天大英文版化工原理1-11Definitions and Principles-课件
化工原理课件(天大版)
蒸馏分类
根据操作方式的不同,蒸馏可分为简单蒸馏 、平衡蒸馏和精馏三种类型。
二元系气液平衡关系及相图表示方法
二元系气液平衡关系
在一定温度和压力下,二元混合物中某一组分在气相 中的分压与该组分在液相中的浓度之间的关系。这种 关系可以用相平衡常数或活度系数来表示。
流动阻力与能量损失
讲解流体在管道中流动时的阻力来源和能量损失情况,以及如何降 低流动阻力和减少能量损失。
管路内流体流动阻力
沿程阻力
介绍沿程阻力的概念、计 算方法和影响因素,以及 如何利用沿程阻力系数计 算沿程阻力。
局部阻力
阐述局部阻力的概念、计 算方法和影响因素,以及 如何利用局部阻力系数计 算局部阻力。
压力
降低压力可以降低溶液的沸点,从而减少加热蒸 汽的消耗量。但是过低的压力可能导致设备泄漏 和安全问题。
设备结构
设备的结构形式、加热方式、搅拌方式等都会对 蒸发操作产生影响。合理的设备结构可以提高传 热效率和汽液分离效果,降低能耗和减少设备结 垢的风险。
基本原理
离心泵性能参数与特性曲线
性能参数
离心泵的主要性能参数包括流量、扬程、转速、功率、效率等。这些参数反映了 泵的工作能力和经济性。
特性曲线
离心泵的特性曲线是表示泵的性能参数之间关系的曲线,如Q-H曲线、Q-η曲线 等。通过分析特性曲线,可以了解泵的工作范围、最佳工况点以及不同工况下的 性能表现。
离心泵选择与操作
有流量大、压力适中的特点。
螺杆式压缩机
通过一对相互啮合的螺杆进行气 体的压缩,具有结构简单、运转
平稳、噪音低等优点。
Chapter 15-11Heat-Exchange Equipment 天大化工原理上册英文版课件
Effectiveness of the heat exchanger(传热效率) ε
actual heat transfer rate
maximum possible heat transfer rate
Maximum possible heat transfer rate
Qmax (mcpc )min (Tha Tca )
hi for the tube-side fluid
Nu
hi D k
0.023 Re0.8
Pr1/ 3
v
St
Pr 2 / 3
1 v
0.023 Re0.2
(12.34) (12.34)
ho for the shell-side flow change of flow in direction, cross-area,
recommended
ho Do k
0.287
DoG
0.61
cp
k
0.33
Fa
(15.8)
Typical values of Fa are given in Table 15.1(p443).
29
9. Design of heat exchanger
• Classification of exchanger problems • (1)Design : • Given: mh, Tha,Thb (or Tca, Tcb) , and design AT,
13
4. 2-4 Exchanger
• FIGURE 15.4 A 2-4 exchanger.
14
5. Temperature patterns in multipass
天大化工原理-英文版课件-review-2345-11Fluid mechanics
• I. Fluid statics and its application • II. Fluid dynamics and its application
1
I. Fluid statics and its application
7
• 4.3 Measurement of liquid level • 4.4 Liquid seal of equipment
8
II. Fluid dynamics and its application
• • • • • 1. Potential flow and viscous flow 2.Viscosity of fluid 3. Rheological properties of fluids 4. Laminar flow and turbulent flow 5. Boundary layer content of chapter 3
27
2. Compound pipes in parallel • (a)
hfAB hf 1 hf 2
J/kg
q q1 q2
28
• (b)
pB
gZB
BVB2
2
h fB
pC
gZC
CVC2
2
h fC
q qB qC
29
• 5.6. A liquid with a specific gravity of 2.6 and a viscosity of 2.0 cP flows through a smooth pipe of unknown diameter, resulting in a pressure drop of 0.183 lbf/in.2 for 1.73 mi(英里,1km = 0.62137mi). What is the pipe diameter in inches if the mass rate of flow is 7,000 lb/h?
