用 场景
欧拉图的应用场景
路径规划
欧拉图可以用于表示从一 个点到另一个点的路径, 常用于物流、交通和旅行 等领域。
网络流问题
欧拉图可以用于解决最大 流和最小割等问题,在网 络优化、资源分配和计划 制定等方面有广泛应用。
组合优化
欧拉图可以用于表示组合 优化问题,如旅行商问题、 排班问题等,是求解这些 问题的常用工具。
一个图存在哈密顿回路当且仅当其所有顶点的度都大于等于2 。
哈密顿图的性质
哈密顿图中的所有顶点的度都 大于等于2。
一个图存在哈密顿回路当且仅 当其所有顶点的度都大于等于2。回 路。
哈密顿图的构造方法
添加边法
在所有顶点的度都大于等于2的图 中,不断添加边,直到所有顶点的 度都大于等于2,最后得到的图就 是哈密顿图。
哈密顿图的应用场景
社交网络分析
哈密顿图可以用于表示社交网络 中的路径,分析人际关系和信息
传播路径。
生物信息学
哈密顿图可以用于表示基因组、蛋 白质组等生物信息数据,进行基因 序列比对、蛋白质相互作用分析等。
推荐系统
哈密顿图可以用于表示用户和物品 之间的关系,进行个性化推荐和智 能推荐。
欧拉图与哈密顿图在计算机科学中的应用
欧拉图的构造方法
欧拉图的构造方法1
总结词
通过添加一条边将所有顶点连接起来, 从而形成一个欧拉图。
详细描述了两种构造欧拉图的方法, 为实际应用中构造欧拉图提供了思路。
欧拉图的构造方法2
通过将两个欧拉图合并,并连接它们 的所有顶点,从而形成一个新的欧拉 图。
02
哈密顿图
哈密顿图的定义
哈密顿图(Hamiltonian Graph)是指一个图存在一个遍历其 所有边且每条边只遍历一次的路径,这个路径称为哈密顿路径, 如果该路径的起点和终点是同一点,则称这个路径为哈密顿回 路。

图论第4章

图论第4章
(2) 对于G的每个圈上的边来说,在W中重复的边的总权值 不超过该圈非重复边总权值。 16
例:某博物馆的一层布置如下图,其中边代表走廊,结点 e是入口,结点g是礼品店,通过g我们可以离开博物馆。请找 出从博物馆e进入,经过每个走廊恰好一次,最后从g处离开 的路线。
d j i e b h g c
a
f
21
充分性:已知: (1) G的每条边在W中最多重复一次;
(2) 对于G的每个圈上的边来说,在W中重复的边的总权值 不超过该圈非重复边总权值。
只需证明:任何两条包含G中所有边的闭途径W1与W2, 如果满足定理3的两个条件,则它们有相同的总权值。 设Y1与Y2分别表示W1与W2中重复出现的边集合。 我们先证明:对于任意一个圈C*,如果满足:
eYi E (C* )

w(e)
eE (C* ) Yi

w(e),(i 1, 2)
有:
w(e) w(e)
eY1 eY2
22
Y1与Y2分别表示W1与W2中重复出现的边集合。 令:Y= (Y1-Y2)∪ (Y2-Y1) 断言1:G[Y]的每个顶点度数必然为偶数。 考虑:为何添加Y1或Y2中的边? 首先,对于G中任意点v, 如果d G (v)是奇数,那么Y1与 Y2中与v关联的边数均为奇数; 如果d G (v)是偶数,那么Y1与Y2中与v关联的边数均为偶数。 其次,设Y1与Y2中与v关联的边数分别为y1与y2, 其中相 同的边数为y0,那么,Y中与v关联的边数为:
(3)
(1) :
令Z1是这个划分的一个圈。若G仅由Z1组成,则G显然是欧拉 图。否则,有另外一个圈Z2与Z1有一个公共点v,从v开始并 且由Z1和Z2相连组成的通道是含有这两个圈中各条边的一条 闭迹。继续这个过程,我们可以构成一条含有G的所有边的 闭迹;从而G是欧拉图。 v2 v4 v1 v5 v3

