铸造工艺设计说明书
法兰盘铸造工艺设计说明书
法兰盘铸造工艺设计说明书1. 引言本文档旨在详细介绍法兰盘铸造工艺的设计方案。
法兰盘是一种常用于管道连接的零件,它具有连接紧密、密封可靠等特点。
为了确保法兰盘的质量和性能,我们需要设计一个合理的铸造工艺。
2. 工艺流程2.1 材料准备选择合适的材料对于法兰盘的性能至关重要。
常用的材料包括碳钢、不锈钢等。
在材料准备阶段,我们需要对原料进行检查和筛选,确保其符合相关标准和要求。
2.2 模具设计与制造模具是法兰盘铸造的关键环节。
根据产品图纸和要求,我们需要设计并制造出适合的模具。
模具应考虑到产品形状、尺寸、结构以及顶出机构等因素。
2.3 熔炼与浇注在熔炼过程中,我们需要按照一定比例将原料放入炉中进行加热,并控制好温度和时间,使得原料完全熔化并达到适合浇注的状态。
接下来,将熔化的金属倒入模具中进行浇注。
2.4 冷却与固化在浇注后,模具内的金属会迅速冷却,并逐渐固化成为法兰盘的形态。
这个过程需要控制好冷却速度和温度,以确保产品的内部结构均匀致密。
2.5 清理与处理经过冷却固化后,我们需要将法兰盘从模具中取出,并进行清理和处理。
清理包括去除余渣、切割余料等工序。
处理则是对法兰盘进行表面处理,以提高其耐腐蚀性和美观度。
2.6 检验与质量控制最后,在生产完成后,我们需要对法兰盘进行检验和质量控制。
常用的检验方法包括外观检查、尺寸测量、物理性能测试等。
通过严格的质量控制,确保生产出合格的法兰盘。
3. 工艺参数3.1 熔炼温度熔炼温度是影响铸件质量和性能的重要参数之一。
根据材料特性和产品要求,选择合适的熔炼温度,以确保金属完全熔化且不产生过多的气体。
3.2 浇注温度浇注温度是指将熔化的金属倒入模具中的温度。
合适的浇注温度可以保证金属充分填充模具,并避免产生缺陷和气孔。
3.3 冷却速度冷却速度直接影响到铸件的组织结构和性能。
较快的冷却速度可以使得铸件结构更致密,但也容易产生应力集中和裂纹等问题。
因此,需要根据产品要求选择合适的冷却速度。
铸造工艺设计说明书
铸造⼯艺设计说明书铸造⼯艺设计说明书课程设计:机械⼯艺课程设计设计题⽬:底座铸造⼯艺设计班级:机⾃1103设计⼈:学号:指导教师:张锁梅、贾志新前⾔学⽣通过设计能获得综合运⽤过去所学过的全部课程进⾏机械制造⼯艺及结构设计的基本能⼒,为以后做好毕业设计、⾛上⼯作岗位进⾏⼀次综合训练和准备。
它要求学⽣全⾯地综合运⽤本课程及有关选修课程的理论和实践知识,进⾏零件加⼯⼯艺规程的设计和机床夹具的设计。
其⽬的是:(1)培养学⽣综合运⽤机械制造⼯程原理课程及专业课程的理论知识,结合⾦⼯实习、⽣产实习中学到的实践知识,独⽴地分析和解决机械加⼯⼯艺问题,初步具备设计中等复杂程度零件⼯艺规程的能⼒。
(2)培养学⽣能根据被加⼯零件的技术要求,运⽤夹具设计的基本原理和⽅法,学会拟订夹具设计⽅案,完成夹具结构设计,进⼀步提⾼结构设计能⼒。
(3)培养学⽣熟悉并运⽤有关⼿册、图表、规范等有关技术资料的能⼒。
(4)进⼀步培养学⽣识图、制图、运算和编写技术⽂件的基本技能。
(5)培养学⽣独⽴思考和独⽴⼯作的能⼒,为毕业后⾛向社会从事相关技术⼯作打下良好的基础。
⽬录⼀、⼯艺审核 (1)1.数量与材料 (1)2.图样 (1)3.零件的结构性 (1)⼆、成形⼯艺设计 (1)1.确定⼯艺⽅案 (1)(1)浇注位置的选择 (2)(2)分型⾯的选择 (2)2.确定铸造⼯艺参数 (4)(1)机械加⼯余量和铸出孔 (4)(2)浇注位置的选择 (5)(3)拔模斜度 (5)(4)铸造收缩率 (6)3.砂芯设计 (6)4.浇注系统的设计 (6)5. 冷铁的设置 (6)三、⼼得体会 (7)⼀、⼯艺审核1、数量与材料由零件图可知,该零件结构⽐较简单,但是形状不是很规则,⼯作条件⼀般以承受压⼒为主,故要求该零件有良好的刚性和强度。
另外,根据零件图的要求,该底座零件为单件⼩批量⽣产,另外材料选⽤灰铸铁HT200,流动性较好,适于铸造。
2、图样该零件图给出了主视图、左视图、俯视图3个视图。
支架零件铸造工艺设计说明书
支架零件铸造工艺设计一、零件的生产条件、结构及技术要求1、生产性质:大批量生产2、材料:HT2003、零件加工方法:零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。
造型方法:机器造型;造芯方法:机器制芯4、主要技术要求:满足HT200的机械性能要求,去毛刺及锐边,铸件表面不允取有缺陷。
二、零件图及立体图结构分析1、零件图如下:零件主视图零件俯视图2、立体图如下:三、工艺设计过程1、铸造工艺设计方法及分析(1)铸件壁厚为了避免浇不到、冷隔等缺陷,铸件不应太薄。
铸件的最小允许壁厚与铸造的流动性密切相关。
在普通砂型铸造的条件下,铸件最小允许壁厚见表1。
表1. 铸件最小允许壁厚查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。
由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。
(2)造型、制芯方法造型方法:该零件需批量生产,为中小型铸件,因此,采用湿型粘土砂机器造型,模样采用金属模,采用技术先进的机器造型。
制芯方法:在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。
在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。
选择使用射芯工艺生产砂芯。
采用热芯盒制芯工艺热芯盒法制芯,是用液态固性树脂粘结剂和催化剂制成的一种芯砂,填入加热到一定的芯盒内,贴近芯盒表面的砂芯受热,其粘结剂在很短的时间内硬化。
而且只要砂芯表层有数毫米的硬壳即可自芯取出,中心部分的砂芯利用余热可自行硬化。
(3)砂箱中铸件数目的确定及排布初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。
一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。
本铸件在一砂箱中高约130mm,长约200mm,宽约110mm,体积约99.7cm^3,密度7.2g/cm^3,重约0.8Kg。