化工原理第1章课件PPT
贾绍义 《化工原理》(下册)授课课件 在本课件制作过程中,得到天津大学化工学院化工系的有关教师的 指导和帮助,在此致以诚挚的感谢!由于制作者水平所限, 本课件不妥之处甚至错误在所难免,恳请用户批评指正。 制作者 2008年12月
1
学时安排
总学时48
绪论 第1章 流体流动 第2章 流体输送机械
1学时 13学时 8学时
m pM V RT
T0 pM 22.4Tp0
24
流体的密度
(2)混合物的密度 液体混合物,混合前后体积不变
1
组分的 质量分 数 组分的体 积分数
m
x wA
A
x wB
B
...
x wn
n
气体混合物,混合前后质量不变
m A x VA B xVB ... n x Vn
29
一、牛顿黏性定律
牛顿型流体(Newtonian fluid)
遵循牛顿黏性定律的流体为牛顿型流体。
所有气体和大多数低分子量液体均属牛顿 型流体,如水、空气等。
30
一、牛顿黏性定律
非牛顿型流体(non-Newtonian fluid)
凡不遵循牛顿黏性定律的流体为非牛顿型 流体(non-Newtonian fluid)。
13
三、课程的学习要求
①单元操作设备的选择能力。 ②工程设计能力。
③操作和调节生产过程的能力。
④过程开发或科学研究能力。
14
绪 论
0.1 化工原理课程的性质和基本内容 0.2 单位制和单位换算
15
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度。 2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。
天大化工原理学习指南讲解
天大化工原理学习指南讲解Studying the principles of chemical engineering can be both challenging and rewarding. 化学工程原理的学习既具有挑战性,又具有回报性。
Understanding the fundamental concepts and theories behind chemical processes is essential for any aspiring chemical engineer. 了解化学过程背后的基本概念和理论对于任何有抱负的化工工程师来说都是至关重要的。
It provides the foundation for designing new chemical processes and solving complex engineering problems. 它为设计新的化学过程和解决复杂的工程问题提供了基础。
In order to grasp the principles of chemical engineering, students often turn to study guides to help them navigate through the complexities of the subject. 为了掌握化学工程原理,学生们经常求助于学习指南,帮助他们在这一学科的复杂性中前行。
These guides can provide valuable insights and explanations that supplement classroom learning. 这些指南可以提供有价值的见解和解释,补充课堂学习。
However, finding the right study guide that effectively explains the principles of chemical engineering can be a daunting task. 然而,找到一个能够有效解释化学工程原理的合适学习指南可能是一项艰巨的任务。
化工原理Principles of Chemical Engineering
新乡学院化工原理精品课程
参考书目
• 《化工原理》(上、下) 社,1999。 • 化工原理(上、下册),第二版,陈敏恒编,化学 工业出版社,2000年。(或2006年,第三版) • 《化工原理》,谭天恩主编,化学工业出版社,第 三版,2006。 姚玉英 天津大学出版
新乡学院化工原理精品课程
化工原理
Principles of Chemical Engineering
新乡学院化工原理精品课程
0 绪论
0.1化工过程与单元操作 化工过程与单元操作 0.2物料恒算与能量恒算 物料恒算与能量恒算 0.3 单位制与单位换算
新乡学院化工原理精品课程
0 绪论
化工原理课程主要研究化工过程中各种单元操作 0.1 化工过程与单元操作 0.1.1 化工过程
∑Q = ∑Q
I
O
+ QL
(0 − 1)
注意:作热量衡算时,由于焓是相对值,与温 度基准有关,故应说明基准温度。习惯上选0℃ 为基温,并规定0℃时液态的焓为零。
新乡学院化工原理精品课程
0.3 单位制与单位换算
一、基本单位与导出单位 基本单位:选择几个独立的物理量,根据方便原 则规定单位; 导出单位:由有关基本单位组合而成。 单位制度的不同,在于所规定的基本单位及单位 大小不同。
新乡学院化工原理精品课程
新乡学院化工原理精品课程
新乡学院化工原理精品课程
0.1.2 单元操作(Unit Operation) 单元操作( ) 1 、 单元操作:在化工生产中,具有共同物理操作原 理和设备的过程。 2、单元操作分类: (1)遵循流体动力学基本规律:动量传递 (2)遵循热量传递基本规律:热量传递 (3)遵循质量传递基本规律:质量传递
化工原理课程(全英文)教学课件 11
Developed Head ������ = ������������ ������, unit m
12
Station a @ suction connection Station b @ discharge connection
© 2015 Yanwei Wang
Power Requirement & Motor Efficiency
������������ = ������������ − ������������������ = ������������������
������������ = Net work done to unit mass of fluid
������������ = Work done by the pump per unit mass of fluid ������������������ = Total friction in the pump per unit mass of fluid ������ = Pump efficiency ������ = Mass flow rate Shaft power = ������ = ������������������
Date: April 9, 2015
Chapter 2 Transportation of Fluids
Pipe, Fittings, and Valves (pp. 82-88)
Fluid-Moving Machinery (流体输送机械)
− Pumps (pp. 88-93)
− Positive-Displacement Pumps (pp.93-95)
7
© 2015 Yanwei Wang
化工原理英文教材传热原理Principles of heat flow in fluids
Principles of heat flow in fluids
Typical heat-exchange equipment
Single-pass shell-and-tube condenser
Expansion joint
It is clear from Fig.11-4 that Δt can vary considerably from point to point along the tube, and, therefore, the flux also varies with tube length.