第三章 哈密顿图

第三章 哈密顿图
– –
(1) G的每条边在G*至多重复一次;
(2) G的每个(初级)圈在G*重复边权的和不超过该圈 权的一半。

算法过程

1.用Dijstra算法求所有奇度顶点对之间的最短路径。 (若G是欧拉图,直接用Fleury算法) 2.以G中所有奇度顶点构造带权完全图G2k, 每边的 权是两端点间最短路径长度。
1
2
20
17
19
18Biblioteka 义: 图G中的一圈,若它通过G中每个顶 点恰好一次,则该圈称为哈密尔顿圈,具 有哈密尔顿圈的图称为哈密尔顿无向图。 完全图必是哈密尔顿图。
从定义可知,一个图的Hamilton圈与
Euler环游是很相似的,差别在于Hamilton
圈是环游G的所有顶点圈(点不重,当然
边也不重),而Euler环游是环游G的所
道的交叉点,街道长度用相应边的权表示。 则问题的解对应于G中包含所有边的权最小 的圈,称为最优圈(注意:未必是简单圈)。 当G是欧拉图,则最优圈即欧拉圈。 若G不是欧拉图,则通过加边来消除G中的 奇度顶点,要求使加边得到的欧拉图G'中重复边
的权和最小。
C是带正权无向连通图G中的最优圈当且仅当对 应的欧拉图G*满足:
边外,,每经过G中顶点xi(包括a和b),都为顶点xi
贡献2度,而C的第一边为a贡献1度,C的最后一条
边为b贡献1度.因此,a和b的度数均为奇数,其余
结点度数均为偶数.
充分性:设连通图G恰有两个奇数度结点,
不妨设为a和b,在图G中添加一条边e={a,b} 得G’,则G’的每个结点的度数均为偶数,因 而G’中存在欧拉圈,故G中必存在欧拉路.
J K
例3 一张纸上画有如下图所示的图,你能否用剪刀 一次连续剪下图中的三个正方形和两个三角形?