铸造工艺设计说明书
铸造工艺设计说明书一、引言铸造工艺设计是针对特定铸件的生产过程进行规划和安排的过程。
本文旨在详细介绍铸造工艺设计的内容,确保读者能够全面理解并掌握该过程的要点。
二、铸造工艺设计的目标铸造工艺设计的目标是实现高质量的铸件生产。
具体而言,主要包括以下几个方面:1. 确定适宜的材料:根据铸件的要求和使用环境,选择合适的铸造材料,确保其具备良好的机械性能和耐腐蚀性能。
2. 设计合理的结构:在铸造工艺设计中,需要考虑到铸件的结构特点,合理设计铸件的形状和尺寸,以确保在铸造过程中易于铸造和冷却。
3. 确定适宜的工艺参数:通过合理选择浇注温度、保温时间、浇注速度等工艺参数,以确保铸件的成形质量。
4. 确保铸件的表面质量:通过采用适当的除砂、除气和清洁工艺,确保铸件表面的光洁度和平整度符合要求。
三、铸造工艺设计的步骤铸造工艺设计的步骤可以分为以下几个阶段:1. 铸件设计分析:在铸造工艺设计之前,需要对铸件的结构和形状进行分析。
通过对铸件进行结构强度分析、模具结构分析以及热力学分析等,确定铸造工艺的基本要求和技术指标。
2. 模具设计:根据铸件的形状和尺寸要求,进行模具设计。
包括模具的整体结构设计、分型面设计、模腔和冷却系统的设计等。
3. 工艺参数确定:根据铸件的特点和模具设计,确定适宜的浇注温度、浇注速度、保温时间等工艺参数。
这些参数对于保证铸件成形质量和提高生产效率具有重要作用。
4. 检验和调整:在铸造工艺设计结束后,需要进行试验验证和工艺调整。
通过对铸件进行质量检验,查找潜在问题并进行相应的调整,以确保最终生产的铸件质量达到要求。
四、铸造工艺设计的注意事项在铸造工艺设计的过程中,需要特别注意以下几个方面:1. 材料特性:铸造工艺设计需要充分了解所选材料的特性和性能,确保其适用于特定的铸件要求。
同时,需要根据材料的熔化温度和流动性,合理选择浇注温度和浇注系统。
2. 模具设计:模具设计需要兼顾铸件的结构特点和生产效率。
铸造工艺设计说明书
目录一、工艺分析 (1)1、审阅零件图 (1)2、零件的技术要求 (1)3、零件的技术要求 (1)4、确定毛坯的具体生产方法 (1)5、审查铸件的结构工艺性 (1)二、工艺方案的确定 (1)1、铸造方法的选择 (1)2、造型、造芯方法的选择 (2)3、浇注位置的确定 (2)4、确定毛坯的具体生产方法 (2)5、砂箱中铸件数目的确定 (2)三、砂芯设计 (2)1、水平砂芯设计 (3)2、凹槽处采用自带型芯 (3)四、工艺参数的确定 (3)1. 加工余量 (3)2.起模斜度 (4)3. 铸造圆角 (4)4. 铸造收缩率 (4)5. 最小铸出孔 (4)6、机械加工余量的选取 (4)五、浇注系统设计 (4)六、冒口及冷铁设计 (5)七、铸造工艺图和铸件图 (6)八、小结 (7)九、参考文献 (8)一、工艺分析1、审阅零件图查看零件图的具体尺寸与图纸绘制是否正确。
零件名称: 套筒座工艺方法:铸造零件材料:HT250零件重量:3.1955kg毛坯重量:4.3303kg生产批量: 100件/年,为小批量生产2、零件的技术要求零件在铸造方面的技术要求:未铸造圆角半径:R=2~3 mm;时效处理。
3、选材的合理性套筒座选用的材料是HT250,为灰铸铁。
灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。
此零件用于支承,只要求能够承受抗压即可,选择材料HT250可以满足要求。
4、确定毛坯的具体生产方法根据以上信息可知,由于零件属中型零件小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造,采用砂型铸造具有生产周期短,灵活性大、成本低的优点。
5、审查铸件的结构工艺性铸件轮廓尺寸为162x134x133mm,查表得砂型铸造的最小壁厚为6mm,套筒座的壁厚符合其要求。
在套筒座中最小壁厚为6mm,最大铸造壁厚为15mm。
二、工艺方案的确定1、铸造方法的选择由于套筒座的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,由于铸件的高度为133mm,浇注位置上没有较大的壁厚、材料为HT250不需要冷铁。
铸造工艺设计说明书
铸造⼯艺设计说明书铸造⼯艺设计说明书⽬录1. 零件结构分析 (3)1.1. 零件信息 (3)1.2. 技术要求 (3)2. 铸造⼯艺⽅案分析 (5)2.1. 铸造⽅法的确定 (5)2.2. 分型⾯的选择 (5)2.3. 铸件浇注位置的确定 (7)3. 铸造⼯艺参数 (9)3.1. 铸件尺⼨公差 (9)3.2. 铸件重量公差 (9)3.3. 机械加⼯余量 (9)3.4. 铸造收缩率 (9)3.5. 起模斜度 (9)3.6. 最⼩铸出孔及槽 (10)3.7. ⼯艺补正量 (10)3.8. 分型负数 (10)3.9. 反变形量 (10)3.10. 砂芯负数 (11)3.11. ⾮加⼯壁厚的负余量 (11)3.12. 分型负数 (11)4. 砂芯设计 (12)4.1. 砂芯的概念 (12)4.2. 芯头设计 (12)5. 浇注系统设计 (16)5.1. 浇注系统设计原则 (16)5.2. 浇注系统位置确定 (17)5.3. 浇注系统类型确定 (17)5.4. 浇注系统尺⼨计算 (17)6. 冒⼝及冷铁 (22)6.1. 冒⼝补缩原则 (22)6.2. 冒⼝及冷铁位置个数的选择 (22)6.3. 冒⼝种类选择及参数计算 (23)6.4. 铸件成品率 (25)1. 零件结构分析1.1. 零件信息产品名称:⽀架材料:铸钢外形尺⼨:91×42×66cm 3 质量:463Kg g 463000cm 58983cm g 85.7v m 33=≈?=?=ρ⽣产批量:成批⼤量⽣产。
造型⽅法:⼿⼯造型其零件⽰意图如下图1.2. 技术要求铸件重要的⼯作表⾯,在铸造是不允许有⽓孔、砂眼、渣孔等缺陷。
2.铸造⼯艺⽅案分析2.1.铸造⼯艺的确定铸造⼯艺包括:造型⽅法、造芯⽅法、铸造⽅法及铸型种类的选择2.1.1.造型⽅法、造芯⽅法的选择根据⼿⼯造型和机器造型的特点,选择⼿⼯造型2.1.2.铸造⽅法的选择根据零件的各参数,对照表格中的项⽬⽐较,选择砂型铸造。
推荐-铸造工艺课程设计说明书29页 精品
