多元线性回归模型计算分析题
线性模型练习题(含答案)
线性模型练习题(含答案)练题一设有线性回归模型:$ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 $,其中 $x_1$、$x_2$ 和 $x_3$ 是自变量,$y$ 是因变量。
已知模型的参数估计值如下:$ \hat{\beta}_0 = 2.5 $$ \hat{\beta}_1 = 0.8 $$ \hat{\beta}_2 = -1.2 $$ \hat{\beta}_3 = 1.3 $请判断以下哪个自变量与因变量的关系最为显著:A. $x_1$B. $x_2$C. $x_3$D. 无法确定答案:B. $x_2$练题二下面是一个简单的线性回归模型:$ y = 3x_1 + 4x_2 + 2x_3 + 1 $已知模型的参数估计值如下:$ \hat{\beta}_1 = 2.1 $$ \hat{\beta}_2 = 1.8 $$ \hat{\beta}_3 = 0.9 $请根据模型参数估计值计算预测值 $ \hat{y} $,当 $x_1 = 2$,$x_2 = 3$,$x_3 = 1$ 时的结果。
答案:$ \hat{y} = 3(2) + 4(3) + 2(1) + 1 = 23 $练题三某研究人员运用线性回归模型分析了一个因变量 $y$ 和四个自变量 $x_1$、$x_2$、$x_3$ 和 $x_4$ 的关系,得到模型方程如下:$ y = 2.6x_1 + 1.9x_2 - 1.4x_3 + 0.5x_4 - 1 $已知 $x_1 = 3$,$x_2 = 2$,$x_3 = 4$,$x_4 = 1$,请计算对应的预测值 $ \hat{y} $。
答案:$ \hat{y} = 2.6(3) + 1.9(2) - 1.4(4) + 0.5(1) - 1 = 2.9 $练题四以下是一个多元线性回归模型的参数估计值摘录:$ \hat{\beta}_0 = 1.2 $$ \hat{\beta}_1 = -0.8 $$ \hat{\beta}_2 = 0.5 $$ \hat{\beta}_3 = 1.0 $$ \hat{\beta}_4 = 0.3 $$ \hat{\beta}_5 = -0.6 $请写出该线性回归模型的方程。
多元线性回归例题第章作业(一)
多元线性回归例题第章作业(一)多元线性回归是一种统计学方法,通常用于分析建立多个变量之间的关系模型。
在实际数据分析中,多元线性回归是十分常见且实用的方法。
本文将以一道例题为例,介绍多元线性回归的基本原理及应用方法。
例题:某公司市场销售状况与广告投入的相关性分析。
根据公司过往的销售记录,有如下数据:市场销售(单位:万元):10,20,30,25,35广告投入(单位:万元):5,10,15,12,18解析:1. 确定预测模型在多元线性回归中,首先要确定 Y 与X1,X2,…,Xn 之间的函数关系,一般形式为:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,β1, β2,…, βn为自变量系数,β0为常数项,而ε 则表示随机误差。
2. 根据数据集,求解系数通过数据集计算出β0,β1, β2,…, βn的值,从而得到回归方程式,可以通过excel工具中多元线性回归的公式求解得到。
3. 结果解释根据计算结果,对于此例,得到回归方程式:Y = 7.5 + 2.5X1 + 1.5X2其中,X1表示广告投入,X2表示销售额,可以解读得到,每增加1万元广告投入,市场销售量会增加 2.5万元,同时,其拟合优度也很好,在本例中拟合优度高达 0.97。
4. 结论通过多元线性回归,我们可以得到两个变量之间的函数关系式及预测结果,从而为市场策略和决策提供理论依据。
本题中,我们能够得出有利于市场销售的投入策略,即增加广告投入可以带来市场销售量的增长,而这种关系随着投入的增加而呈现出逐渐缓和,也就是得出了“策略的上升边际递减性”这样一个结论。
总结:多元线性回归在实际数据分析中的应用非常广泛,并且能够解决多个自变量与因变量之间的复杂关系。
在研究某种现象或问题时,通过多元线性回归建立适当的模型,可以通过计算得到更加准确的结果,从而更科学更有效地解决问题。
12章 多元线性回归
统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。
在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。
(完整版)多元线性回归模型习题及答案
多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
3多元线性回归模型
第三章 多元线性回归模型一、单项选择题1、决定系数2R 是指【 】A 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重2、在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算的多重决定系数为0.8500,则调整后的决定系数为【 】A 0.8603B 0.8389C 0.8 655D 0.83273、设k 为模型中的参数个数,则回归平方和是指【 】 A 21)(y yn i i -∑= B 21)ˆ(i n i i yy -∑= C 21)ˆ(y yn i i -∑= D )1/()(21--∑=k y y n i i4、下列样本模型中,哪一个模型通常是无效的【 】A i C (消费)=500+0.8i I (收入)B d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C