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图

图论中的哈密顿图与欧拉图图论是数学的一个分支,研究图的性质及其应用。

在图论中,哈密顿图和欧拉图是两个重要的概念。

本文将介绍哈密顿图和欧拉图的定义、性质和应用,并探讨它们在现实生活中的实际应用。

一、哈密顿图的定义与性质哈密顿图是指一种包含了图中所有顶点的路径的图。

具体来说,哈密顿图是一个简单图,其中任意两个不同的顶点之间都存在一条路径,使得该路径经过图中的每个顶点且不重复。

哈密顿图具有以下的性质:1. 哈密顿图是一个连通图,即图中的每两个顶点之间都存在通路。

2. 图中每个顶点都是度数大于等于2的点,即每个顶点都至少连接着两条边。

二、欧拉图的定义与性质欧拉图是指一种可以通过图中每条边恰好一次的路径来穿越图的图。

具体来说,欧拉图是一个简单图,其中经过图中每条边且路径不重复的路径称为欧拉路径,而形成闭合回路的欧拉路径称为欧拉回路。

欧拉图具有以下的性质:1. 每个顶点的度数都是偶数,即每个顶点都连接着偶数条边。

2. 欧拉图中至少有两个连通分量,即图中有至少两个不同的部分可以从一部分通过路径到达另一部分。

三、哈密顿图与欧拉图的应用哈密顿图和欧拉图在实际生活中有广泛的应用,下面将分别介绍它们的应用领域。

1. 哈密顿图的应用:哈密顿图在旅行商问题中有着重要的应用。

旅行商问题是指一个旅行商要依次拜访若干个城市,然后返回起始城市,而要求找到一条最短的路径使得每个城市都被访问一次。

哈密顿图可以解决这个问题,通过寻找一条哈密顿路径来确定最短的路径。

2. 欧拉图的应用:欧拉图在电路设计和网络规划中发挥着重要的作用。

在电路设计中,欧拉图可以帮助我们确定如何安排电线的布线以最大程度地减少电线的长度和复杂度。

在网络规划中,欧拉图可以用于确定如何正确地连接不同的网络节点以实现高效的信息传输。

四、结论哈密顿图和欧拉图是图论中的两个重要概念。

哈密顿图是一种包含了图中所有顶点的路径的图,而欧拉图是一种可以通过图中每条边恰好一次的路径来穿越图的图。

欧拉图及哈密顿

欧拉图及哈密顿
哈密顿路径是指一条遍历图的所有顶 点的路径,这条路径的起点和终点是 同一点,但路径上的边可以重复。
哈密顿图的性质
哈密顿图具有连通性,即任意两 个顶点之间都存在一条路径。
哈密顿图的顶点数必须大于等于 3,因为至少需要3个顶点才能 形成一条遍历所有顶点的路径。
哈密顿图的边数必须为奇数,因 为只有奇数条边才能形成一条闭
欧拉图及哈密顿
• 欧拉图 • 哈密顿图 • 欧拉图与哈密顿图的应用 • 欧拉回路与哈密顿回路 • 欧拉路径与哈密顿路径
目录
01
欧拉图
欧拉图的定义
总结词
欧拉图是指一个图中存在一条路径,这条路径可以遍历图中的每条边且每条边 只遍历一次。
详细描述
欧拉图是由数学家欧拉提出的一种特殊的图,它满足特定的连通性质。在欧拉 图中,存在一条路径,这条路径从图的一个顶点出发,经过每条边一次且仅一 次,最后回到起始顶点。
