高考数学等差数列习题及答案 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( )
A .121
B .161
C .141
D .151
2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
3.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-
B .8
C .12
D .14
4.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72
B .90
C .36
D .45
5.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
6.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
82
5
两 B .
845
两 C .
865
两 D .
885
两 7.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -
B .n
C .21n -
D .2n
8.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180
C .200
D .2209.题目文件丢失!
10.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( )
A .
54
钱 B .
43
钱 C .
23
钱 D .
53
钱 12.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m
B .21m +
C .22m +
D .23m +
13.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237
n n S n T n =+,则6
3a b 的值为
( ) A .
5
11
B .38
C .1
D .2
14.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60
B .11
C .50
D .55
15.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .
53
B .2
C .8
D .13
16.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6 17.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9
B .5
C .1
D .
59
18.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6
B .7
C .8
D .10
19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
20.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
二、多选题
21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .()1515225n n
F n
⎡⎤⎛⎫⎛⎫+-⎢⎥=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ D .()1515225n n F n ⎡⎤⎛⎫⎛⎫+-⎢⎥=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦
22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,11
4
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫

⎬⎩⎭
为递增数列 23.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =24.题目
文件丢失!
25.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )
A .4(b 2020-b 2019)=πa 2018·a 2021
B .a 1+a 2+a 3+…+a 2019=a 2021-1
C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021
D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0
26.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
15
B .
25
C .
45
D .
65
27.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
28.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =
D .当8n ≥时,0n a <
29.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >
B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .0n S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
30.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.B 【分析】
由条件可得127a =,然后231223S a =,算出即可. 【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即
127a =
所以231223161S a == 故选:B 2.C 【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 3.D 【分析】
利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】
147446=32a a a a a ++=∴=,则()
177477142
a a S a +=
== 故选:D 4.B 【分析】
由题意结合248,,a a a 成等比数列,有2
444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】
由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,
∴2
444(4)(8)a a a =-+,解之得48a =,
∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,
∴99(229)
902
S ⨯+⨯=
=,
故选:B 【点睛】
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2
k m n a a a =; 2、等差数列前n 项和公式1()
2
n n n a a S +=的应用. 5.A 【分析】
转化条件为
122527
n n
a a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.
【详解】 因为122527
n n a a n n +-=--,所以122527n n
a a n n +-
=--, 又
1127a =--,所以数列27n a n ⎧⎫
⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以
()1212327
n
a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 6.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 7.B 【分析】
根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】
因为3518a S +=,63
3a a =+,所以11161218
523a d a d a d +=⎧⎨+=++⎩, 所以11
1a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,
故选:B. 8.B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B
9.无
10.D 【分析】
设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出
(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出
111429m n =-,再由[]90,100m ∈求出n 的值.
【详解】
根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m +++++
+++=++=
则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 11.C 【分析】
根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为
2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】
设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,
则根据题意有(2)()()(2)5
(2)()()(2)
a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨
-+-=++++⎩,
解得116a d =⎧⎪⎨=-⎪⎩

所以戊所得为2
23
a d +=, 故选:C . 12.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()12323
22323<02
m m m m a a S m a +++++==
+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2
,1n n n S S n a S n --≥⎧=⎨
=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 13.C 【分析】
令2
2n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则
6
3
a b 可得. 【详解】
令2
2n S n λ=,()37n T n n λ=+,
可得当2n ≥时,()()2
21221221n n n a S S n n n λλλ-=-=--=-,
()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,
当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,
()232n b n λ=+
故622a λ=,322b λ=,
故6
3
1a b =. 【点睛】
由n S 求n a 时,11,1
,2n n
n S n a S S n -=⎧=⎨
-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符
合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 14.D 【分析】
根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】
因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()
1111161111552
a a S a +===.
故选:D. 15.B 【分析】
设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】
设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 16.C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】
因为1342
22a a a a +=⎧⎨-=⎩,所以1222
22a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+
=⨯+⨯=,
故选:C. 17.B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+==,99a d =,且0d ≠, ∴
9
9
5S a =. 故选:B 18.D 【分析】
由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】
解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,
得:111154435242238a d a d a d a d ⨯⨯⎛
⎫+=+ ⎪⎝
⎭+++=⎧⎪⎨⎪⎩


{
1132024
a d a d +-+=, 解得:
{
123
a d =-=,
51424310a a d ∴=+=-+⨯=.
故选:D. 19.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 20.B 【分析】
先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据
()
11313713132
a a S a +=
=求解出结果.
【详解】
因为()351041072244a a a a a a ++=+==,所以71a =,
又()
1131371313131132
a a S a +=
==⨯=, 故选:B. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
二、多选题
21.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,

()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
1115()n F F n n -
+=++, 令
1
n
n n F b -=
⎝⎭
,则11n n b +=
+,
所以1n n b b +=-,
所以n b ⎧⎪⎨⎪⎪⎩⎭

510-
3
2-为公比的等比数列,
所以1
n n b -+, 所以(
)11
15n n n n
F n --⎤
⎤⎛⎫
+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎣⎦
⎣⎦
; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()1
4414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()
1
(1)4
1(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,
对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC.
【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为
1
114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题 23.BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.
选项A. ()71176
773212S a d a d d ⨯=+
=+=-,无法判断其是否有最小值,故A 错误. 选项B. 1
13
137131302
a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题.
24.无
25.ABD 【分析】
对于A ,由题意得b n =
4
πa n 2
,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】
由题意得b n =
4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π
a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·
a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正
确;
数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n
-1
2
=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+
(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;
由题意a n -1=a n -a n -2,则a 2019·
a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】
此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 26.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 27.ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 28.AD 【分析】
利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】
因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,
故1a 最大,选项A 正确;选项B 不正确;
10345678910770S S a a a a a a a a -=++++++=>,
所以310S S ≠,故选项C 不正确;
当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】
本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 29.ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N
上单调递增,
1
n
a 在7n
n N ,
上单调递增,可判断B ;由()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得24
37d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()11
12+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以1
n
a 在1,6n
n N
上单调递增,1
n
a 在7n
n N ,上单调递增,所
以数列1n a ⎧⎫

⎬⎩⎭
不是递增数列,故B 不正确; 由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,
0n
S <,所以当[]7,12n ∈时,0n a <,>0n S ,
0n
n
S a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确;
【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 30.AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*
2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差
数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2
n S An Bn =+,所以{}n a 不
为等差数列.故错误. 故选:AC
【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.。

相关文档
最新文档