s i Q (商品供给)=20+0.75i P (价格)D i Y (产出量)=0.656.0i L (劳动)4.0i K (资本)5、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,统计量∑∑----)1/()ˆ(/)ˆ(22k n y y k y y i i i 服从【 】 A t(n-k) B t(n-k-1) C F(k-1,n-k) D F(k,n-k-1)6、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,检验H 0:0=i β),,1,0(k i =时,所用的统计量)ˆvar(ˆi it ββ=服从【 】A t(n-k-1)B t(n-k-2)C t(n-k+1)D t(n-k+2)7、调整的判定系数 与多重判定系数 之间有如下关系【 】A 1122---=k n n R RB 11122----=k n n R R C 11)1(122---+-=k n n R R D 11)1(122-----=k n n R R 8、用一组有30 个观测值的样本估计模型i i i i u x x y +++=22110βββ后,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于零的条件是其统计量大于等于【 】 A 05.0t (30)B 025.0t (28)C 025.0t (27)D 025.0F (1,28)9、如果两个经济变量x 与y 间的关系近似地表现为当x 发生一个绝对量变动(∆x )时,y 有一个固定地相对量(∆y/y )变动,则适宜配合地回归模型是【 】A i i i u x y ++=10ββB ln i i i u x y ++=10ββC i ii u x y ++=110ββ D ln i i i u x y ++=ln 10ββ 10、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,如果原模型满足线性模型的基本假设,则在零假设j β=0下,统计量)ˆ(/ˆjj s ββ(其中s(j β)是j β的标准误差)服从【 】 A t (n-k ) B t (n-k-1) C F (k-1,n-k ) D F (k ,n-k-1)11、下列哪个模型为常数弹性模型【 】A ln i i i u x y ++=ln ln 10ββB ln i i i u x y ++=10ln ββC i i i u x y ++=ln 10ββD i ii u x y ++=110ββ 12、模型i i i u x y ++=ln 10ββ中,y 关于x 的弹性为【 】A i x 1βB i x 1βC iy 1β D i y 1β 13、模型ln i i i u x y ++=ln ln 10ββ中,1β的实际含义是【 】A x 关于y 的弹性B y 关于x 的弹性C x 关于y 的边际倾向D y 关于x 的边际倾向14、关于经济计量模型进行预测出现误差的原因,正确的说法是【 】A.只有随机因素B.只有系统因素C.既有随机因素,又有系统因素D.A 、B 、C 都不对15、在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):【 】A n ≥k+1B n<k+1C n ≥30或n ≥3(k+1)D n ≥3016、下列说法中正确的是:【 】A 如果模型的2R 很高,我们可以认为此模型的质量较好B 如果模型的2R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 二、多项选择题1、对模型i i i i u x x y +++=22110βββ进行总体显著性检验,如果检验结果总体线性关系显著,则有【 】A 1β=2β=0B 1β≠0,2β=0C 1β≠0,2β≠0D 1β=0,2β≠0E 1β=2β≠02、剩余变差(即残差平方和)是指【 】A 随机因素影响所引起的被解释变量的变差B 解释变量变动所引起的被解释变量的变差C 被解释变量的变差中,回归方程不能作出解释的部分D 被解释变量的总变差与回归平方和之差E 被解释变量的实际值与拟合值的离差平方和3、回归平方和是指【 】A 被解释变量的实际值y 与平均值y 的离差平方和B 被解释变量的回归值yˆ与平均值y 的离差平方和 C 被解释变量的总变差与剩余变差之差D 解释变量变动所引起的被解释变量的变差E 随机因素影响所引起的被解释变量的变差4、下列哪些非线性模型可以通过变量替换转化为线性模型【 】A i i i u x y ++=210ββB i ii u x y ++=110ββ C ln i i i u x y ++=ln 10ββ D i i i u x y ++=210ββE i i i i u x y ++=ββ05、在模型ln i i i u x y ++=ln 10ββ中【 】A y 与x 是非线性的B y 与1β是非线性的C lny 与1β是线性的D lny 与lnx 是线性的E y 与lnx 是线性的三、判断题观察下列方程并判断其变量是否线性,系数是否线性,或都是或都不是。
第三章多元线性回归模型习题答案