互作用网络的研究。
04
欧拉回路与哈密顿回路
欧拉回路的概念与性质
概念
欧拉回路是指一个图形中,从一点出 发,沿着一条路径,可以回到起始点 的路径。
性质
欧拉回路必须是连续的,不能中断, 也不能重复经过同一条边。此外,欧 拉回路必须是闭合的,起始点和终点 必须是同一点。
哈密顿回路的概念与性质
概念
哈密顿回路是指一个图形中,存在一 条路径,该路径经过了图中的每一条 边且每条边只经过一次。
随机构造法
通过随机选择边和顶点,不断扩展图,直到满足哈密顿图的条件。这种方法需要大量的计 算和随机性,但可以用于构造大规模的哈密顿图。
03
欧拉图与哈密顿图的应用
欧拉图在计算机科学中的应用
算法设计
欧拉图理论是算法设计的重要基础,特别是在图算法和动态规划 中,用于解决诸如最短路径、最小生成树等问题。

欧拉图和哈密而顿图

欧拉图和哈密而顿图
15.1 欧拉图 欧拉(1707-1783):瑞士著名的数学家。13岁进入 欧拉 :瑞士著名的数学家。 岁进入 巴塞尔大学, 岁取得哲学硕士学位 岁取得哲学硕士学位。 巴塞尔大学,16岁取得哲学硕士学位。1736年, 年 他证明了欧拉定理, 他证明了欧拉定理,并解决了哥尼斯堡桥的问 从而成为图论的创始人。 题,从而成为图论的创始人。 定义15.1 通过图(无向图或有向图)中每一条边 通过图(无向图或有向图) 定义 一次且仅一次行遍图中所有顶点的通路称为欧 拉通路。通过图(无向图或有向图) 拉通路。通过图(无向图或有向图)中每一条 边一次且仅一次行遍图中所有顶点的回路称为 欧拉回路。具有欧拉回路的图称为欧拉图, 欧拉回路。具有欧拉回路的图称为欧拉图,具 有欧拉通路而无欧拉回路的图称为半欧拉图。 有欧拉通路而无欧拉回路的图称为半欧拉图。
16
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
到目前为止, 到目前为止,还没有找到哈密尔顿通路存在的充 分必要条件。下面介绍一个必要定理。 分必要条件。下面介绍一个必要定理。 定理15.6:设无向图 G=<V , E> 是哈密尔顿 G=<V, 定理 : 设无向图G=<V E>是哈密尔顿 图,则对V的每个非空真子集 均成立: 则对 的每个非空真子集S均成立: 的每个非空真子集 均成立 w(G-S) ≤|S| 其中, 中的顶点数, 表示G删去 其中, |S| 是S中的顶点数, w(G-S)表示 删去 中的顶点数 表示 删去S 顶点集后得到的图的连通分图的个数。 顶点集后得到的图的连通分图的个数。
9
15.欧拉图与哈密顿图 欧拉图与哈密顿图
例:用定理解决哥尼斯堡桥的问题
15.1 欧拉图
个结点为奇次数, 有4个结点为奇次数, ∴不存在欧拉回路,也不存在欧拉路径。 不存在欧拉回路,也不存在欧拉路径。 故要从一点出发经过桥一次且仅一次的路径, 故要从一点出发经过桥一次且仅一次的路径 , 再回到出发点是不可能的。 再回到出发点是不可能的。

