二重积分的计算与应用
二重积分的计算方法及应用
二重积分的计算方法及应用二重积分是微积分中重要的计算方法之一,它用于计算二元函数在平面区域上的累积效应。
本文将介绍二重积分的计算方法和其在实际问题中的应用。
一、二重积分的计算方法1. 矩形区域上的二重积分计算当被积函数在矩形区域上有明显的解析表达式时,可以使用矩形区域的特点进行计算。
首先,将矩形区域划分成小矩形,计算每个小矩形上函数值的加权累计,然后将这些小矩形的累加值相加得到最终结果。
2. 极坐标下的二重积分计算在某些情况下,函数的表达式在直角坐标下很难处理,但在极坐标下却具有较简单的形式。
对于极坐标下的二重积分计算,我们需要根据被积函数的性质选择适当的极坐标变换,并利用极坐标系下的面积微元进行计算。
3. 变量替换法变量替换是一种常用的二重积分计算方法。
通过引入新的变量替换原有的积分变量,可以简化被积函数的形式,使问题变得更易处理。
变量替换法的关键在于选择合适的变换关系,并确定新的积分范围。
4. 利用对称性简化计算当被积函数具有一定的对称性时,我们可以利用对称性简化计算。
例如,如果被积函数关于某个坐标轴对称,可以将积分区域关于对称轴进行映射,再利用对称性将两边的积分结果相等。
二、二重积分的应用1. 物理学中的应用二重积分在物理学中有广泛的应用。
例如,通过对平面区域上的力场进行二重积分计算,可以求解物体的质心、转动惯量等物理量。
二重积分还可以用于计算电场、磁场等物理场的分布情况。
2. 统计学中的应用统计学中的某些问题可以通过二重积分来求解。
例如,在概率密度函数已知的情况下,可以通过二重积分计算随机变量落在某一区域内的概率。
这在统计推断和假设检验中有着重要的应用。
3. 经济学中的应用在经济学中,二重积分可以用于计算产量、收入、消费等指标。
通过对经济模型中的生产函数或效用函数进行二重积分计算,可以分析经济变量之间的相互作用关系。
4. 工程学中的应用工程学中常常需要对平面区域上的物理量进行计算和分析。
二重积分的计算与应用
二重积分的计算与应用在微积分中,二重积分是一种对二维平面上的函数进行求和的数学工具。
它广泛应用于物理、经济学、工程学以及其他领域。
本文将介绍二重积分的计算方法以及其在实际问题中的应用。
一、二重积分的计算方法二重积分可以通过多种方法进行计算,包括直接计算、极坐标变换和换元积分等方法。
1. 直接计算直接计算是最常用的方法之一,它将二重积分分解为两个一元积分的乘积。
假设要计算的函数为f(x, y),定义在区域D上,可以将二重积分表示为:∬D f(x, y) dA其中dA表示面积元素。
可以通过将区域D划分为小的面积元素,并在每个面积元素上进行函数值的计算,然后对所有面积元素求和,最终得到二重积分的结果。
2. 极坐标变换极坐标变换是一种常用的简化二重积分计算的方法,特别适用于具有旋转对称性的函数。
通过将直角坐标系下的变量x和y表示为极坐标下的变量r和θ,可以将二重积分转化为极坐标下的形式。
例如,对于函数f(x, y),可以进行如下的极坐标变换:x = rcosθy = rsinθ同时,面积元素dA可以表示为:dA = rdrdθ将函数f(x, y)和面积元素dA用极坐标形式表示后,就可以将二重积分转化为对r和θ的一元积分进行计算。
3. 换元积分换元积分是一种将二重积分转化为更简单形式的计算方法。
通过选择适当的变量替换,可以减小积分的难度。
例如,当被积函数具有形如f(x, y) = g(x + y)的形式时,可以进行变量替换u = x + y,将二重积分转化为对u的一元积分进行计算。
二、二重积分在实际问题中的应用二重积分在各个领域中都有广泛的应用,下面将介绍二重积分在物理学和经济学中的一些具体应用。
1. 物理学中的应用在物理学中,二重积分可以应用于计算质心、质量、转动惯量等物理量。
例如,计算平面上杂质浓度分布可以利用二重积分来求解。
通过将杂质浓度表示为函数f(x, y),然后计算其在给定区域上的二重积分,就可以得到平均浓度。
二重积分的计算方法与应用
二重积分的计算方法与应用二重积分是微积分中的一个重要概念,用于计算平面区域上的某一函数在该区域上的总体积量。
在本文中,我们将介绍二重积分的计算方法与应用。
首先,我们将讨论二重积分的基本概念和计算方法。
假设有一个平面区域D,可以用一个闭合曲线C来描述。
我们将函数f(x, y)定义在区域D内的每一个点上,并且假设f(x, y)在D上连续。
那么在D上的二重积分可以表示为:∬D f(x, y) dA其中,dA表示面积元素,其大小等于dxdy。
要计算二重积分,我们可以将区域D划分成许多小的面积元素,然后对每个面积元素上的函数值进行加权求和。