&第三章 多元线性回归模型一、单项选择题1、C2、A3、B4、A5、C6、C7、A8、D9、B 10、D一、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明( C ) A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著】C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( A )A 、(1)ESS k F RSS n k =--B 、(1))ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、已知二元线性回归模型估计的残差平方和为2800i e =∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为( B )!A 、B 、 40C 、D 、4、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( A )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( C )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的:D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 ( A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( D )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ ;B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( D )。
多元线性回归模型习题及答案
多元线性回归模型一、单项选择题1.在由n = 30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为(D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B )A. G (消费)=500+4(收入)B. Q d (商品需求)=10+4(收入)+ P (价格)C.Qs (商品供给)=20+ P (价格)D. 1 (产出量)=L 0'(劳动)£”(资本)3 .用一组有30个观测值的样本估计模型工=b 0 + b i x i t + b 2x 21 + u t 后,在的显著性水平上对b i 的显著性作t 检验,则b i 显著地不等于零的条件是其统计量t 大于等于(Ct (30) t (28) t (27) F (1,28)A. 0.05B. 0.025C. 0.025D. 0.025ln y = ln b + b In x + u , b ,,4 .模型 乙 0 i t t 中,i 的实际含义是(B )A. x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度 6 .线性回归模型y = b + bx + b x + ... + b x + u 中,检验H :b = 0(i = 0,1,2,...k ) 时,所用的统计量服从(1 C 2 22 k kt t 0 t (n-k+1) (n-k-2) (n-k-1) (n-k+2)7 . 调整的判定系数与多重判定系数之间有如下关系( D )— n — 1— n — 1 A. R 2 = ------------ R 2B. R 2 = 1 ------------- R 2n 一 k 一 1 n 一 k 一 1 n 一 1n 一 1 ~C. R 2 = 1 ----------- (1+ R 2)D, R 2 = 1 ----------- (1-R 2)n 一 k 一 1n 一 k 一 18 .关于经济计量模型进行预测出现误差的原因,正确的说法是(C )。
(完整版)第三章(多元线性回归模型)3-3答案
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
《中级计量经济学》非选择题 参考答案.
第3章 多元线性回归模型3.4.3 简答题、分析与计算题1.给定二元回归模型:t t t t u x b x b b y +++=22110 (t=1,2,…n)(1) 叙述模型的古典假定;(2)写出总体回归方程、样本回归方程与样本回归模型;(3)写出回归模型的矩阵表示;(4)写出回归系数及随机误差项方差的最小二乘估计量,并叙述参数估计量的性质;(5)试述总离差平方和、回归平方和、残差平方和之间的关系及其自由度之间的关系。
2.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?3.决定系数2R 与总体线性关系显著性F 检验之间的关系;在多元线性回归分析中,F 检验与t 检验有何不同?在一元线性回归分析中二者是否有等价的作用?4.为什么说对模型施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?5.观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
(1) t t t u x b b y ++=310(2) t t t u x b b y ++=log 10(3)t t t u x b b y ++=log log 10 (4) t t t u x b b b y +⋅+=)(210(5) t t t u x b b y +=)/(10(6) t bt t u x b y +−+=)1(110(7)t t t t u x b x b b y +++=10/22110 6.常见的非线性回归模型有几种情况?7.指出下列模型中所要求的待估参数的经济意义:(1)食品类需求函数:u P P I Y ++++=231210ln ln ln ln αααα中的321,,ααα(其中Y为人均食品支出额,I 为人均收入,为食品类价格,为其他替代商品类价格)。