The local flux dq/dA is related to the local value of Δt by the equation
because, as inspection of Figs11-4a and b will show, it is
not possible with this method of flow to bring the exit temperature of one fluid nearly to the entrance temperature of the other and the heat that can be transferred is less than that possible in countercurrent flow.
The temperatures plotted Fig11-4 are average stream temperatures.
The temperature so defined is called the average or mixing-cup stream temperature.
化工原理课件(天大版)
涉及多个物理过程和化学反应的复杂传质过程的计算,需要对各个过程进行分别 处理,并综合考虑各过程之间的相互影响。
分子扩散传质及传质过程的计算
分子扩散
物质分子在运动过程中,从高浓度区 域向低浓度区域的定向迁移,产生物 质传递现象。
传质过程计算
根据分子扩散定律,通过求解浓度场 和扩散系数等参数,实现对传质过程 的模拟和预测。
01
流体的密度、压强、黏度等物理 性质的定义和测量方法。
02
流体静力学基本方程的推导和应 用,包括压力、重力和惯性力对 流体平衡状态的影响。
流体流动的基本方程及流量测量仪表
流体流动的基本方程,如质量守恒、 动量守恒和能量守恒方程。
流量测量仪表的工作原理和应用,如 节流式、涡轮式、电磁式和超声波式 流量计等。
化工原理课件(天大版)
汇报人:
2023-12-10
目录
• 化工原理绪论 • 流体流动 • 传热学 • 传质学 • 化工设备 • 化学反应工程 • 化工过程的控制与优化
01
化工原理绪论
化工原理的研究对象和内容
化工原理研究对象
以化学工程中各种单元操作(动 量传递、热量传递和质量传递) 为研究对象,研究其原理、方法 和过程。
05
化工设备
化工设备的基本类型及结构特点
分离设备
用于将混合物中的不同组分分 离出来的设备,如离心机、过 滤器等。
储罐和容器
用于储存和容纳液体的设备, 如储罐、水池等。
反应设备
用于化学反应的设备,如反应 釜、反应塔等。
换热设备
用于将热能从一个物质传递到 另一个物质的设备ห้องสมุดไป่ตู้如热交换 器、蒸发器等。
输送设备
化工原理天大修订版第一章流体流动
3.1 流量与流速
3.1.1 流量 (1) Vs (体积流量),m3/s (2) ws (质量流量),kg/s
ws = ρ Vs
3.1.2 流速 (1) u (平均流速),m/s
u = Vs /A
A---截面积, m2
流量与流速的关系: ws =uAρ 37
点速度local velocity 与平均速度average velocity
P/ρg + Z =constant (m or J/N)
static head
potential head
P/ρ + Zg =constant (N or J/kg)
static energy
P+
potential energy
ρg Z=constant (Pa or J/m3)
static press
当压力温度适中,按照理想气体状态方程,
pV=mRT /M → ρ=pM/RT
p— kPa T—K M—kg/kmol(摩尔质量) R—8.31 kJ /kmol·K
17
标准状态下: ρ=pMT0/22.4Tp0
质量一定时,温度、压力和体积变化关系: pV/T = p’V’/T’
液体被视为不可压缩流体,其密度只与 温度有关,即ρ= ρ(T)
15
可压缩性流体(Compressible fluid)
它的密度随温度和压强的不同而出现较 大的差别,气体是可压缩流体。
一般在压强不太高,温度不太低的情况 下,可以按理想气体处理。即 ρ=ρ(p,T)
16
2.2.1 气体密度的计算
衡算范围:内壁面、1-1′与2-2′截面间 衡算基准:1 kg流体。基准水平面:o — o′平面
天大化工原理-英文版课件-Chapter 29-11
1
Separations are divided into two classes.