铸造工艺课程设计说明书目录1 前言 (3)1.1本设计的意义 (3)1.1.1 本设计的目的 (3)1.1.2 本设计的意义 (3)1.2本设计的技术要求 (4)1.3本课题的发展现状 (4)1.4本领域存在的问题 (4)1.5本设计的指导思想 (5)1.6本设计拟解决的关键问题 (5)2 设计方案 (5)2.1零件的材质分析 (6)2.2支座工艺设计的内容和要求 (7)2.3造型造芯方法的选择 (9)2.4浇注位置的选择与分型面的选择 (9)2.4.1 浇注位置的选择 (9)2.4.2 分型面的确定 (11)2.4.3 砂箱中铸件数目的确定 (13)3 设计说明 (14)3.1工艺设计参数确定 (14)3.1.1 最小铸出的孔和槽 (14)3.1.2 铸件的尺寸公差 (15)3.1.3 机械加工余量 (16)3.2铸造收缩率 (16)3.2.1 起模斜度 (17)3.2.2 浇注温度和冷却时间 (18)3.3砂芯设计 (18)3.3.1芯头的设计 (19)3.3.2 砂芯的定位结构 (19)3.3.3 芯骨设计 (20)3.3.4 砂芯的排气 (20)3.4浇注系统及冒口,冷铁,出气孔的设计 (20)3.4.1 浇注系统的类型和应用范围 (20)3.4.2 确定内浇道在铸件上的位置、数目、金属引入方向 (20)3.5决定直浇道的位置和高度 (21)3.5.1计算内浇道截面积 (21)3.5.2计算横浇道截面积 (22)3.5.3计算直浇道截面积 (23)3.5.4 冒口的设计 (23)4 铸造工艺装备设计 (24)4.1模样的设计 (24)4.1.1 模样材料的选用 (24)4.1.2 金属模样尺寸的确定 (25)4.1.3 壁厚与加强筋的设计 (25)4.1.4 金属模样的技术要求 (25)4.1.5 金属模样的生产方法 (25)4.2模板的设计 (25)4.2.1 模底板材料的选用 (26)4.2.2 模底板尺寸确定 (26)4.2.3 模底板与砂箱的定位 (26)4.3芯盒的设计 (26)4.3.1 芯盒的类型和材质 (26)4.3.2 芯盒的结构设计 (26)4.4砂箱的设计 (26)4.4.1 砂箱的材质及尺寸 (26)5 结论........................................................................................................ 错误!未定义书签。
《铸造工艺》课程设计说明书
目录1绪言················································2铸造工艺设计···············2.1铸件结构的铸造工艺性·········2. 2铸造工艺方案的确定·················2.3参数的选择工艺2. 4砂芯设计2. 5浇注系统设计·············3铸造的工艺装备设计······3. 1模样设计·······3. 2模底板的设计·······················3. 3模样在模底板上的装配············4结束语·······参考文献1绪言我本次课程设计的任务是对灰铸铁支承座进行铸造工艺及工装设计。
铸造工艺设计说明书
“永冠杯”第三届中国大学生铸造工艺设计大赛参赛作品铸件名称:B件---铰接支架自编代码:AB33510A方案编号:目录摘要 (1)1 零件简介 (2)1.1零件名称及用途 (2)1.2零件的技术要求 (2)1.3零件的结构 (2)2铸造工艺方案 (3)2.1材料选择 (3)2.2工艺方案的选择 (3)2.3工艺参数的确定 (5)2.3.1铸件的尺寸公差 (5)2.3.2铸件的质量公差 (5)2.3.3机械加工余量 (5)2.3.4模样的起模斜度 (5)2.3.5铸造收缩率 (5)2.3.6最小铸出孔 (5)2.4浇注系统的设计 (6)2.4.1浇注系统的选择 (6)2.4.2浇注系统尺寸的计算 (6)2.4.3浇注系统设计的校核 (8)2.5砂芯设计 (9)2.5.1砂芯设计的要点 (9)2.5.21#砂芯 (10)2.5.32#砂芯 (11)2.6冒口设计 (12)2.6.1冒口设计的说明 (12)2.6.2冒口的尺寸计算 (12)2.7出气孔的设计 (13)3砂箱的设计 (13)4铸件充型及凝固过程数值模拟 (14)4.1ViewCast 模拟软件 (14)4.2充型过程模拟 (14)4.3铸造凝固过程数值模拟 (17)4.4铸造工艺改进方案 (18)结论 (19)参考文献 (20)附图1 ——铸造工艺图附图2 ——合箱图附图3 ——铸造工艺卡片附图4 ——砂箱图摘要该铸件为驾驶室右铰接支架,通过分析零件的结构特点和性能要求,选用粘土砂湿型手工造型方法,采用两箱造型,确定了浇注位置和分型面等工艺方案,使零件整体位于下箱。
确定了机械加工余量、起模斜度、铸件收缩率等工艺参数。
根据各铸造工艺参数用Pro/Engineer软件画出铸件的三维实体图。
根据零件的形状特征,选用两个竖直放置的砂芯,1#砂芯采用盖板砂芯的形式固定。
选用了封闭式底注式浇注系统,采用了两个内浇道,用奥赞公式计算了浇注系统各部分的截面面积和尺寸,根据工艺方案在铸件顶部放置了两个用于补缩的暗冒口。
法兰盘铸造工艺设计说明书
法兰盘铸造工艺设计说明书一、工艺概述法兰盘铸造工艺是一种通过将熔融的金属浇注进模具中,待其冷却凝固后获得所需形状和性能的金属构件的工艺方法。
本说明书将详细介绍法兰盘铸造工艺设计的各个方面,以确保生产出的法兰盘具有高质量和稳定性。
二、材料选择1. 铸钢:适用于制造承受较大载荷和冲击的法兰盘。
具有较好的强度、韧性和耐腐蚀性。
2. 铸铁:成本较低,适用于制造对强度要求不高的法兰盘。
具有较好的耐磨性和耐腐蚀性。
3. 铝合金:质量轻,适用于对重量有要求的场合。
具有良好的导热性和抗腐蚀性。
三、模具设计1. 根据产品要求,设计合理的模具结构,以确保法兰盘的形状和尺寸精度。
2. 考虑模具材料的热膨胀系数、耐热性、耐磨性和加工性能,选择合适的模具材料。
3. 设计合理的浇注系统和冷却系统,以确保金属液的充型和冷却凝固。
四、熔炼与浇注1. 根据选定的材料,进行熔炼制备金属液。
控制金属液的成分、温度和纯净度,以确保铸造质量。