1P 2P (2)消费函数:t t t t u Y Y C +++=−1210βββ中的1β和2β(其中C 为人均消费额,Y 为人均收入)。
多元线性回归实习实际例题分析
多元线性回归分析实习线性回归过程(Linear Regression)可用于分析一个或多个自变量与一个因变量之间的线性数量关系,并可进行回归诊断分析。
●[例题3.1]某地29名13岁男童身高x1(cm),体重x2(kg),肺活量y(L)的实测值数据见表3.1,试建立肺活量与身高、体重的回归关系。
[ 操作过程]①[ 数据格式] 见数据文件< 多元线性回归例题.sav >该数据库有4列29行,即4个变量、29个记录(Observation),每个变量占1列,每个记录占1行,该数据格式为一般多元分析的数据格式。
②[ 过程]单击后可弹出线性回归对话框。
该对话框内有诸多选项,现分别介绍。
③[ 选项]◆因变量。
只能选入1个因变量,本例选入变量“肺活量”。
◆自变量。
可以是1个或多个,本例选入变量“身高、体重”。
◆当选择不同组合的自变量进行回归分析时,可保存每次选择的自变量,用按钮和按钮可分别向前、向后翻找各种自变量的组合。
◆选择回归模型拟合的分析方法,有5种可供选择。
Enter 强迫引入法,即一般回归分析,所选自变量全部进入方程,为系统默认方式。
Stepwise 逐步回归法,加入有显著性意义的变量和剔除无显著性意义的变量,直到所建立的方程式中不再有可加入和可剔除的变量为止。
Remove 强迫剔除法。
根据设定的条件剔除自变量。
Backward向后逐步法。
所选自变量全部进入方程,根据Options对话框中设定的标准在计算过程中逐个剔除变量,直到所建立的方程式中不再含有可剔除的变量为止。
Forward:向前逐步法。
根据Options对话框中设定的标准在计算过程中逐个加入单个变量,直到所建立的方程式中不再有可加入的变量为止。
◆选择符合某变量条件的观察单位进行分析,每次只能选入1位范围,有6种方式供选择,在Value框内输入设定值。
equal to 等于设定值。
not equal to不等于设定值。
less than小于设定值。
计量经济学第三章多元线性回归模型习题
第三章练习题及参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)R 2=0.934331 92964.02=R F=191.1894 n=311)从经济意义上考察估计模型的合理性。
2)在5%显著性水平上,分别检验参数21,ββ的显著性。
3)在5%显著性水平上,检验模型的整体显著性。
练习题3.1参考解答:(1)由模型估计结果可看出:从经济意义上说明,旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。
平均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。
这与经济理论及经验符合,是合理的。
(2)取05.0=α,查表得048.2)331(025.0=-t 因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
(3)取05.0=α,查表得34.3)28,2(05.0=F ,由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。
3.2 表3.6给出了有两个解释变量2X 和.3X 的回归模型方差分析的部分结果:表3.6 方差分析表RSS 的自由度各为多少?2)此模型的可决系数和调整的可决系数为多少?3)利用此结果能对模型的检验得出什么结论?能否确定两个解释变量2X 和.3X 各自对Y 都有显著影响?练习题3.2参考解答:(1) 因为总变差的自由度为14=n-1,所以样本容量:n=14+1=15因为 TSS=RSS+ESS 残差平方和RSS=TSS-ESS=66042-65965=77回归平方和的自由度为:k-1=3-1=2残差平方和RSS 的自由度为:n-k=15-3=12(2)可决系数为:2659650.99883466042ES R TSS S === 修正的可决系数:222115177110.998615366042i ie n R n ky--=-=-=ᄡ--¥¥(3)这说明两个解释变量2X 和.3X 联合起来对被解释变量有很显著的影响,但是还不能确定两个解释变量2X 和.3X 各自对Y 都有显著影响。
第三章多元线性回归模型
第三章 多元线性回归模型一、名词解释1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数2R :又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了2R 随解释变量的增加而增大的缺陷,与2R 的关系为2211(1)1n R R n k -=----。
3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。
4、正规方程组:采用OLS 方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为ˆX X X Y β''=。
5、方程显著性检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出判断。