通常可以使用二重积分的累次积分形式来计算,可以按顺序进行x方向的积分,然后再进行y方向的积分。
在具体计算二重积分时,可以根据问题的特点选择不同的计算方法。
下面介绍常见的二重积分计算方法:1. 矩形坐标系下的二重积分:在矩形坐标系下,将区域D投影到xy平面上,可以得到一个矩形R。
这时,二重积分可以转化为对两个变量的累次积分,其中外层积分表示对x的积分,内层积分表示对y的积分。
通过对x和y的积分限进行适当选择,可以将二重积分转化为两个定积分的计算。
2. 极坐标系下的二重积分:在某些问题中,使用极坐标系进行二重积分计算可以更加简洁。
通过将区域D在极坐标系下的表示,可以将二重积分转化为对极坐标下的两个变量的累次积分。
在计算时,可以通过选择适当的极坐标系下的积分限来简化计算过程。
3. 对称性的利用:在某些问题中,可以利用区域D的对称性简化二重积分的计算。
通过观察函数f(x, y)的对称性,可以改变积分限或者变量的顺序,从而简化计算的过程。
接下来,我们将讨论二重积分在实际问题中的应用。
1. 面积与质量:二重积分可以用来计算平面区域的面积。
将函数f(x, y)设为1,即可得到区域D的面积。
此外,如果区域D上的密度函数为ρ(x, y),那么通过计算二重积分∬D ρ(x, y) dA,可以得到区域D的质量。
二重积分的计算及其具体运用
二重积分的计算及其具体运用二重积分是多元积分学的内容,它是以多元函数的一些重要性质及计算为基础的,例如多元函数的表示法、连续性、偏导与全微分及极值的求法等,在一元函数积分学的基础上,我们知道定积分是某种确定形式的和的极限,其定义的方法可以简单地记为“分割、求和、取极限”,本文所要概括的二重积分的计算是将这种极限的思想推广到空间中,本文将介绍二重积分的概念与性质、计算方法和这些计算方法的一些具体运用。
一, 二重积分的概念与性质1, 概念若(,)f x y 在有界区域D 上有定义,把D 划分为n 个小区域12,,,,nεεε∆∆∆ 并用σ∆和d 分别表示第i 个小区域的面积和直径。
任取(,)i i ξησ∈∆,若极限0lim λ→1(,)i i in i f ξησ=∆∑存在,其中 12max{,,,}nd d d λ= ,则称(,)f x y 在D 上可积,并称此极限为函数(,)f x y 在D 上的二重积分,记为01(,)lim (,)i i i ni D f x y d f λσξησ→==∆∑⎰⎰ (,)f x y 称为被积函数,,x y 称为积分变量,d σ称为积分元素,D 称为积分区域, 若(,)f x y 在有界闭区域D 上连续,或分块连续且有界,则(,)f x y 在D 上可积。
几何意义:例题:2, 二重积分的重要性质(1)若A ,B 为两个常数,函数(,)f x y 与(,)g x y 都在D 上可积,则(,)(,)Af x y Bg x y +也在D 上可积,且 [(,)(,)](,)(,)D D DAf x y Bg x y d A f x y d B g x y d σσσ+=+⎰⎰⎰⎰⎰⎰(2)若(,)f x y 在D 上可积,D 被分成只有公共边界的两个区域1D 与2D 之和,则12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰(3)若(,)(,)f x y g x y ≤在D 上成立,且(,)f x y ,(,)g x y 都在D 上可积,则(,)(,)D Df x y dg x y d σσ≤⎰⎰⎰⎰ (4)若(,)f x y 在有界闭区域上连续,则存在(,)D ξη∈,使得(,)(,)Df x y d f D σξη=⎰⎰ 其中D 是D 的面积,这个性质称为二重积分的中值定理。
二重积分计算及应用
一、利用直角坐标系计算二重积分 二、利用极坐标计算二重积分 三、二重积分的应用
一、利用直角坐标系计算二重积分
X -型区域 积分区域为: 积分区域为: a ≤ x ≤ b, ϕ 1 ( x ) ≤ y ≤ ϕ 2 ( x ).
y = ϕ 2 ( x) y = ϕ 2 ( x)
D
y = ϕ1 ( x )
2
π
∵ I1 < I < I 2 , ∴
π
4
(1 − e
− R2
) < (∫ e
R 0
− x2
dx ) <
2
π
4
(1 − e
−2 R2
);
当 R → +∞ 时, I1 →
π
4
, I2 →
π
4
,
故当 R → +∞ 时,I →
+∞ 0
π
4
, 即 (∫
+∞ 0
e
− x2
dx ) =
2
π
4
,
所求广义积分 ∫
D3
D1
D2
∫∫ = ∫∫ + ∫∫ + ∫∫ .