2. 在浇注前对金属液进行除渣、过滤等处理,以提高铸件的质量。
3. 控制浇注温度和浇注速度,以确保金属液的充型效果和减少铸造缺陷。
五、凝固与冷却1. 确保金属液在模具内充分凝固,形成所需形状的法兰盘。
2. 控制冷却速度,以获得良好的铸件组织和性能。
3. 在冷却过程中,应避免产生较大的温度梯度和收缩应力,以减少铸件裂纹和变形。
六、热处理与精整1. 根据选定的材料和性能要求,进行必要的热处理,以调整铸件的组织和性能。
2. 进行表面处理和精整,以提高法兰盘的表面质量和尺寸精度。
3. 对铸件进行消除应力和稳定组织的处理,以提高其使用性能和寿命。
七、质量检测1. 对铸件进行外观质量检查,确保无明显的铸造缺陷。
2. 进行尺寸精度检测,确保符合图纸要求。
3. 根据需要,进行机械性能测试、金相组织分析和无损检测等,以确保铸件的质量和可靠性。
八、安全注意事项1. 在操作过程中,应穿戴防护用具,如防护服、手套、眼镜等,以防止烫伤、割伤等伤害。
铸造工艺毕业设计说明书
轮毂的铸造工艺及其热芯盒模具设计摘要随着社会的发展,机动车辆在生产和生活中的越来越广泛。
缸盖是机动车辆中的重要部件,其壳体的结构及加工精度直接影响轮毂的正常工作,因此研究轮毂的加工方法和工艺的编制是十分必要和有意义的。
本设计是对前轮毂零件进行铸造毛坯工艺设计。
根据零件的使用条件、结构特点、生产批量,结合工厂现有设备等进行铸造工艺分析,确定了铸造方法、造型及造芯方法、凝固原则及浇注位置、分型面、砂箱中铸件数量、砂型数量等,完成了砂芯、浇注系统、冒口及冷铁、相关工装设备等设计。
本设计采用壳芯盒法制芯,根据芯子的形状及重量选用763射芯机进行射芯,采用酚醛树脂砂作为制芯材料。
接着对壳芯盒本体进行设计,芯盒本体的设计主要包括芯盒的结构及分盒面的选择,射砂口的设计,芯盒材料的选择,芯盒中砂芯的数目,排气装置的设计以及芯盒顶出机构的设计。
关键字:砂型铸造,工艺分析,工艺设计,壳芯工装设计The Casting Technology and Hot Core BoxMold Design of HubABSTRACTAlong with social development, motor vehicle used in production and life is increasingly wide. Hub is an important vehicle component and its interior structure and processing precision directly affect the hub normal work. Study hub cast processing methods and techniques of preparation is necessary and meaningful.This design is the casting technology design for front hub in vehicle. According to the application conditions, structural features, production batch and existing equipment, it determines the method of casting, modeling, core making, solidification principles and pouring position, parting surface, the quantity of casting and mold etc. It completes the design of sand core, pouring system, riser, chill and related equipment etc.This design uses the shell core box making core. According to the shape and weight it choose 763 shoot core machine shoot core and use phenolic resin sand as the core making material. Then design the shell core box body, the core box body design mainly includes the core box structure and box surface selection, sand jetting port core box design, choice of materials, core box of sand core in number, exhaust design and installation of the core box lifting mechanism design.KEY WORDS:sand casting,technology analysis,technology design,Shell core fixture design目录前言 (1)第一章铸造工艺设计 (2)§1.1 零件概述 (2)§1.1.1 零件信息 (2)§1.1.2 技术要求 (2)§1.2 铸造工艺方案的确定 (3)§1.2.1 造型、造芯方法及铸型种类的确定 (3)§1.2.2 浇注位置和分型面的确定 (3)§1.2.3 砂箱中铸件数目的确定 (6)§1.3 工艺参数的选择 (6)§1.3.1 铸造收缩率 (6)§1.3.2 机械加工余量、铸件的尺寸和重量偏差 (7)§1.3.3 拔模斜度的确定 (8)§1.3.4 铸造圆角的确定 (8)§1.3.5 最小铸出口及槽 (8)§1.4 浇注系统的设计 (8)§1.4.1 浇注系统的概述 (8)§1.4.2 浇注系统类型的选择 (9)§1.4.3 浇注系统的设计与计算 (10)§1.4.4 出气孔的设计 (13)§1.5 砂芯的设计 (13)§1.5.1 砂芯的概述 (13)§1.5.2 砂芯数量的确定 (13)§1.5.3 芯头的设计 (13)§1.5.4 壳芯的制备 (14)§1.6 冒口及冷铁的设计 (15)§1.6.1 冒口的设计 (15)§1.6.2 冷铁的设计 (15)第二章铸造工艺装备设计 (16)§2.1 模板 (16)§2.1.1 模样的设计 (16)§2.1.2 模底板的设计 (16)§2.2 壳芯工装设计 (17)§2.2.1 壳芯的概述 (17)§2.2.2 壳芯工艺 (17)§2.2.3 壳芯盒的材料 (18)§2.2.4 壳芯工装设计 (19)结论 (23)参考文献 (24)致谢 (25)前言近年来,能源,环境和安全问题受到普遍关注,汽车行业尤为突出。