二、单项选择题1、C :F 统计量的意义2、A :F 统计量的定义3、B :随机误差项方差的估计值1ˆ22--=∑k n e iσ4、A :书上P92和P93公式5、C :A 参看导论部分内容;B 在判断多重共线等问题的时候,很有必要;D 在相同解释变量情况下可以衡量6、C :书上P99,比较F 统计量和可决系数的公式即可7、A :书P818、D :A 截距项可以不管它;B 不考虑beta0;C 相关关系与因果关系的辨析 9、B :注意!只是在服从基本假设的前提下,统计量才服从相应的分布10、D :AB 不能简单通过可决系数判断模型好坏,还要考虑样本量、异方差等问题;三、多项选择题1、ACDE :概念性2、BD :概念性3、BCD :总体显著,则至少一个参数不为04、BC :参考可决系数和F 统计量的公式5、AD :考虑极端情况,ESS=0,可发现CE 错四、判断题、 1、√2、√3、×4、×:调整的可决系数5、√五、简答题 1、 答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。
多元线性回归模型的案例分析
1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。
年份Y/千克 X/元 P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)年份Y/千克 X/元 -P 1/(元/千克)P 2/(元/千克)P 3/(元/千克)19803971992 —911 1981413《1993931 1982439 ·199410211983 )459 19951165:1984492 19961349 |19855281997%1449 1986560,19981575 1987624 *199917591988 * 666 20001994)198971720012258 )19907682002!24781991843,(1) 求出该地区关于家庭鸡肉消费需求的如下模型:01213243ln ln ln ln ln Y X P P P u βββββ=+++++(2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。
先做回归分析,过程如下:输出结果如下:所以,回归方程为:]123ln 0.73150.3463ln 0.5021ln 0.1469ln 0.0872ln Y X P P P =-+-++由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需求的影响并不显著。
验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC )和施瓦茨准则(SC )。
若AIC 值或SC 值增加了,就应该去掉该解释变量。
去掉猪肉价格P 2与牛肉价格P 3重新进行回归分析,结果如下:,Variable Coefficient Std. Error t-Statistic% Prob. ]CLOG(X)、LOG(P1)!R-squared Mean dependent var:Adjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid —Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)}…通过比较可以看出,AIC值和SC值都变小了,所以应该去掉猪肉价格P2与牛肉价格P3这两个解释变量。
第3章 多元线性回归模型
第3章 多元线性回归模型习 题一、单项选择题1.设k 为回归模型中的参数个数,n 为样本容量。
则对多元线性回归方程进行显著性检验时,所用的F 统计量可表示为( B )A. B .C .D . 2.多元线性回归分析中(回归模型中的参数个数为k ),调整后的可决系数与可决系数之间的关系( A )A.B. ≥C.D.3.已知五元线性回归模型估计的残差平方和为,样本容量为46,则随机误差项的方差估计量为( D ) A. 33.33 B. 40 C. 38.09 D. 204.在模型的回归分析结果报告中,有F =263489.23,F 的p 值=0.000000,表明( C )A 、解释变量对的影响是显著的B 、解释变量对的影响是显著的C 、解释变量和对的联合影响是显著的.D 、解释变量和对的影响是不显著5.多元线性回归分析中的 ESS 反映了( C )A .因变量观测值总变差的大小B .因变量回归估计值总变差的大小C .因变量观测值与估计值之间的总变差D .Y 关于X 的边际变化6.在古典假设成立的条件下用OLS 方法估计线性回归模型参数,则参数估计量具有( C )的统计性质。
A .有偏特性 B. 非线性特性)1()(--k RSS k n ESS )()1()1(22k n R k R ---)1()1()(22---k R k n R ))1/(k n TSS k ESS --2R2R k n n R R ----=1)1(1222R 2R 02>R 1)1(122----=n k n R R 8002=∑tetu 2ˆσ01122i i i iY X X u βββ=+++1i X i Y2i X i Y1i X 2i X i Y1i X 2i X i YC .最小方差特性 D. 非一致性特性7.关于可决系数,以下说法中错误的是( D )A.可决系数的定义为被回归方程已经解释的变差与总变差之比B. C.可决系数反映了样本回归线对样本观测值拟合优劣程度的一种描述D.可决系数的大小不受到回归模型中所包含的解释变量个数的影响二、多项选择题1.调整后的判定系数与判定系数之间的关系叙述正确的有(CDE )A.与均非负B.有可能大于C.判断多元回归模型拟合优度时,使用D.模型中包含的解释变量个数越多,与就相差越大E.只要模型中包括截距项在内的参数的个数大于1,则2.对多元线性回归方程(有k 个参数)的显著性检验,所用的F 统计量可表示为( E )A.B.C.D. E.三、判断题1.在对参数进行最小二乘估计之前,没有必要对模型提出古典假定。