D D1 D2 D3
例1 改变积分 ∫ dx ∫
1 0
1− x 0
f ( x , y )dy的次序.
y = 1− x
解 积分区域如图 原式= 原式= ∫0 dy ∫
1 1− y 0
f ( x , y )dx .
例2 改变积分
∫ dx ∫0
1 0
2 x− x2
S = {( x , y ) | 0 ≤ x ≤ R,0 ≤ y ≤ R}
二重积分的计算与应用
二重积分的计算与应用二重积分是微积分中重要的计算工具之一,它在许多领域中都有广泛的应用。
本文将详细介绍二重积分的定义、计算方法和应用。
一、二重积分的定义二重积分是对二元函数在一个有界闭区域上的积分。
设函数f(x,y)在闭区域D上有定义,则二重积分的定义如下:∬D f(x,y) dA = lim Δσ→0 ∑ f(xi,yi) Δσ,其中D是平面上的一个有界闭区域,Δσ是D中的一个小面积,Δσ=ΔxΔy,xi和yi是Δσ的中点。
二、二重积分的计算方法1.直角坐标系中的二重积分直角坐标系中的二重积分可以通过重积分法进行计算,即首先对其中的一个变量积分,再对另一个变量积分。
2.极坐标系中的二重积分对于极坐标系中的二重积分,可以将二元函数表示为极坐标形式,再进行积分计算。
设D是在极坐标系下的一个有界闭区域,则有:∬D f(x,y) dA = ∫θ1^θ2 ∫r1^r2 f(rcosθ, rsinθ) r dr dθ,其中θ1和θ2是θ的取值范围,r1和r2是r的取值范围。
三、二重积分的应用二重积分在许多领域中都有广泛的应用,下面列举几个常见的应用。
1.面积计算二重积分可以用于计算平面区域的面积。
设D是平面上的一个有界闭区域,用f(x,y)=1表示D上每一点的函数,那么二重积分∬Df(x,y)dA就等于D的面积。
2.质量、质心和转动惯量二重积分可以用于计算平面物体的质量、质心和转动惯量。
设D是平面上的一个有界闭区域,其上的密度函数为ρ(x,y),则二重积分∬Dρ(x,y)dA就等于D上物体的质量。
质心的坐标可以通过二重积分的计算得到,分别为Xc=∬Dxρ(x,y)dA/∬Dρ(x,y)dA,Yc=∬Dyρ(x,y)dA/∬Dρ(x,y)dA。
转动惯量的计算也可以类似地进行。
3.二维几何中心和弧长二重积分可以用于计算平面曲线的几何中心和弧长。
设曲线L由参数方程x=f(t),y=g(t)表示,其中a≤t≤b,则曲线的几何中心的x坐标为Xc=1/L ∫a^b x(t) ds,y坐标为Yc=1/L ∫a^b y(t) ds,其中L=∫a^b √[f'(t)^2+g'(t)^2] dt。
二重积分计算方式
二重积分计算方式二重积分是微积分中的重要概念之一,用来求解平面上某个区域上的某个量的总和。
在本文中,我们将介绍二重积分的计算方式和应用。
一、二重积分的定义及性质二重积分是通过将一个二元函数在一个区域上进行积分来求解该区域上的某个量的总和。
在二重积分中,被积函数的两个自变量分别为x和y,积分区域为D。
1. 定义:设函数f(x,y)在区域D上有定义,D是xy平面上的一个有界闭区域,将D分成许多小区域,记作ΔD。
选取ΔD中任意一点(xi,yi),作函数值f(xi,yi)与ΔDi的乘积f(xi,yi)ΔAi,其中ΔAi为ΔDi的面积。
如果极限$$\lim_{\lambda \rightarrow 0} \sum_{i=1}^{n} f(xi,yi) \Delta Ai$$存在且与D和ΔD的选取无关,那么称此极限为函数f(x,y)在D上的二重积分,记作$$\iint_D f(x,y) dxdy$$2. 性质:二重积分具有线性性质和可加性质,即对于任意常数a和b,函数f(x,y)和g(x,y),以及区域D和E,有以下性质:- 线性性质:$$\iint_D (af(x,y) + bg(x,y)) dxdy = a\iint_D f(x,y) dxdy + b\iint_D g(x,y) dxdy$$- 可加性质:$$\iint_{D \cup E} f(x,y) dxdy = \iint_D f(x,y) dxdy + \iint_E f(x,y) dxdy$$二、二重积分的计算方式在实际计算二重积分时,常常使用直角坐标系和极坐标系来简化计算。
1. 直角坐标系下的计算方式在直角坐标系下,二重积分的计算可以通过迭代积分来进行。