连杆铸造工艺设计说明书
球墨铸铁连杆一、生产条件及技术要求1、生产性质大批量流水生产。
2、材质材质为QT400—15。
3、零件图4、主要技术要求力学性能:σb>400MPa;δ≥15%;130-180HBW。
金属组织:球化等级≤4级;石墨大小5.8级;φ(P)≤20%;ω(Fe3C)≤3%.二、造型、制芯1、造型采用气冲高压造型机,比压为0.7-0.9MPa;砂箱尺寸920mm*610mm*250mm,每型4件。
2、制芯设备采用单工位热芯盒制芯机。
三、熔炼工艺1、铁液的化学成分ω(C)=3.6%-3.9%;ω(Si) ≤3.0%;ω(Mn)<0.5%;ω(P) ≤0.07%;ω(S)<0.03%;ω(Mg)残=0.03%-0.05%;ω(Re)残=0.01%-0.03%。
2、球化剂稀土镁硅铁合金,加入量为铁液质量分数的1.5%-1.7%。
3、出炉温度 1420-1440℃。
4、浇注温度 1320-1350℃。
5、孕育剂 75Si-Fe合金孕育,加入量为包内铁液质量分数的0.3%-0.7%。
6、熔炼设备 10t无芯工频感应电炉熔炼原铁液;在1t铁液包中进行球化处理;转150Kg浇包进行浇注。
四、主要工艺参数1、加工余量 2.5mm。
2、收缩率 1%。
3、拔模斜度 1°。
4、砂型硬度砂型硬度大于40(C型硬度计)。
5、吃砂量吃砂量为30-60mm。
6、型砂性能湿压强度为0.12-0.14MPa,透气性≥100cm2/(Pa*s),紧实率为40%-48%(夏季),41%-47%(冬季)。
7、铸造圆角铸造圆角为R2。
五、铸造工艺方案1、浇注位置及分型面的选择根据便于起模的原则,分型面的选取如下图所示:2、铸件图的确定根据之铸件的分型面选择以及铸件加工余量和拔模斜度的确定,作出连杆铸件图如下所示:3、型芯设计根据铸件孔的基本尺寸及其加工余量,确定型芯的相关尺寸,相关数据参数如下图所示:4、工艺分析图的确定根据铸件分型面、加工余量、拔模斜度以及型芯的相关设计,作出铸件的工艺分析图如下所示:5、冒口设计根据球墨铸铁凝固特点,此件采用控制压力冒口进行补缩。
(完整word版)铸造工艺课程设计说明书
铸造工艺课程设计说明书目录1 前言 (4)1。
1本设计的意义 (4)1.1.1 本设计的目的 (4)1.1。
2 本设计的意义 (5)1.2本设计的技术要求 (5)1。
3本课题的发展现状 (5)1.4本领域存在的问题 (6)1.5本设计的指导思想 (6)1。
6本设计拟解决的关键问题 (7)2 设计方案 (7)2。
1零件的材质分析 (8)2.2支座工艺设计的内容和要求 (9)2.3造型造芯方法的选择 (11)2。
4浇注位置的选择与分型面的选择 (12)2。
4.1 浇注位置的选择 (12)2.4.2 分型面的确定 (14)2.4.3 砂箱中铸件数目的确定 (15)3 设计说明 (17)3。
1工艺设计参数确定 (17)3。
1.1 最小铸出的孔和槽 (17)3.1.2 铸件的尺寸公差 (18)3。
1.3 机械加工余量 (19)3。
2铸造收缩率 (19)3。
2。
1 起模斜度 (20)3.2。
2 浇注温度和冷却时间 (21)3。
3砂芯设计 (22)3.3。
1 芯头的设计 (22)3。
3。
2 砂芯的定位结构 (23)3。
3.3 芯骨设计 (23)3.3.4 砂芯的排气 (23)3。
4浇注系统及冒口,冷铁,出气孔的设计 (24)3。
4.1 浇注系统的类型和应用范围 (24)3。
4。
2 确定内浇道在铸件上的位置、数目、金属引入方向 (24)3.5决定直浇道的位置和高度 (25)3.5.1 计算内浇道截面积 (25)3.5.2 计算横浇道截面积 (26)3。
5。
3 计算直浇道截面积 (27)3。
5.4 冒口的设计 (27)4 铸造工艺装备设计 (28)4。
1模样的设计 (28)4。
1.1 模样材料的选用 (28)4.1。
2 金属模样尺寸的确定 (29)4。
1。
3 壁厚与加强筋的设计 (29)4。
1。
4 金属模样的技术要求 (29)4.1。
5 金属模样的生产方法 (29)4.2模板的设计 (30)4。
2。
1 模底板材料的选用 (30)4.2。
铸造工艺说明书
6.浇注系统构造应当简单、可靠,减少金属液消耗,便于清理。
1.4.2灰铸铁浇注系统尺寸确实定
浇注面积可由式(1-1)阻流截面法确定:
式(1-1)
式中: —浇注系统最小截面积 ;
—流经 截面的金属液总重量〔Kg〕;
—流量损耗系数;
—浇铸时间〔s〕;
—平均净压力头高度〔cm〕。
根据零件要求,起模斜度 。
1.2.4最小铸出孔槽
机械零件上往往有很多孔、槽和台阶,一般应尽可能在铸造时铸出。这样既可节约金属、减少机械加工量、降低本钱,又可使铸件壁厚比拟均匀,减少形成缩孔、缩松等铸造缺陷的倾向。但是当铸件上的孔、槽尺寸太小,而铸件的壁厚又较厚和金属压力较高时,反而会使铸件产生粘砂,造成清理和机械加工困难。有的孔、槽必须采用复杂而难度较大的工艺措施才能铸出,而实现这些措施还不如用机械加工的方法制出更为方便和经济。有时由于孔距要求很准确,铸出的孔如有偏心,就很难保证加工精度。因此在确定零件上的孔和槽是否铸出时,必须既考虑到铸出这些孔和槽的可能性,又要考虑到铸出这些孔和槽的必要性和经济性。
[2].王文清,李魁盛.铸造工艺学.机械工业.2002
[3].?砂型铸造工艺及工装设计?联合编写组.砂型铸造工艺及工装设计..1980
2.芯盒必须具有足够的强度、刚度和耐磨性,在正常操作下,到达要求的使用寿命;
3.确保芯盒的何形状和尺寸精度到达工艺要求;
4.尽可能减轻芯盒的重量,以降低能耗和工人的劳动强度;
5.适用放便、制造简单、降低本钱;