多元线性回归模型计算分析题
多元线性回归模型计算分析题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为{EMBED Equation.3 |10.360.0940.1310.210i i i i edu sibs medu fedu =-++R2=0.214式中,为劳动力受教育年数,为劳动力家庭中兄弟姐妹的个数,与分别为母亲与父亲受到教育的年数。
问(1)sibs是否具有预期的影响?为什么?若与保持不变,为了使预测的受教育水平减少一年,需要增加多少?(2)请对的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年2、考虑以下方程(括号内为标准差):(0.080)(0.072) (0.658)其中:——年的每位雇员的工资——年的物价水平——年的失业率要求:(1)进行变量显著性检验;(2)对本模型的正确性进行讨论,是否应从方程中删除?为什么?3、以企业研发支出(R&D)占销售额的比重(单位:%)为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个容量为32的样本企业的估计结果如下:其中,括号中的数据为参数估计值的标准差。
(1)解释ln(X1)的参数。
如果X1增长10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)检验R&D强度不随销售额的变化而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、假设你以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析。
假设你看到如下的回归结果(括号内为标准差),但你不知道各解释变量分别代表什么。
(2.6)(6.3) (0.61) (5.9)试判定各解释变量分别代表什么,说明理由。
多元线性回归案例分析
多元线性回归案例分析案例背景:我们假设有一家制造业公司,想要研究员工的工作效率与其工作经验、教育水平和工作时间之间的关系。
公司收集了100名员工的数据,并希望通过多元线性回归模型来分析这些变量之间的关系。
数据收集:公司收集了每个员工的工作效率(因变量)、工作经验、教育水平和工作时间(自变量)的数据。
假设工作效率由工作经验、教育水平和工作时间这三个因素决定。
根据所收集的数据,我们可以建立如下的多元线性回归模型:工作效率=β0+β1*工作经验+β2*教育水平+β3*工作时间+ε在这个模型中,β0、β1、β2和β3分别是待估参数,代表截距和自变量的系数;ε是误差项,代表模型中未被解释的因素。
模型参数的估计:通过最小二乘法可以对模型中的参数进行估计。
最小二乘法的目标是让模型的预测值与观测值之间的残差平方和最小化。
模型诊断:在对模型进行参数估计后,我们需要对模型进行诊断,以评估模型的质量和稳定性。
常见的模型诊断方法包括:检查残差的正态分布、残差与自变量的无关性、残差的同方差性等。
模型解释和预测:根据参数估计结果,可以对模型进行解释和预测。
例如,我们可以解释每个自变量与因变量之间的关系,并分析它们的显著性。
我们还可以通过模型进行预测,比如预测一位具有一定工作经验、教育水平和工作时间的员工的工作效率。
结果分析:根据对模型的诊断和解释,我们可以对结果进行分析。
我们可以得出结论,一些自变量对因变量的影响显著,而其他自变量对因变量的影响不显著。
这些结论可以帮助公司更好地理解员工工作效率与工作经验、教育水平和工作时间之间的关系,并采取相应的管理措施来提高工作效率。
总结:通过以上的案例分析,我们可以看到多元线性回归在实际中的应用。
它可以帮助我们理解多个自变量与一个因变量之间的关系,并对因变量进行预测和解释。
通过多元线性回归分析,我们可以更好地了解因素对于结果的作用,并根据分析结果进行决策和管理。
然而,需要注意的是,多元线性回归的结果可能受到多种因素的影响,我们需要综合考虑所有的因素来做出准确的分析和决策。
第三章(多元线性回归模型)3-3答案
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题30n =1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
第三章(多元线性回归模型)3-2答案
3.2 多元线性回归模型的估计一、判断题1.满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( T )二 、单项选择题1、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 (A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量2.已知含有截距项的四元线性回归模型估计的残差平方和为∑=800e 2i ,样本容量为25,则其随机误差项i u 的方差的普通最小二乘估计为 (A )。