• 1. Diffusional operations: • separate homogeneous mixtures • distillation, gas absorption, extraction • 2. Mechanical separations: • separate heterogeneous mixtures • sedimentation, filtration Mechanical methods are based on the physical difference between particles, such as size, shape or density, is the subject of this chapter.
(7.25)
u is the velocity of particle relative to the fluid.
19
The external force Fe mae The buoyant force Fb The drag force
FD
mae
(7.26) (7.27) (7.28)(7.1)
22
For gravitational sedimentation
ut 2 g ( p )m Ap pCD
(7.33)
For centrifugal sedimentation 2r ( p ) m ut Ap pCD
(7.34)
23
4. Drag coefficient
化工原理英文教材chapter1
2024/2/10
化工原理英文教材chapter1
化工原理英文教材chapter1
v Preparing lessons or preview before class
v →Review after class v Don't take the course just for the grade. v Practice makes a master. If you don't
represented by a letter which symbolizes that quantity, this letter is called dimension. v For SI system, L for length, M for mass, T for temperature, for time. v 3 Unit conversion.
化工原理英文教材chapter1
Background
v What is the text book? Unit Operations of Chemical Engineering.
v It is most popular in Chem. Eng. major in USA univ.
v Authors? Warren L. McCabe, Julian C. Smith and Peter Harriott.
化工原理英文教材 chapter1
2024/2/10
化工原理英文教材chapter1
Introduction
v About the Courses and time scheduling Lecturing (theory): 14 weeks, 4 classes each week
化工原理英文
Chemical Engineering PrinciplesIntroductionChemical engineering principles form the foundation of designing and operating various chemical processes in industries. These principles encompass a wide range of essential concepts and theories that allow engineers to understand and manipulate the behavior of different substances and materials. In this document, we will explore the fundamental principles of chemical engineering and their applications in various industrial processes.Mass and Energy BalancesMass and energy balances are fundamental concepts in chemical engineering. Mass balance involves the conservation of mass during a chemical process. It states that the mass entering a system must be equal to the mass leaving the system, taking into account any accumulation or depletion of mass within the system. Energy balance, on the other hand, deals with the conservation of energy. It states that the energy entering a system must be equal to the energy leaving the system, considering energy transformations and transfers within the system.ThermodynamicsThermodynamics plays a vital role in chemical engineering as it deals with the study of energy transformations and the relationships between various forms of energy. It provides a framework for understanding the behavior of substances and their ability to undergo chemical reactions. The laws of thermodynamics, namely the first and second laws, are essential principles in chemical engineering. The first law states that energy cannot be created or destroyed, but it can be transformed from one form to another. The second law states that the entropy of a system tends to increase over time, leading to a spontaneous direction for chemical reactions.Fluid MechanicsFluid mechanics is another crucial aspect of chemical engineering that deals with the behavior of fluids (liquids and gases) in motion. It involves the study of fluid properties and their flow characteristics in pipes, channels, and other equipment. Fluid mechanics principles are applied in designing efficient transportation systems for fluids, such as pumps and pipelines. Additionally, the analysis of fluid flow patterns and pressure drops is essential in optimizing process efficiency and preventing equipment failures.Heat TransferHeat transfer is the study of how thermal energy is transferred between different substances. In chemical engineering, an understanding of heat transfer is essential for designing and operating heat exchangers, reactors, and other process equipment. There are three main modes of heat transfer: conduction, convection, and radiation. Conduction involves heat transfer through direct contact between substances, convection involves heat transfer due to fluid motion, and radiation involves heat transfer through electromagnetic waves.Separation ProcessesSeparation processes are vital in chemical engineering to isolate and purify desired products from mixtures. These processes involve the separation of different components based on their physical or chemical properties. Some