假设被积函数为f(x,y),积分区域为D,可以将二重积分表示为以下形式:$$\iint_D f(x,y) dxdy = \int_a^b \int_{c(x)}^{d(x)} f(x,y) dy dx$$其中a和b为x的范围,c(x)和d(x)为y的范围。
二重积分及其在平面图形面积计算中的应用
二重积分及其在平面图形面积计算中的应用在数学中,积分是一种重要的数学工具,用于计算曲线、曲面、体积以及各种物理量等。
而二重积分是积分的一种形式,它在平面图形的面积计算中有着广泛的应用。
一、二重积分的概念与性质二重积分可以看作是将某个二元函数在给定的闭区域上进行累加求和的过程。
它可以表示为∬f(x,y)dA,其中f(x,y)是在闭区域上的连续二元函数,dA表示微小面积元素。
1. 二重积分的计算方法二重积分的计算方法有两种,一种是通过直角坐标系的换元法进行求解,另一种是通过极坐标系的换元法进行求解。
根据具体的题目要求和区域形状,选择适合的计算方法可以简化计算过程。
2. 二重积分的性质二重积分具有线性性质、可加性和保号性等基本性质。
线性性质使得对于多个函数的二重积分,可以将它们分别进行积分后再进行相加。
可加性保证了对于分割区域的二重积分,可以将其分割成多个子区域进行积分。
保号性则保证了对于非负函数的二重积分结果是非负的。
二、二重积分在平面图形面积计算中的应用二重积分广泛应用于平面图形的面积计算中,通过将图形分解为无穷多的微小面积元素,再利用二重积分的可加性,可以准确计算出复杂形状的平面图形的面积。
1. 面积的计算方法对于给定的平面图形,可以通过二重积分将其分割为多个小区域,并逐个计算每个小区域的面积,再将所有小区域的面积累加求和,即可得到整个图形的面积。
2. 矩形区域的面积计算对于矩形形状的区域,可以通过定义合适的积分区间,利用二重积分计算出其面积。
例如,对于矩形区域R,如果其边界由方程y=f(x)和y=g(x)所确定,那么该矩形区域的面积可以表示为∬R dA = ∫dxdy。
3. 曲线边界的面积计算对于曲线形状的区域,可以通过将其边界曲线方程进行参数化,然后利用二重积分计算出面积。
例如,对于由极坐标参数方程r=f(θ)所确定的曲线边界的区域,其面积可以表示为∬R r drdθ。
4. 多边形区域的面积计算对于多边形形状的区域,可以通过将其分解为多个三角形的区域,然后利用二重积分计算出每个三角形的面积,再将所有三角形的面积累加求和,即可得到整个多边形区域的面积。
二重积分的计算公式
二重积分的计算公式二重积分是微积分中的基本内容之一,它用于计算平面上一些区域内的一些函数的面积或者平面质量分布等问题。
在进行二重积分计算时,首先需要确定被积函数、积分区域以及坐标系,然后通过适当的积分方法进行计算。
本文将介绍二重积分的计算公式及其应用。
一、二重积分计算公式1.矩形区域上的二重积分考虑一个定义在矩形区域D上的函数f(x,y),该区域上的二重积分可以通过将该区域分为许多小的矩形区域,并对每个小区域内的函数值进行求和,再取极限的方法进行计算。
设矩形区域D的边界为a≤x≤b,c≤y≤d,将其进行分割,得到对应的小矩形区域ΔxΔy,将f(x,y)在该矩形区域上的积分记为ΔI。
则整个矩形区域上的二重积分可以表示为:∬Df(x,y)dA = lim Δx,Δy→0 Σf(x,y)ΔxΔy其中Σ表示对所有小矩形区域进行求和,lim表示小矩形区域的数量趋于无穷小。
2.二重积分的换元法在计算二重积分时,有时可以通过变量替换将原来的积分变为更加简化的形式,这种方法称为换元法。
换元法的基本思想是将原坐标系中的二重积分转化为新坐标系下的二重积分,并通过求导和求逆变换的方法进行计算。
设原坐标系为(x,y),新坐标系为(u,v),变换公式为x=x(u,v),y=y(u,v),则原坐标系中的二重积分可以表示为:∬Df(x,y)dA = ∬D′f[x(u,v),y(u,v)],J(u,v),dudv其中D′为新坐标系下的区域,J(u,v)为变换矩阵的行列式,J(u,v),为其绝对值。
二、二重积分的应用1.几何应用二重积分常常用于计算平面几何中的面积和质心等问题。
例如,可以通过对平面上一个区域内的特定函数进行二重积分来计算该区域的面积,并可以通过对函数的乘积进行二重积分来计算该区域的质心位置。
2.物理应用二重积分在物理学中具有广泛的应用,特别是在计算质量分布、重心位置和力矩等问题上。