离散数学中的欧拉图与哈密顿图

离散数学中的欧拉图与哈密顿图

欧拉图和哈密顿图是离散数学中的两个重要的图论概念。

它们分别研究了图中的路径问题,对于解决一些实际问题具有很大的应用价值。

欧拉图是指一个无向图中存在一条路径,经过图中的每条边一次且仅一次,这条路径称为欧拉路径。

如果这个路径的起点和终点重合,则称为欧拉回路。

而对于有向图,存在一条路径,使得经过每一个有向边恰好一次,称为欧拉有向路径,如果该路径起点和终点相同,则称为欧拉有向回路。

1722年,瑞士数学家欧拉首次提出了这个概念,并证明了一系列欧拉图的性质。

欧拉图的性质是其路径的存在性。

既然有了这个概念,那如何判断一个图是不是欧拉图就是一个非常重要的问题。

根据欧拉图的定义,我们可以发现,图中的每个节点的度数都应该是偶数,否则该节点无法成为路径中的中间节点。

因此,一个图是欧拉图的充分必要条件是该图中每个节点的度数都是偶数。

哈密顿图是指一个图中存在一条路径,经过图中的每个顶点一次且仅一次,这条路径称为哈密顿路径。

如果这个路径的起点和终点重合,则称为哈密顿回路。

哈密顿图的概念由19世纪初英国数学家哈密顿引入,其研究对象是关于骑士巡游问题。

与欧拉图不同的是,哈密顿路径并没有一个十分明显的判定条件。

唯一已知的是某些图是哈密顿图,比如完全图和圈图。

至于一般的图是否存在哈密顿路径,目前尚无通用的判定方法。

这也是全世界许多数学家所面临的一个著名且具有挑战性的开放问题,被命名为“哈密顿路径问题”。

欧拉图和哈密顿图在实际问题中具有广泛的应用。

欧拉图的应用包括电子电路和网络的设计,路线规划等。

而哈密顿图的应用更多地涉及路径的优化问题,比如旅行商问题。

在实际应用中,我们常常需要通过对欧拉图和哈密顿图的研究,来寻找最优解或者设计最佳路径。

总的来说,离散数学中的欧拉图和哈密顿图是两个重要的图论概念,它们研究的是图中的路径问题。

欧拉图的判定条件相对明确,而哈密顿图的判定则是一个尚未完全解答的开放问题。

这两个概念在实际中具有广泛的应用,对于解决一些路径优化问题具有重要的参考价值。

图论 第4章

图论 第4章
说明: (1) 若G是Euler图,则G的任何Euler环游都是最优环游. (2) 若G 不是Euler图,用添加重复边以使G成为欧拉图G* 的方法时,添加的重复边具有的特征由如下定理给出. 定理3 若W是包含图G的每条边至少一次的闭途径,则 W具有最小权值当且仅当下列两个条件被满足:
(1) G的每条边在W中最多重复一次;
13
§ 4.3中国邮路问题
问题:邮递员从邮局出发,递送邮件,然后返回 邮局,要求辖区每条街至少走一遍且走过的总路 程最短,应如何选择路线?(1962年管梅谷)
图论模型:在一个连通的具有非负权的赋权图G中找 一条包含每条边(允许重复)且边权之和最小的闭途径.
称之为最优环游。 对该问题 v 5 v 3 2 1 2 (1) 若图G是一个欧拉图,则找出 G的欧拉回路即可。 2
第四章 欧拉图与哈密尔顿图
回忆: 定义 给定图G = (V, E),w = v0e1v1e2…ekvk 是G 中点边 交替组成的序列,其中 vi∈V,ei∈E,若w满足 ei 的端点 为 vi-1 与 vi,i = 0,1,…, k,则称w为一条从起点 v0 到终点 vk 的长为 k 的途径(或通道或通路), 简称(v0, vk)途径。 边不重复的途径称为迹 (简单通路);任意两点都不同 的途径称为路(基本通路)。显然路必为迹。 闭途径: 起点和终点相同的长为正的途径。 闭迹也称为回路。 圈: 起点和内部顶点(非起点和终点的点)两两不相同 的闭迹。 k(奇,偶)圈:长为k (奇,偶)的圈。 3圈常称为三角形。
e12 e6
v6
e11 e5
v7
v5
解 从v1出发的一条欧拉回路为:
P12 = v1e1v2e2v3e3v4e4v5e5v6e6v7e7v8e9v2e10v4e11v6e12v8e8v1

离散数学15 欧拉图与哈密顿图

离散数学15 欧拉图与哈密顿图
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。

欧拉图和哈密顿图

欧拉图和哈密顿图

例如,由定理可知,下图 (a)图为欧拉图,本图 既v成圈8 可圈画v6之v以在1并(看vc2)(成v中为3 圈v)清。4 vv晰1将5v起v2(6av见v)87分v,v1解8,将v成1v与42若个v圈3干圈vv42个画vv24边在,v6不(vb4v)8重v中5v2的v)之6,圈v并也4,的(可两v并6看个v7 不是(a)图特有性质,任何欧拉图都有这个性质。
尽管讨论哈密顿通路和哈密顿回路在形式上与欧
拉通路和欧拉回路非常相似,但遗憾的是到目前为止, 仍然没有找到一个合适的条件来作为判断哈密顿通路 或哈密顿回路存在的充要条件。不过,可以给出哈密 顿通路和哈密顿回路存在的充分条件或必要条件。
定理9.2.1设无向图G=<V, 的任意非空子集,则
E>是哈密顿图,V1是V
下面给出一些哈密顿图的充分条件。
定理9.2.2设G=<V, E>是具有n个节点的简单无向图,若
对任意的u, v∈V均有
deg(v) +deg(u) ≥n-1
则G中存在哈密顿通路。
容易看出,定理9.2.2中的条件对图中是否存在哈密顿路 是充分而不必要的。
如图9.2.6所示的六边形G,虽然任意两个节点度数之和 等于4<6-1(n=6),但G中却显然有哈密顿路(实际上G是哈密 顿图)。
只要数一下图中节点的度数即可。
❖ 9.1.4 欧拉图的应用 一笔画问题 所谓“一笔画问题”就是画一个图形,笔不离纸,每条 边只画一次而不许重复地画完该图。“一笔画问题”本质上 就是一个无向图是否存在欧拉通路(回路)的问题。如果该 图为欧拉图,则能够一笔画完该图,并且笔又回到出发点; 如果该图只存在欧拉通路,则能够一笔画完该图,但笔回不 到出发点;如果该图中不存在欧拉通路,则不能一笔画完该 图。