6.应满足选用的制芯设备的装配和操作要求。
金属芯盒的设计依据是产品零件图、铸造工艺图〔包括芯头的形状尺寸、芯盒中砂芯的数量、通气针的尺寸及同期方式等〕、生产批量、制芯设备的技术规格以及工装加工条件等。
铸造工艺学课程设计说明书
铸造工艺学课程设计-铸钢支座工艺
设计要求: 1 用 CAD 绘制符合国家制图标准的铸件零件二维三视图,经过指导老师检 查合格打印出图,图纸采用 A0 图幅; 2 在 A0 铸件图样上用红蓝铅笔做铸造工艺设计,包括分型面、加工余量、 分型(芯)负数、拔模斜度、铸造体(线)收缩率、补正量、冷铁,浇注系统设 计、冒口设计、砂芯设计、工艺说明等;必须设计 3 种分型方案,从中选取一种 合适的方案做铸造工艺设计, 设计中冒口及浇注系统等设计须有详细的计算过程 和计算依据; 3 铸造工艺图设计完成后,根据铸造工艺图设计金属模板装配图、金属芯盒 装配图(中等难度砂芯) ,用 A2 图幅打印出图;
表22铸件质量公差数值323机械加工余量铸造工艺学课程设计铸钢支座工艺420铸件为保证其加工面尺寸和零件精度应有加工余量即在铸件工艺设计时预先增加的而后在机械加工时又被加工去的金属层厚度称为机械加工余量简称加工余量
铸造工艺学课程设计说明书
铸钢支座工艺
指导老师: 课程题目:铸钢支座的铸造工艺 课程题目:支座的铸造工艺 材 料: 材 料: ZG270-500 班 学 姓 级: 号: 名: 11 铸造 1 班
图 1.1 零件图
1 / 20
铸造工艺学课程设计-铸钢支座工艺
1 零件分析 1.1 零件结构分析 零件为支座,其零件结构如图 1.1 所示。该件结构复杂,壁厚较为均匀,长、 宽和高相差大,结构上的铸造工艺性能较为合理。 1.2 零件化学成分分析 零件为支座,其零件结构如图 1.1 所示。材料为 ZG270-500,对材料的化学 成分和机械性能要求见下表 1.1 和表 1.2。 表 1.1 ZG270-500 化学成分(%) 元素 C≤ 0.40 Si≤ 0.50 Mn≤ 0.90 S≤ 0.04 P≤ 0.04 Ni 0.30 残余元素≤ Cr Cu Mo 0.30 0.30 0.25 V 0.05
铸造工艺说明书
箱体的铸造工艺设计摘要随着社会的发展,机动车辆在生产和生活中的越来越广泛。
减速器是机动车辆中的重要部件,其箱体的结构及加工精度直接影响轮毂的正常工作,因此研究箱体的加工方法和工艺的编制是十分必要和有意义的。
本设计是对蜗轮蜗杆减速器箱体进行铸造毛坯工艺设计。
根据零件的使用条件、结构特点、生产批量,结合工厂现有设备等进行铸造工艺分析,确定了铸造方法、造型及造芯方法、凝固原则及浇注位置、分型面、砂箱中铸件数量、砂型数量等,完成了砂芯、浇注系统、冒口及冷铁、相关工装设备等设计。
关键字:砂型铸造,工艺分析,工艺设计,箱体目录前言................................................................. 错误!未定义书签。
第一章铸造工艺设计.. (4)§1.1 零件概述 (4)§1.1.1 零件信息 (4)§1.1.2 技术要求 (4)§1.2 铸造工艺方案的确定 (5)§1.2.1 造型、造芯方法及铸型种类的确定 (5)§1.2.2 浇注位置和分型面的确定 (5)§1.2.3 砂箱中铸件数目的确定......... 错误!未定义书签。
§1.3工艺参数的选择 (7)§1.3.1 铸造收缩率 (8)§1.3.2 机械加工余量 (8)§1.3.3 拔模斜度的确定 (8)§1.3.4 铸造圆角的确定 (8)§1.3.5 最小铸出口 (8)§1.4 浇注系统的设计 (8)§1.4.1 浇注系统的概述 (8)§1.4.2 浇注系统类型的选择 (9)§1.4.3 浇注系统的设计与计算 (10)§1.4.4 出气孔的设计 (10)§1.5 砂芯的设计 (11)§1.5.1 砂芯的概述 (11)§1.5.2 砂芯数量的确定 (11)§1.5.3 芯头的设计 (11)§1.5.4 壳芯的制备 ............................ 错误!未定义书签。
铸造工艺设计说明书
铸造工艺设计说明书一、铸造工艺设计的目的和意义铸造是将液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法。
铸造工艺设计则是根据零件的结构特点、技术要求、生产批量等因素,确定铸造方法、铸型分型面、浇注系统、冒口和冷铁等工艺参数,以保证获得高质量的铸件,并提高生产效率、降低成本。
良好的铸造工艺设计具有重要意义。
首先,它能够保证铸件的质量,减少铸造缺陷的产生,如气孔、缩孔、夹渣等。
其次,合理的工艺设计可以提高生产效率,降低生产成本,缩短生产周期。
此外,还能为后续的机械加工提供良好的基础,减少加工余量,提高材料利用率。
二、零件分析1、零件结构对需要铸造的零件进行结构分析,包括形状、尺寸、壁厚均匀性等。
例如,形状复杂的零件可能需要采用复杂的分型面和浇注系统;壁厚不均匀的零件容易产生缩孔、缩松等缺陷,需要合理设置冒口和冷铁。
2、技术要求明确零件的技术要求,如材质、力学性能、表面质量等。
不同的材质和性能要求会影响铸造工艺的选择和参数的确定。
3、生产批量生产批量的大小直接影响铸造方法的选择。
大批量生产时,通常采用金属型铸造、压力铸造等高效率的铸造方法;小批量生产则多采用砂型铸造。
三、铸造方法的选择1、砂型铸造砂型铸造是应用最广泛的铸造方法,其优点是成本低、适应性强,可生产各种形状和尺寸的铸件。
但砂型铸造的生产效率较低,铸件的表面质量相对较差。
2、金属型铸造金属型铸造的生产效率高,铸件的精度和表面质量好,但模具成本高,适用于大批量生产形状简单、尺寸较小的铸件。
3、压力铸造压力铸造能生产出形状复杂、薄壁的高精度铸件,但设备投资大,主要用于生产大批量的有色金属铸件。
4、熔模铸造熔模铸造适用于生产形状复杂、精度要求高、难以机械加工的小型零件。
根据零件的结构、技术要求和生产批量,综合考虑选择合适的铸造方法。
四、铸型分型面的选择分型面的选择直接影响铸型的制造、造型操作的难易程度以及铸件的质量。
盖铸造工艺设计说明书