例如,可以通过对平面上一些区域的质量分布函数进行二重积分来计算该区域的总质量,并可以通过对质量分布函数与各点与一些轴线的距离的乘积进行二重积分来计算该区域对该轴线的力矩。
二重积分计算与应用
二重积分计算与应用在数学中,二重积分是一种用于计算二维平面上曲线下的面积和体积的工具。
它是微积分学的重要分支,具有广泛的应用。
本文将介绍二重积分的概念、计算方法以及一些常见的应用。
一、二重积分的概念二重积分是对平面上的一块有界区域内的函数进行求和。
我们将二维平面分割成许多小矩形区域,并在每个小矩形区域内取一个点。
然后,将这些小矩形的面积相加,再将函数在该点的值与该小矩形的面积相乘,并对所有小矩形进行求和,即可得到二重积分的值。
二、二重积分的计算方法计算二重积分有两种主要的方法:定积分法和极坐标法。
1. 定积分法定积分法是最常用的计算二重积分的方法之一。
它将被积函数转化为两个变量的函数,然后通过重复使用一元定积分的方法进行计算。
具体步骤如下:步骤一:确定积分区域。
通常使用直角坐标系下的矩形或多边形来表示。
步骤二:确定被积函数。
将被积函数表示成两个变量的函数。
步骤三:将被积函数简化。
根据积分区域的特点,合理地设定积分的上下限。
步骤四:依次进行一元定积分。
先对内层变量进行积分,再对外层变量进行积分。
2. 极坐标法当被积函数在极坐标系下具有一定的对称性时,使用极坐标法可以简化计算过程。
具体步骤如下:步骤一:确定积分区域。
在极坐标系下,通常使用极坐标方程来表示。
步骤二:确定被积函数。
将被积函数转化为极坐标系下的函数。
步骤三:将被积函数简化。
根据极坐标系的特性,将函数表示成极坐标下的形式。
步骤四:直接进行一元定积分。
根据区域的特点,选取适当的积分上下限进行计算。
三、二重积分的应用二重积分在实际问题中有广泛的应用,包括计算面积、计算质心、计算物体的质量等等。
1. 计算面积二重积分可以用来计算平面上有界区域的面积。
通过将被积函数取为1,对给定的区域进行积分,即可得到该区域的面积。
2. 计算质心质心是物体的平衡点,是物体的几何中心。
二重积分可以用来计算物体的质心位置。
通过将被积函数取为物体的密度函数乘以相应的坐标值,对整个物体进行积分,即可得到物体的质心位置。
二重积分的计算方法及其在面积质量等问题中的应用
二重积分的计算方法及其在面积质量等问题中的应用二重积分的计算方法及其在面积、质量等问题中的应用二重积分是微积分中重要的概念之一,广泛应用于各个领域,如物理学、经济学等。
本文将介绍二重积分的计算方法,并探讨其在面积、质量等问题中的应用。
一、二重积分的计算方法二重积分表示在平面上对一个二元函数在某个有限区域上的积分。
计算二重积分的方法主要有以下两种:直角坐标系下的二重积分和极坐标系下的二重积分。
1. 直角坐标系下的二重积分在直角坐标系下,二重积分的计算可以通过迭代积分来实现,即先对一个变量进行积分,再对另一个变量进行积分。
设有二元函数$f(x, y)$在区域$D$上连续,则该二重积分的计算公式如下:$$\iint_D f(x, y)dxdy$$其中,$D$表示积分区域。
具体计算过程如下:1) 将积分区域$D$投影到$xoy$平面得到$D'$,确定$D'$的边界方程;2) 写出$x$在$D'$上的范围表达式,如$a(x)\leq x \leq b(x)$;3) 对$x$进行积分,得到$y$的积分上、下限,即$c \leq y \leq d$;4) 得到二重积分的计算公式:$$\iint_D f(x, y)dxdy = \int_{a(x)}^{b(x)}\int_c^d f(x, y)dydx$$2. 极坐标系下的二重积分当积分区域具有较高的对称性时,采用极坐标系下的二重积分可以简化计算过程。
在极坐标系下,一个点的坐标由径向$r$和极角$\theta$表示。
设有二元函数$f(r, \theta)$,则该二重积分的计算公式如下:$$\iint_D f(r, \theta)r drd\theta$$其中,$D$表示换算后的积分区域。
具体计算过程如下:1) 将积分区域$D$由极坐标系给出,确定$r$的上、下限以及$\theta$的范围;2) 根据所给的积分区域,将被积函数$f(x, y)$转换为$f(r, \theta)$;3) 按照换元法,将直角坐标系下的被积函数$f(x, y)$转换为极坐标系下的被积函数$f(r, \theta)$;4) 利用换元后的公式计算二重积分:$$\iint_D f(x, y)dxdy = \iint_D f(r, \theta)r drd\theta$$通过以上两种计算方法,可以灵活地计算二重积分,适用于不同的问题需求。