第13节欧拉图与哈密顿图

第13节欧拉图与哈密顿图
18/25
集合与图论
哈密顿图的充分条件之一
若顶点vir-1,(r=2,3,...,k)与顶点vp相邻, 则G 有哈密顿圈v1v2...vi(r-1)vpvp-1...virv1.
因此vp至少与v1,v2,...,vp-1中的k个顶点不相邻. vp的度数为h,于是h≤p-1-k,从而k+h≤p-1, 因此k与h中至少有一个小于p/2,G 中有一个顶 点的度小于p/2.
集合与图论
欧拉图的判别定理
若G2中还有边,则同样的方式,G2中有圈Z3,如 此等等,最后必得到一个图Gn,Gn中无边. 于是我们得到了G中的n个圈Z1,Z2,...,Zn,,它们是两 两无公共边的,因此,G的每条边在且仅在其中的一个 圈上,于是G的边集被划分为n个圈. 由于G是连通的,所以每个圈Zi至少与其余的某个 圈有公共顶点,从而图G由一些边不重的相互之间有公 6/25 共顶点的圈构成.
19/25
集合与图论
哈密顿图的充分条件之二
定理3 设G是有p(p≥3)个顶点的图,如果 对G的任意一对不相邻的顶点u和v,均有 degu+degv≥p, 则G是一个哈密顿图. 只需证明p(p≥3)个顶点的每个非哈密顿图中至少 有两个不相邻的顶点u和v,有degu+degv≤p-1即可. 刚才的证明中的v1,vp就满足这个性质.
22/25
集合与图论
实 例
例4:某次国际会议8人参加,已知每人至少与其余7 人中的4人有共同语言,问服务员能否将他们安排在 同一张圆桌就座,使得每个人都与两边的人交谈? 解 做无向图G=<V,E>, 其中 V={v| v为与会者}, E={{u,v} | u,vV且u与v有共同语言,且u v}. 易知G为无向图且vV, deg(v)4,于是,u,vV, 有 deg(u)+deg(v) 8,可知G为哈密顿图. 服务员在G中 找一条哈密顿圈C,按C中相邻关系安排座位即可.

15欧拉图与哈密顿图

15欧拉图与哈密顿图
问题转化为在图中找一条哈密顿回路. ABDFGECA即可.
哈密顿图的判定 定理1(必要条件): 设无向图G=<V, E>是哈密顿 图, V1是V的任意非空子集, 则p(G-V1)≤V1. 推论: 设无向图G=<V, E>是半哈密顿图, V1是V 的任意非空子集, 则p(G-V1)≤V1+1.
在Peterson图中, 虽然对任意顶 点集V1, 都满足p(G-V1)|V1|,但 它不是哈密顿图.
基本思想:能不走桥就不走桥
15.2 哈密顿图 定义1. 经过无向(有向)图中所有顶点恰好一次 的路(圈)称为哈密顿路(圈). 定义2. 具有哈密顿圈的图称为哈密顿图. 定义3. 具有哈密顿路但不具有哈密顿圈的图 称为半哈密顿图. 例1. 判断下列图形是否哈密顿图或半哈密顿图.
半哈密顿图 哈密顿图
都不是
例4. 判断下列有向图是否欧拉图或半欧拉图.
都不是 半欧拉图
欧拉图
一笔画问题:从某点出发,不间断地画完整个图. 即在图中找出欧拉通路(回路).
Fleury算法: (1) 任取v0∊V(G), (2) 设Pi=v0e1v1e2eivi,
若E(G)-{e1,e2,ei}中没有与vi关联的边, 则计 算停止; 否则在vi关联的边中优先选择非桥的边 添加. (3) 令i=i+1, 返回(2).