盖铸造工艺设计说明书1铸件构造工艺性分析1.1铸件根本情况:铸件材料为ZG310—570,铸件属半圆环厚壁零件,最大直径780mm,最小直径490mm,加工后最大壁厚210mm,最小145mm,加工后净重238Kg,铸件尺寸精度CT14,质量需符合GB/T6414—1999标准,允许深度不大的短小裂纹补焊,加工面不允许有肉眼看见的缩孔、缩松和裂纹等缺陷。
铸件属于中型铸件,属单件小批量生产性质类型。
根据零件三视图,画出铸件三维图如图1-1所示。
图1-1 铸件三维图1.2铸件构造工艺性分析铸件壁厚的适宜性分析铸件壁过薄,铸件将产生浇缺乏、冷隔、浇注流痕等铸造缺陷,铸件壁过厚,将使铸件由于冷却过慢晶粒粗大,也影响铸件的机械性能,因此对于一个具体的铸件,根据其材料与铸造方法,必须有一个最小临界壁厚才能保证其铸造工艺的实施。
由于零件属单件小批量生产类型,因此适宜的铸造方法为砂型铸造,根据材料的类型与铸件最大尺寸,查阅资料[1],从铸件尺寸来看,临界壁厚必须小于39mm,而本铸件最小壁厚为145mm,远远大于临界壁厚,所以本铸件属厚壁件,因此在铸造过程中应想法使金属液快速冷却。
铸件壁的连接过渡圆角铸件的过渡圆角过小,将使连接处产生较大的铸造应力,并有可能造成铸件开裂,对于本铸件来说,铸件尺寸大,铸件收缩亦大,从而铸造应力更大,铸件壁连接转角更易开裂,因此对铸造圆角的大小进展分析具有重要意义。
从图1-2可知,其过渡圆角查阅资料[2]可知,铸造适宜的圆角应在R50较为适宜,本铸件的过渡圆角在图中为R20,此处圆角过小,易在此处产生较大的铸造应力,导致铸件在此处开裂,因此,与厂家协商后,铸造工艺设计中按铸造圆角R50进展设计模样与芯盒。
1.3铸件可能产生的铸造缺陷本铸件属于中型半圆环厚壁铸件,对于此类铸件,铸件由于壁太厚,铸造完成后容易使晶粒粗大,以至于达不到厂家所要求的力学性能,为消除与防止这些缺陷的产生,铸件除快速浇注外,还需采用加冷铁等方法方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海大学Shanghai University铸造工艺课程设计报告姓名:院系:材料科学与工程学院专业:金属材料工程学号:设计课题:隔爆型转子电动机后端盖指导教师:目录小组成员名单 (1)1.铸造工艺分析 (2)2.确定铸造工艺方案 (3)3.模样的设计 (7)4.模板的设计 (7)5.芯盒的设计 (7)6.总结 (8)参考资料 (8)后端盖小组成员名单及任务分配1.铸造工艺分析1.1读图此次所需铸造的是一种隔爆型锥形转子电动机的后端盖。
铸件材质为HT200,零件净重1.56Kg,其轮廓尺寸36×φ148,属中小件,最小壁厚6mm,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。
采用湿砂型机器造型大批量生产。
需加工的表面有:(1)φ148外圆,表面粗糙度Ra6.3;(2)φ120至φ148外圆下端面,表面粗糙度Ra6.3;(3)φ122外圆,表面粗糙度Ra3.2;(4)φ96外圆,表面粗糙度Ra6.3(5)φ72至φ96外圆下端面,表面粗糙度Ra1.6;(6)φ50内圆环、φ48内孔,表面粗糙度Ra6.3;(7)φ47、φ42H7内孔,表面粗糙度Ra1.6;(8)φ47内孔端面、φ42H7内孔端面,表面粗糙度分别为Ra1.25、Ra6.3;(9)φ38内孔,表面粗糙度Ra6.3;其余为不加工面。
设计时考虑加工余量,非加工面由铸造工艺保证表面质量。
据估计,铸件约重1.96Kg。
1.2技术要求分析按照国家标准,对于HT200,其抗拉强度应达到200Mpa。
铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。
另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。
除此外无特殊技术要求。
注:其中φ42H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。
1.3 合金铸造性能分析灰铸铁具有良好的铸造性能:(1)流动性。
灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。
(2)收缩性。
灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。
(3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。
2.确定铸造工艺方案2.1确定铸造方法采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。
造型机型号:Z124C脱箱震压式造型机。
造芯机型号:SD-400垂直分型射芯机。
详细参数见下表。
Z124C脱箱震压式造型机砂箱最大内框尺寸(mm)长*宽*高400*300*100 自由空气耗量(m3/箱)0.26工作台尺寸(mm)500*430 压头至工作台最大距离(mm)315—515 起模行程(mm)300 生产率(箱/小时)40—80有效负荷(KN) 1.372 外形尺寸(mm )900*600*150 压实力(KN)19.613 重量(Kg)500 压力(Mpa)0.588SD-400垂直分型射芯机砂芯最大质量(Kg)3.2 射头左右行程(mm)125最大芯盒尺寸(mm)长*宽*高380*280*200 工作台上下最大距离(mm)420工作台到射间最大距离(mm)50—1502.2确定浇注位置和分型面浇注位置选择原则:(1)重要加工面应朝下或呈直立状态;(2)铸件的大平面应朝下;(3)应有利于铸件的补缩;(4)应保证铸件有良好的金属液导入位置,保证铸件能充满;(5)应尽量少用或不用砂芯;(6)应使合型、浇注和补缩位置一致。
分型面选择原则:(1)应使铸件全部或大部分置于同一半型内;(2)应尽可能减少分型面数目;(3)平直分型面和曲折分型面的选择,应尽可能选择平直分型面;(4)分型面应选取在铸件最大截面处。
经考虑,得到以下两个方案:方案一:上下箱对称,砂芯易于固定,但无法起模,故放弃。
方案二:分型面选择在最大截面上端面处,内浇道也从此处进入。
此方案起模方便,大部分铸型位于下箱,有利于保证浇注质量,且也能获得质量均衡的铸件。