二重积分的计算与应用
二重积分的计算与应用在数学的领域中,二重积分是一种重要的数学工具,广泛应用于各个科学领域。
本文将探讨二重积分的计算方法以及其在实际问题中的应用。
一、二重积分的定义与计算方法二重积分是对二元函数在某个有界区域上的积分运算。
设有函数f(x, y) 定义在平面上的有界闭区域 D 上,记作:∬D f(x, y)dxdy其中,D 表示平面上一个有界区域,f(x, y) 表示在此区域内的函数,dxdy 表示对 x, y 的积分。
二重积分可以通过以下两种常用方法进行计算:1. 直角坐标系下的二重积分计算在直角坐标系下,二重积分可以表示为:∬D f(x, y)dxdy其中,D 表示 x 轴与 y 轴所围成的区域,f(x, y) 表示在此区域内的函数。
使用直角坐标系下的计算方法可以将二重积分转化为两个一重积分的运算,具体过程如下:将 D 区域划分为若干个小矩形或小平行四边形;在每个小矩形或小平行四边形上取一点(xi, yj);设Δxi 和Δyj 分别为小矩形或小平行四边形的宽度和高度;计算 f(xi, yj) 与Δxi Δyj 的乘积的和,即为所求的二重积分。
2. 极坐标系下的二重积分计算在极坐标系下,二重积分可以表示为:∬D f(x, y)dxdy其中,D 表示极坐标系下的一个有界区域,f(x, y) 表示在此区域内的函数。
使用极坐标系下的计算方法可以将二重积分转化为一重积分的运算,具体过程如下:将 D 区域在极坐标系下表示为R ≤ r ≤ S, α ≤ θ ≤ β;将x = rcosθ,y = rsinθ 进行替换,使得函数 f(x, y) 转化为 F(r, θ);计算F(r, θ) 与 r 的积分后再对θ 进行积分,即为所求的二重积分。
二、二重积分的应用1. 几何应用二重积分可用于计算平面图形的面积。
通过在直角坐标系或极坐标系下进行适当的变换,将图形转化为简单的几何图形(如矩形、圆、扇形等),然后进行二重积分的计算,便可得到所求图形的面积。
二重积分的应用案例和实践经验
二重积分的应用案例和实践经验二重积分作为高等数学中的一个重要概念,被广泛地应用于各个领域中。
其应用案例和实践经验不仅可以加深我们对二重积分的理解,更可以帮助我们更好地应用二重积分于实际问题的解决中。
下文将结合实际案例和个人实践经验,从多个方面探讨二重积分的应用案例和实践经验。
1. 计算面积二重积分最基本的应用就是计算平面图形的面积。
如图1所示,我们需要计算由y=1-x^2和y=0所围成的区域的面积。
此时我们可以利用二重积分的定义,将区域分割为若干个小矩形,然后对每个小矩形的面积进行累加。
$$\iint\limits_{D}d\sigma=\int_{-1}^{1}\int_{0}^{1-x^2}dydx$$这里D表示被积区域,dσ表示面积微元,对y从0到1-x^2进行积分,对x从-1到1进行积分。
利用计算器求积分可得,该区域的面积为1/2。
2. 计算质量二重积分还可以应用于计算平面图形的质量。
如图2所示,我们需要计算由y=0.5x和y=6-x^2所围成的区域的质量,已知该区域的面密度为ρ=2x+3y。
此时我们可以根据平面图形的面积和面密度,计算出每个小矩形的质量,然后对每个小矩形的质量进行累加。
其计算公式为:$$\iint\limits_{D}\rho d\sigma=\int_{0}^{2}\int_{0.5x}^{6-x^2}(2x+3y)dydx$$这里D表示被积区域,dσ表示面积微元,ρ表示面密度,对y 从0.5x到6-x^2进行积分,对x从0到2进行积分。
利用计算器求积分可得,该区域的质量为377.125。
3. 计算重心利用二重积分还可以计算平面图形的重心。
如图3所示,我们需要计算由x=0,x=3,y=0,y=x^2所围成的区域的重心,已知该区域的密度为1。
此时我们可以根据平面图形的面积和密度,计算出每个小矩形的质心坐标,然后对每个小矩形的质心坐标进行加权平均。