定理2(充分条件): 设G=<V, E>是无向简单图. 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|-1, 则G中存在哈密顿路; 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|, 则G是哈密顿图.
推论: n阶无向简单图G中, n>2, (G)n/2, 则G是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉图与哈密顿图
Euler and Hamilton Graph
高晓沨 (Xiaofeng Gao)
Department of Computer Science Shanghai Jiao Tong Univ.
2016/12/6
欧拉道路与欧拉回路
Euler Path and Euler Circuit
2016/12/6
IntroductionToCS--Xiaofeng Gao
12
欧拉道路(欧拉迹)
【推论】若无向连通图G中只有2个度为奇数的顶 点。则G中存在欧拉道路。 【证明】设vi和vj是两个奇点,做G’=G+(vi,vj)。 则G’中各顶点的度都是偶数。由之前定理知,G’ 有欧拉回路,它包含(vi,vj)这条边。删去此边,即 可得到一条从vi到vj的简单道路,它恰好经过了G 的所有边,即是一条欧拉道路。
证明由欧拉回路定理或欧拉道路推论既得。
2016/12/6
IntroductionToCS--Xiaofeng Gao
20
范例 (2)
【例】 判断下图是否可以一笔画成:
a
b
d
c
e
G
a
b
e
d
c
H
2016/12/6
IntroductionToCS--Xiaofeng Gao
21
哈密顿回路与道路
【定义】无向图G的一条经过全部节点的初 级回路(道路)称为G的哈密顿回路(道路).
(i) 由定理条件:必有经过P中节点的初级回路C. (ii) 由连通性:C必可与C外某相邻节点构成比P更长的初
级道路.
2016/12/6
IntroductionToCS--Xiaofeng Gao
24
证明
【连通性】我们首先证明G是连通图。若G 有两个或更多个互不连通的连通分支,设 一个连通分支中有n1个节点,任取一个节 点v1。设另一个连通分支中有n2个节点,任 取一个节点v2。 因为d(v1)≤n1-1,d(v2)≤n2-1,故 d(v1)+d(v2)≤n1+n2-2<n-1,这与题设矛盾, 故G必连通。
29
H回路的判定
【定理】(Dirac,1952) 若简单图G(n≥3)的 任一节点的度≥n/2,则G有H回路.
【证明】利用上述推理求证。
2016/12/6
IntroductionToCS--Xiaofeng Gao
31
H回路的判定
【定理】(Ore,1960) 若简单图G(n≥3)的任 一对不相邻节点vi与vj都满足
2016/12/6
IntroductionToCS--Xiaofeng Gao
27
证明(续)
其次,我们从一条边出发构成一条路,证 明它是H道路。
设在G中有含p―1条边的路,p<n,它的 节点序列为v1, v2, …, vp。如果有v1或vp邻接 于不在这条路上的一个节点,我们可扩展 这条路,使它包含这一个节点,从而得到p 条边的路,否则,v1和vp都只邻接于这条路 上的节点。
9
其他解法
2016/12/6
IntroductionToCS--Xiaofeng Gao
11