缺点是下芯稍有不便,但不影响。
综合以上,选择方案二。
2.3确定型内铸件数目由于铸件外形尺寸较小,也考虑到所选用的造型机型号,采用一箱两件。
2.4不铸出孔及槽的确定查表2-16,灰铸铁件大量生产的不铸出孔的最小直径为12-15mm,故4个直径6.5mm的孔和2个螺孔均不铸出。
2.5机械加工余量的确定根据图纸技术要求:铸件尺寸公差按GB6414-86《铸件尺寸公差》中的CT8。
确定加工余量等级MA为G级。
尺寸在100以下,孔内加工等级降为H级,故内孔加工量为2.5;尺寸在100~160之间,非顶面加工余量为2.5。
2.6起模斜度的确定除零件本身具有的斜度外,另增设4处起模斜度:(1)φ148外圆处;(2)φ122外圆处;(3)φ120外圆下端面处;(4)φ72外圆下端面处。
以上起模斜度均为3°,已在工艺图上标出。
2.7砂芯的确定根据确定的浇注位置和分型面以及铸件内腔的形状,确定在此铸件中安放1个砂芯就可达到工艺要求。
砂芯为垂直砂芯,水玻璃砂、机器造型,安放位置如工艺图所示。
该砂芯有两个芯头,根据《JB/T 5106-1991铸件模样型芯头基本尺寸》确定:下芯头高15mm,与芯座间隙0.2mm;上芯头高8mm,与芯座间隙0.15—0.40mm;上、下芯头斜度为10°。
2.8铸造收缩率的确定灰铸铁中小型铸件收缩率:0.9—1.1%,取中值1.0% 。
2.9冒口的确定由于灰铸铁补缩要求较低,故在铸件最高处设置一个明顶冒口,顶部直径9mm,冒口颈直径6mm,高度65mm。
已在工艺图上标出。
2.10浇注系统的确定该件从分型面进行浇注,浇注系统开设位置详见工艺图。
内浇道采用扁平梯形,如此可有效防止夹杂物流入铸型型腔,不易在铸件连接处产生缩松,同时便于清理。
横浇道采用高梯形,直浇道为圆柱形,浇口杯采用普通漏斗形。
浇注系统为封闭式浇注系统,各基元尺寸及比例关系为:F内:F横:F直=1:1.3:1.05灰铸铁阻流截面计算公式:F阻——浇注系统中的最小断面总面积(cm2);G——流经F阻断面的金属液总重量(Kg);μ——总流量损耗系数;t——浇注时间(s);Hp——平均静压力头(cm)式中G=1.56 KG;μ=0.42;Hp=24 cm;浇注时间t的计算如下:G——型内金属液的总质(重量)(Kg)(根据估算G约为3.4 Kg)S1——系数,取决于铸件壁厚,由表查出。
(此处取2.2)t=2.2* 3.4 =4 s1.56据此可得出F内==0.6 cm20.3*0.42*4* 3.43.模样的设计3.1模样材质的确定模样采用铝合金ZL102,自由收缩率为1.0%;上模由于尺寸较小,采用实心;下模为空心。
3.2确定模样的基本尺寸查表得模样壁厚为8mm,无需设定加强筋。
3.3表面光洁度与尺寸公差确定模样尺寸=铸件尺寸×(1+K),K=1.0%;模样、加工面粗糙度和尺寸偏差已在模板图上标出。
3.4模样在模板上的定位和连接设计由于选用双面模板,故选用沉头螺钉穿过模样装配在模板上,模样与模样间也采用螺钉固定,确定螺钉直径为M8。
4.模板的设计4.1模板类型的确定选用ZL101做底板材料,采用双面脱箱式模板。
4.2模板尺寸和结构的确定由所选定的造型机以及砂箱最大内框尺寸(400*300)确定,得出模板尺寸为440*340*12;为了方便模样的安装,模样安装处镂空;另有一小部分模样直接铸在模板上。
5.芯盒的设计5.1芯盒材质和分盒方式的确定由于采用热芯盒射芯法制芯,故选用HT200做芯盒,采用垂直对开式芯盒。
详细材料和相应热处理要求见下表:名称用材料热处理要求热芯盒主体HT200 消除应力处理,500—550℃保温4—8小时销套定位销45 45钢淬火 HRC50—55顶芯杆回位导杆45 淬火 HRC45—50固定板、盖板45 调质芯棒456.总结本文为铸造工艺课程设计的课题设计报告,设计课题为BZDY 12—4型隔爆型锥形转子电动机后端盖。
报告从后端盖零件图开始分析,逐步确定铸造工艺方案,至模样模板以及芯盒的设计,其过程和数据均已一一给出。
在此次课程设计中,团队发挥了较大的作用。
在课程设计的初期,由于我们都对铸造工艺有相应的不了解,故大家都去查找了相关资料。
我作为组长,也全程参与了每份图纸的设计和审核工作。
在课题设计过程中,铸造工艺图无疑是很重要的,其标示出了分型面、机械加工余量、砂芯形状尺寸、浇注系统等一系列铸造中必不可少的参数。
我们小组的工艺图也是一改再改,不理解之处就去查找相关文献资料,并询问老师意见。
我们发现,铸造工艺设计中有着大量的工艺参数需要去查找,并且面对大量的数据信息,如何从中选出适合本课题铸件的相关参数有着一定难度。
信息的取舍与否直接影响到课题设计的严密性、严谨性,因此在这个问题上,我们也多次询问老师的意见,在于老师的交流和沟通中,不断地改善我们的设计。
作为组长,对每份图纸上的设计与参数需要去了解,并帮助每个成员进行改进,与此同时,自己对于铸造工艺的认知也能得到提高。
本组组员的配合也很默契,大家都竭尽所能地查找资料,及时沟通,针对新出现的问题大家能够一起思考,进行讨论并解决。
我所绘制的是最后一张装配图,由于在参与绘制的前几张图的时间里,已经对相应的内容有了一定的了解,因此绘制装配图时,并没有遇到太大的难点。
相应数据等的取舍也有了些经验,对于绘图软件的应用也已比较熟练。
此次铸造工艺课程设计,对于我们进一步认识铸造领域起到了极大的作用,通过实际的工艺设计,亲身投入到设计中去,体会团队协作、学习设计思路,对于我们而言,有着不可小觑的意义。
参考资料:1.叶荣茂吴维冈高景艳编,《铸造工艺课程设计手册》,哈尔滨工业大学出版社,1993.112.《铸造手册》中国机械工程学会铸造专业学会编,1994.103.高文清李魁盛编,《铸造工艺学》,机械工业出版社,2010.74.于顺阳编,《现代铸造设计与生产使用新工艺、新技术、新标准》,当代中国音像出版社5.陈为国章登明著,《圆柱形型腔热芯盒模具的制造工艺》,《模具制造》2001.No.46.中华人民共和国国家标准《GB-T 11350-89 铸件机械加工余量》7.中华人民共和国第一工业机械部部标准《JB2435-1978_铸造工艺符号及表示方法》8.中华人民共和国机械行业标准《JB-T_5106-1991_铸件模样型芯头_基本尺寸》。