其计算公式为:$$\bar{x}=\frac{\iint\limits_{D}xd\sigma}{\iint\limits_{D}d\sigma },\bar{y}=\frac{\iint\limits_{D}yd\sigma}{\iint\limits_{D}d\sigma}$$这里D表示被积区域,dσ表示面积微元,对y从0到x^2进行积分,对x从0到3进行积分。
二重积分的计算与应用研究
二重积分的计算与应用研究二重积分是微积分中的重要概念之一,它是对二元函数在一些有界区域上求和的一种数学运算。
在实际应用中,二重积分具有广泛的应用价值,特别是在物理、工程、经济等领域的模型建立和问题求解中。
首先,我们来介绍二重积分的计算方法。
对于一个二元函数$f(x,y)$,在一个有界闭区域$D$上的二重积分可以表示为:$$\iint_D f(x,y)dA$$其中$dA$表示面积元素。
根据不同的坐标系选择,面积元素$dA$可以表示为$dxdy$(直角坐标系),$rdrd\theta$(极坐标系)或者其他形式。
二重积分的计算可以使用累次积分的方法,即将二重积分转化为两个一重积分。
我们可以先对$x$进行积分,然后再对$y$进行积分,或者先对$y$进行积分,再对$x$进行积分。
根据累次积分的性质,二重积分的结果与积分顺序无关。
另外,我们可以使用直角坐标系或极坐标系下的变换公式来简化二重积分的计算。
例如,对于直角坐标系下的二重积分,我们可以使用变换公式$x=g(u,v)$和$y=h(u,v)$将区域$D$投影到$uv$平面上,然后计算新的积分。
除了二重积分的计算,二重积分在实际应用中也有重要的应用价值。
下面我们来介绍二重积分在物理、工程和经济等领域的应用。
在物理学中,二重积分可以用来求解物体的质量、重心和惯性矩等物理量。
例如,在求解物体的质心时,可以将物体分割成无数小块,然后对每个小块进行二重积分,最终得到物体的质心位置。
在工程学中,二重积分可以用来计算工程结构的重心、惯性矩和应力分布等问题。
例如,在计算一些结构的质量分布时,可以使用二重积分求解结构上各点的质量,然后根据质量和位置求解质心。
在经济学中,二重积分可以用来计算公司的收益、消费者的福利和市场的供需关系等问题。
例如,在计算市场的需求曲线时,可以使用二重积分求解市场上各个价格下的需求量,然后根据需求量和价格的关系绘制需求曲线。
此外,二重积分还广泛应用于概率统计、电磁场分布、电子器件设计等领域。
二重积分的计算法直角坐标
二重积分的计算法直角坐标二重积分是微积分中的重要概念,用来计算平面区域上的其中一种性质,比如面积、质心等。
在直角坐标系中,二重积分的计算需要将被积函数表示成两个变量的函数,并确定积分区域的边界。
下面将介绍二重积分的计算方法及其应用。
一、二重积分的定义二重积分是对一个平面区域上的函数进行积分,其定义如下:设函数$f(x,y)$在有界闭区域$D$上有定义,且$D$为$x$轴上$[a,b]$的一个闭区间,$y$轴上$[c,d]$的一个闭区间,将$D$划分为有限个小区域,每个小区域用$(\Delta x_i,\Delta y_j)$表示,其中$i=1,2,...,m$,$j=1,2,...,n$,则二重积分$\iint_D f(x,y)dxdy$定义为:$$\iint_D f(x,y)dxdy=\lim_{\lambda\rightarrow0}\sum_{i=1}^{m}\sum_{j=1}^{n}f(x_{ij}^*,y{j}^*)\Delta A_{ij}$$其中$x_{ij}^*,y_{ij}^*$为$(x,y)$在第$i$行第$j$列小区域内的任意一点,$\Delta A_{ij}=\Delta x_i\Delta y_j$为第$i$行第$j$列小区域的面积,$\lambda$为小区域的最大直径,$\lambda=\max\{\Deltax_1,\Delta x_2,...,\Delta x_m,\Delta y_1,\Delta y_2,...,\Delta y_n\}$。
二、二重积分的计算在直角坐标系中,二重积分的计算分为三种情况:换序积分、累次积分和极坐标积分。
下面将依次介绍这三种情况的计算方法。
1.换序积分当被积函数是可分离变量的函数时,可以进行换序积分。
换序积分可以简化计算过程。
设函数$f(x,y)=g(x)h(y)$,则有:$$\iint_D f(x,y)dxdy=\int_a^bg(x)dx\int_c^dh(y)dy$$也可以先对$y$积分再对$x$积分,即:$$\iint_D f(x,y)dxdy=\int_c^dh(y)dy\int_a^bg(x)dx$$2.累次积分对于一般的被积函数,可以通过累次积分的方法进行计算。