【解】从任一点出发,比如 v1开始,可构造简单回路 C=(e1,e8,e6,e7,e2)。 G1=G―C中的v2、v5度非零 且是C中的节点。从v2开始G1 中有简单回路C1=(e3,e5,e4), 因此 C∪C1=(e1,e3,e5,e4,e8,e6,e7,e2) 包含了G的所有边,是G的欧 拉回路。
2016/12/6
IntroductionToCS--Xiaofeng Gao
19
解法(续)
由有向图的欧拉回路 推论,该图存在有向 欧拉回路,其中任何 一条都是原问题的解。 如下图即是一个合理 的方案。
2016/12/6
IntroductionToCS--Xiaofeng Gao
18
一笔画定理
【定理】一个图能一笔画成的充要条件是, G连通且奇顶点数为0或2。若奇点数为2, 则从其中一个奇顶点出发,终止于另一个 奇顶点上,完成一笔画。
d(vi) + d(vj) ≥n 则G有H回路.
【证明】由H道路判定定理知,G有H道路。 设其两端点是v1和vn,若G不存在H回路, 一定有d(v1) + d(vn)≤n-1<n,矛盾。
2016/12/6
IntroductionToCS--Xiaofeng Gao
30
范例
【例】举例说明存在不满足哈密顿图判定 的充分条件,但确实是哈密顿图。
【解】做正六边形A, A中所有顶点的度都为 2,则任意两个顶点的 度之和都是4,不满足 哈密顿图判定的充分 条件,但它显然是哈 密顿图。
2016/12/6
IntroductionToCS--Xiaofeng Gao
32
H回路的判定(闭合图引理1)
我们证明在这种情况下,存在一条回路包 含节点v1, v2, …, vp 。
2016/12/6
IntroductionToCS--Xiaofeng Gao
26
证明(续)
如果vp不邻接于vl-1,vm-1,…,vt-1中任一个,则vp 至多邻接p-k-1个节点,d(vp)≤p-k-1,d(v1)= k,故d(vp)+d(v1)≤p-k-1+k=p-1<n-1,即v1与 vp度数之和至多为n―2,矛盾。 至此,我们有包含所有节点v1, v2, …, vp的一条 回路,因为G是连通的,所以在G中必有一个 不属于该回路的节点vx与v1, v2, …, vp中的某一 个节点vk邻接.
2016/12/6
IntroductionToCS--Xiaofeng Gao
5
证明(3)
G1可能是非连通图,每个顶点的度保持为 偶数。这时,G1中一定存在某个度非零的 节点vi,同时也是C中顶点。否则C的顶点 与G1的顶点之间无边相连,与G是连通图矛 盾。同理,从vi出发,G1中所在的连通分量 内存在一条简单回路C1。C ∪ C1仍然是G 的一条简单回路,但它包括的边数比C多。 继续构造,最终有C’=C ∪ C1 ∪… ∪ Ck是 一条欧拉回路。
2016/12/6
IntroductionToCS--Xiaofeng Gao
4
欧拉图定理
【定理】图G是欧拉图的充要条件是G连通 且没有奇点。
【证】必要性 : 若G中有欧拉回路C,则C过每一条边有且仅 有一次。对任一节点v,如果C由ei进入v, 则 一定通过另一条边ej从v离开。因此v的度是 偶数。
2016/12/6
IntroductionToCS--Xiaofeng Gao
25
证明(续)
若v1邻接于vp,则v1, v2, …, vp, v1即为所求的 回路。假设与v1邻接的节点集是 {vl,vm,…,vt}(共k个),这里2≤l, m, …, j, …, t ≤p-1,如果vp邻接于vl-1,vm-1,…,vj-1,…,vt-1中 之一,譬如vj-1,则v1 v2 v3…vj-1 vp vp-1…vj v1 是所求的包含节点v1, v2, …, vp的回路。
2016/12/6
IntroductionToCS--Xiaofeng Gao
10
有向连通图的欧拉回路
【推论】若有向连通图G中各节点的正负度 相等,则G中存在有向欧拉回路.
证明方法类似之前定理,由G是有穷图且每 个节点正负度相等可以断定从G的任一节点 v0出发一定存在G的一条简单回路C。若 C=E(G),则得证。否则在G中删去C的各 边,找到新的简单回路C1,并添加至C中。 重复该步骤直至C成为欧拉回路为止。
2016/12/6
IntroductionToCS--Xiaofeng Gao
7
证明(2)
充分性 :由于G是有穷图,因此可断定从 G的任一节点v0出发一定存在G的一条简单 回路C。这是因为各节点的度都是偶数,所 以这条简单回路不可能停留在v0以外的某个 节点,而不能再向前伸延以构成闭通道C。
如果E=C, 则C就是欧拉回路,充分性得证。 否则在G中删去C的各边,得到G1=G―C。
2016/12/6
IntroductionToCS--Xiaofeng Gao
28
证明(续)
于是就得到一条包含p条边的路 (vx,vk,vk+1,…,vj-1,vp,vp-1,…,vj,…,v1,v2,…,vk-1)。 如下图所示,重复前述构造法,直到得到 n-1条边的路。
2016/12/6
IntroductionToCS--Xiaofeng Gao
简记为H回路(道路).
含有哈密顿圈的图称为哈密顿图,反之则 称为非哈密顿图。
对H回路问题
要求V(G) = n ≥ 3 只需考虑简单图,因为重边和自环不起作用
H回路的判定很困难,没有发现充分必要的 条件,只有若干充分条件.
2016/12/6
IntroductionToCS--Xiaofeng Gao
23
哈密顿圈
Hamilton Circuit
2016/12/6
IntroductionToCS--Xiaofeng Gao
22
H道路的判定
【定理】若简单图G的任意两节点vi与vj之间恒有 d(vi) + d(vj) ≥ n−1
则G中存在H道路.
证明思路: (1)由定理条件:G是连通图. (2)令P是G中最长初级道路,则P是H道路.若不是:
2016/12/6
IntroductionToCS--Xiaofeng Gao
15
范例
【例】七桥问题既不存在欧拉回路也不存 在欧拉道路.
2016/12/6
IntroductionToCS--Xiaofeng Gao
相关文档
最新文档