A 、40B 、32C 、38.095D 、36.364 三 、多项选择题1、对于二元样本回归模型12233ˆˆˆˆi i i iY X X e βββ=+++,下列各式成立的有(ABC ) A 、0e i =∑ B 、0X e i 2i =∑C 、0X e i 3i =∑D 、0Y e i i =∑E 、0X X i3i 2=∑四、计算题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为10.360.0940.1310.210i i i i edu sibs medu fedu =-++ R 2=0.214式中,edu 为劳动力受教育年数,sibs 为劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。
问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年?解:(1)预期sibs 对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型计算分析题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为R2=0.214式中,为劳动力受教育年数,为劳动力家庭中兄弟姐妹的个数,与分别为母亲与父亲受到教育的年数。
问(1)sibs是否具有预期的影响?为什么?若与保持不变,为了使预测的受教育水平减少一年,需要增加多少?(2)请对的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年2、考虑以下方程(括号内为标准差):(0.080) (0.072) (0.658)其中:——年的每位雇员的工资——年的物价水平——年的失业率要求:(1)进行变量显著性检验;(2)对本模型的正确性进行讨论,是否应从方程中删除?为什么?3、以企业研发支出(R&D)占销售额的比重(单位:%)为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个容量为32的样本企业的估计结果如下:其中,括号中的数据为参数估计值的标准差。
(1)解释ln(X1)的参数。
如果X1增长10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)检验R&D强度不随销售额的变化而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、假设你以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析。
假设你看到如下的回归结果(括号内为标准差),但你不知道各解释变量分别代表什么。
(2.6) (6.3) (0.61) (5.9)试判定各解释变量分别代表什么,说明理由。
5、下表给出一二元模型的回归结果。
方差来源平方和(SS)自由度(d.f.)来自回归(ESS)65965—来自残差(RSS)_——总离差(TSS)6604214求:(1)样本容量是多少?RSS是多少?ESS和RSS的自由度各是多少?(2)和?(3)检验假设:解释变量总体上对无影响。
你用什么假设检验?为什么?(4)根据以上信息,你能确定解释变量各自对的贡献吗?6、在经典线性回归模型的基本假定下,对含有三个自变量的多元线性回归模型:你想检验的虚拟假设是:。
(1)用的方差及其协方差求出。
(2)写出检验H0:的t统计量。
(3)如果定义,写出一个涉及0、、2和3的回归方程,以便能直接得到估计值及其样本标准差。
7、假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。
你通过整个学年收集数据,得到两个可能的解释性方程:方程A:方程B:其中:——第i天慢跑者的人数——第i天降雨的英寸数——第i天日照的小时数——第i天的最高温度(按华氏温度)——第i天的后一天需交学期论文的班级数请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?8、考虑以下预测的回归方程:其中:为第t年的玉米产量(吨/亩);为第t年的施肥强度(千克/亩);为第t年的降雨量(毫米)。
要求回答下列问题:(1)从和对的影响方面,说出本方程中系数和的含义;(2)常数项是否意味着玉米的负产量可能存在?(3)假定的真实值为,则的估计量是否有偏?为什么?(4)假定该方程并不满足所有的古典模型假设,即参数估计并不是最佳线性无偏估计,则是否意味着的真实值绝对不等于?为什么?9、已知描述某经济问题的线性回归模型为,并已根据样本容量为32的观察数据计算得,,,查表得,。
(1)求模型中三个参数的最小二乘估计值(2)进行模型的置信度为95%的方程显著性检验(3)求模型参数2的置信度为99%的置信区间。
10、下表为有关经批准的私人住房单位及其决定因素的4个模型的估计和相关统计值(括号内为p值)(如果某项为空,则意味着模型中没有此变量)。
数据为美国40个城市的数据。
模型如下:式中:housing——实际颁发的建筑许可证数量;density——每平方英里的人口密度,value——自由房屋的均值(单位:百美元);income——平均家庭的收入(单位:千美元);popchang——1980~1992年的人口增长百分比;unemp——失业率;localtax——人均交纳的地方税;statetax——人均缴纳的州税。