common separation processes include distillation, absorption, extraction, filtration, and crystallization. The selection and design of appropriate separation processes depend on the composition of the mixture and the desired product specifications.Reaction EngineeringReaction engineering focuses on the study of chemical reactions and their kinetics. Chemical reactions are at the core of many industrial processes, and understanding their behavior is crucial for optimizing reaction conditions and maximizing product yields. Reaction engineering involves the design and operation of reactors, including considerations such as reaction rates, temperature, pressure, and catalysts. Engineers use reaction kinetics and thermodynamics principles to determine the optimal reaction conditions for desired product formation.Process ControlProcess control is an essential aspect of chemical engineering that involves maintaining optimal operating conditions for chemical processes. It aims to ensure consistent product quality and maximize process efficiency. Process control utilizes various techniques, such as feedback control systems, instrumentation, and process optimization algorithms, to monitor and adjust process variables like temperature, pressure, flow rate, and composition.ConclusionChemical engineering principles form the backbone of various industrial processes. Understanding these principles enables engineers to design, optimize, and operate chemical processes efficiently. This document has provided an overview of some fundamental principles, including mass and energy balances, thermodynamics, fluid mechanics, heat transfer, separation processes, reaction engineering, and process control. These principles are essential for any aspiringchemical engineer to master in order to contribute effectively to the field and tackle real-world challenges.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Unit operations
Transport processes Reaction Eng. CE thermodynamics Separation Eng.
Science experiment
Analytic chemistry Physical chemistry
6
Chemical engineering process is complex and various
• For example: • Fluid catalytic cracking(FCC) of petroleum • Synthetic ammonia • Manufacture common salt
14
• • • • • •
Agitation and mixing of liquids搅拌 Liquid-solid leaching浸取 Crystallization结晶 Membrane separation膜分离 Adsorption吸附 Ion exchange离子交换
15
•Transportation of fluids •Deposition •Filtration •Centrifugal separation •Heating •Cooling •Evaporation •Distillation •Absorption •Adsorption •Extraction •Crystallization •Drying
8
MIT founded first ChE department in 1887. The Institution of Chemical Engineers (IChemE 化学工程师学会 ) was founded in 1922. W.H. Walker published first Principles of Chemical Engineering in 1923.
7
• Fluid catalytic cracking(FCC) of petroleum •Transportation of fluids and solids
•Distillation •Mechanical separations •Heat transfer
The individual operations have common techniques and are based on the same scientific principles.
13
• f. Absorption 吸收 Chapter 17,18 • g. Distillation 精馏 Chapter 20,21 • h. Liquid-liquid extraction 液液萃取 Chapter 23 • i. Drying of solid 干燥, Humidification增 湿 Chapter 24
3
INTRODUCTION Chemical engineering has to do with industrial processes in which raw materials are changed or separated into useful products.
4
Inorganic chemistry
Chemis t
CE expert
5
Chemical production
Chemical engineering is both an art and a science.
• Science does not give a complete answer, it is necessary to use experience and judgment.
Unit Operations of Chemical Engineering
化工流体流动与传热
化工传质与分离过程
1
SECTION I
Introductionnciples
2
Content
• • • • • Introduction 1.1 Unit operations 1.2 Unit systems 1.3 Dimensional analysis 1.4 Basic concepts
11
• 国家首批精品课程(2003)
•(a). Basic Course •(b). Advanced Course •(c). Bilingual Course •(d). Web course
12
2.Classification of unit operations
• a. Fluid flow流体流动 Chapter 2~5 • b. Transportation of fluid流体输送 Chapter 8 • c. Mechanical separation机械分离, 非均 相物系的分离 Chapter 7&29 • d. Heat transfer传热 Chapter 10~15 • e. Evaporation蒸发 Chapter 16
9
1.1 UNIT OPERATIONS
• • • • 1. Unit operations 2. Classification of unit operations 3. Course description 4. Course objectives
10
1. Unit operations
• The unit operations are largely used to conduct the primarily physical steps of preparing the reactants, separating and purifying the products, recycling unconverted reactants, and controlling the energy transfer into or out of the chemical reactor.