二重积分的计算与应用
二重积分的计算与应用哎,大家好,今天咱们聊聊二重积分。
这听起来有点高深莫测,但其实也没那么复杂,放轻松,咱们就当是在聊天。
二重积分就像在二维平面上计算一个区域的“面积”,不过这可不是简单的“长乘宽”那么简单,咱们要考虑的是更复杂的形状,比如说那些不规矩的花花草草,或者更别提那些搞得你头大的图形了。
想象一下,一个草坪上有个不规则的花坛,咱们要怎么计算这个花坛的面积呢?这就得用到二重积分了,听上去有点酷吧?先来说说二重积分的基本概念。
简单来说,它就是在一个平面区域上,对一个函数进行积分,得到的结果就是这个区域的“总量”。
有点像你在一个派对上,想知道大家喝了多少饮料,那你就得把每个人喝的量加起来。
二重积分的应用真是广泛,建筑设计、物理问题、经济学等等,都能用上这个家伙。
哦,别急,咱们可不是在上课,今天主要是给大家普及一下,顺便讲点有趣的事。
想象一下,你在一个草坪上,瞅着那块花坛,决定要用二重积分来计算。
你得给花坛设置一个坐标系,这样你就能更清楚地知道每个点的位置。
你就像是在为这块土地画地图,告诉大家,嘿,这里是哪里,那里又是什么。
然后,咱们的目标就是把这个花坛划分成小块,就像是把一个大蛋糕切成小块一样,每一小块的面积都能用简单的计算公式来算。
咱们把每一小块的面积加起来,最后得出整个花坛的面积,简直是轻松愉快,跟在家里做饭一样。
不过,二重积分可不是单靠加法就能搞定的。
这块区域形状特别复杂,就像是个巨型的拼图,怎么也拼不起来。
这个时候,咱们就得用到极坐标系统。
这就好比你在海边捡贝壳,贝壳的位置不是用直线来划分的,而是用距离和角度来描述的。
使用极坐标,二重积分的计算变得简单很多,真是大大方便了我们这些数学小白。
这就像是给了我们一把万能钥匙,打开了更复杂问题的大门。
当咱们一边算着花坛的面积,一边享受着阳光的时候,突然灵光一闪,嘿,二重积分还能帮咱们解决一些实际问题呢!比如说,农民伯伯种地的时候,想知道一块地里施了多少肥料,或者说设计师设计一个新建筑,想知道它的体积,嘿,这些都能用到二重积分。
二重积分与三重积分的计算与应用
二重积分与三重积分的计算与应用积分是微积分中的一个重要概念,分为一重积分、二重积分和三重积分。
在实际问题中,二重积分和三重积分经常用于计算和描述一些物理量或者几何问题。
本文将重点介绍二重积分与三重积分的计算方法和应用。
一、二重积分的计算方法二重积分是对二元函数在一个有界闭区域上的积分。
计算二重积分的方法主要有以下两种:直角坐标系下的二重积分和极坐标系下的二重积分。
1. 直角坐标系下的二重积分设二元函数 f(x, y) 在闭区域 D 上连续,闭区域 D 的边界为曲线 L。
则二重积分的计算公式如下:∬Df(x, y)dxdy = ∫∫_Df(x, y)dxdy其中,D 表示闭区域,f(x, y) 为被积函数,dx 和 dy 表示在直角坐标系下的面积元素。
要计算二重积分,首先需要确定被积函数的积分区域 D,然后根据被积函数的形式选择适当的计算方法,例如通过变量替换、坐标变换等,将被积函数转化为易于计算的形式。
2. 极坐标系下的二重积分在某些情况下,坐标变换到极坐标系下会更加方便。
极坐标系下二重积分的计算公式如下:∬Df(x, y)dxdy = ∫∫_Df(rcosθ, rsinθ)rdrdθ其中,D 表示闭区域,f(rcosθ, rsinθ) 为被积函数,r 表示极径,θ 表示极角,rdrdθ 表示在极坐标系下的面积元素。
二、二重积分的应用二重积分在几何学、物理学和工程学等领域有着广泛的应用。
1. 几何学应用二重积分可以用来计算平面区域的面积。
对于二维平面上的一个闭区域 D,二重积分∬D1dxdy 即为该闭区域的面积。
通过计算二重积分的值,可以求得不规则图形的面积。
2. 物理学应用在物理学中,二重积分常用于计算质量、质心、转动惯量等物理量。
例如,可以根据二重积分的定义,计算平面图形的质量分布情况,并进一步求解质心的位置。
3. 工程学应用在工程学中,二重积分可用于计算平面区域中的流量、电荷分布等问题。
通过对流场或电场的分析,可以通过二重积分计算出物质或电荷通过单位时间所带的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。