变量模型A模型B模型C模型DC813 (0.74)-392 (0.81)-1279 (0.34)-973 (0.44) Density0.075 (0.43)0.062 (0.32)0.042 (0.47)Value-0.855 (0.13)-0.873 (0.11)-0.994 (0.06)-0.778 (0.07)Income110.41(0.14)133.03(0.04)125.71(0.05)116.60(0.06)Popchang26.77 (0.11)29.19 (0.06)29.41(0.001)24.86 (0.08)Unemp-76.55 (0.48)Localtax-0.061 (0.95)Statetax-1.006 (0.40)-1.004 (0.37)RSS 4.763e+7 4.843e+7 4.962e+7 5.038e+7R20.3490.3380.3220.3121.488e+6 1.424e+6 1.418e+6 1.399e+6AIC 1.776e+6 1.634e+6 1.593e+6 1.538e+6(1)检验模型A中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。
根据检验结果,你认为应该把变量保留在模型中还是去掉?(2)在模型A中,在5%水平下检验联合假设H0:i =0(i=1,5,6,7)。
说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。
说明你的结论。
(3)哪个模型是“最优的”?解释你的选择标准。
(4)说明你对最优模型中参数符号的预期并解释原因,确认其是否为正确符号。
答案1、解:1)预期sibs对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。
根据多元回归模型偏回归系数的含义,sibs前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。
(2)medu的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的时间,其子女作为劳动者就会预期增加0.131年的教育时间。
(3)首先计算两人受教育的年数分别为10.36+0.13112+0.21012=14.45210.36+0.13116+0.21016=15.816因此,两人的受教育年限的差别为15.816-14.452=1.3642、解:1.在给定5%显著性水平的情况下,进行t检验。
参数的t值:参数的t值:参数的t值:在5%显著性水平下,自由度为19-3-1=15的t分布的临界值为,、的参数显著不为0,但不能拒绝的参数为0的假设。
(2)回归式表明影响工资水平的主要原因是当期的物价水平、失业率,前期的物价水平对他的影响不是很大,当期的物价水平与工资水平呈正向变动、失业率与工资水平呈相反变动,符合经济理论,模型正确。
可以将从模型删除.3、解:(1)ln(X1)的系数表明在其他条件不变时,ln(X1)变化1个单位,Y变化的单位数,即Y=0.32ln(X1)0.32(X1/ X1)。
由此,如果X1增加10%,Y会增加0.032个百分点。
这在经济上不是一个较大的影响。
(2)针对备择假设H1:,检验原假设H0:。
易知相应的t统计量的值为t=0.32/0.22=1.455。
在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为2.045,计算出的t值小于该临界值,所以不拒绝原假设。
这意味着销售额对R&D强度的影响不显著。
在10%的显著性水平下,t分布的临界值为1.699,计算的t 值小于该值,不拒绝原假设,意味着销售额对R&D强度的影响不显著。
(3)对X2,参数估计值的t统计值为0.05/0.46=1.087,它比10%显著性水平下的临界值还小,因此可以认为它对Y在统计上没有显著的影响。
4、解:(1)答案与真实情况是否一致不一定,因为题目未告知是否通过了经济意义检验。
猜测为:为学生数量,为附近餐厅的盒饭价格,为气温,为校园内食堂的盒饭价格;(2)理由是被解释变量应与学生数量成正比,并且应该影响显著;被解释变量应与本食堂盒饭价格成反比,这与需求理论相吻合;被解释变量应与附近餐厅的盒饭价格成正比,因为彼此有替代作用;被解释变量应与气温的变化关系不是十分显著,因为大多数学生不会因为气温变化不吃饭。
5、解:(1)样本容量为n=14.+1=15RSS=TSS-ESS=66042-65965=77ESS的自由度为: d.f.= 2RSS的自由度为: d.f.=n-2-1=12(2)R2=ESS/TSS=65965/66042=0.9988=1-(1- R2)(n-1)/(n-k-1)=1-0.0012*14/12=0.9986(3)应该采用方程显著性检验,即F检验,理由是只有这样才能判断X1、X2一起是否对Y有影响。
(4)不能。
因为通过上述信息,仅可初步判断X1、X2联合起来对Y 有线性影响,两者的变化解释了Y变化的99.8%。
但由于无法知道X1,X2前参数的具体估计值,因此还无法判断它们各自对Y的影响有多大。
6、解:(1)(2),其中为的样本标准差。
(3)由知,代入原模型得这就是所需的模型,其中估计值及其样本标准差都能通过对该模型进行估计得到。
7、解:(1)方程B更合理些。
原因是:方程B中的参数估计值的符号与现实更接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化。
(2)解释变量的系数表明该变量的单位变化,在方程中其他解释变量不变的条件下,对被解释变量的影响,由于在方程A和方程B中选择了不同的解释变量,方程A选择的是“该天的最高温度”,而方程B 选择的是“第二天需交学期论文的班级数”,造成了与这两个变量之间关系的不同,所以用相同的数据估计相同的变量得到了不同的符号。
8、解:(1)在降雨量不变时,每亩增加1千克肥料将使当年的玉米产量增加0.1吨/亩;在每亩施肥量不变的情况下,每增加1毫米的降雨量将使当年的玉米产量增加5.33吨/亩。