信号分析与处理第三章答案坤生二版

合集下载

《信号分析与处理第二版赵光宙》第三章-1(时域分析)

《信号分析与处理第二版赵光宙》第三章-1(时域分析)

x(n)
抽取
1
-2
2
-1 0
3
4
5
...
插值
n
1
2
(a )
6、卷积和
设两序列为x(n)和h(n),则x(n)和h(n)的卷积和定义为
y ( n)
由定义可知:
m
x ( m) h( n m) x ( n ) h ( n )
... x (2)h(n (2)) x (1)h(n (1)) x (0)h(n) x (1)h(n 1) x (2) h( n 2) ...
t
s
0
s
二、采样定理
采样定理(香农定理;奈奎斯特(Nyquist )定理): 对于频谱受限的信号 ,如果其最高频率分量为 m ,为了保 留原信号的全部信息,或能无失真地恢复原信号,在通过 采样得到离散信号时,其采样频率应满足 s 2m 。 奈奎斯特(Nyquist)频率 通常把最低允许的采样频率 2m 称为Nyquist频率
1 (2) 频谱的幅度乘上了一个 因子 。 Ts
x(t )
FT
0
T (t )
1
0
p( ) s
X ( )
t
n

n
(t nT ) (1)
s

( n )
s

FT
Ts
( s )
s
0
0
t
s

xs (t )
FT
0
1 Ts
X s ( )
对于信号:
x(n) A sin[n 0 ]
k 2 N
k,N为整数
若 可以表示为 : 则有:

测试信号分析与处理-第3章(打印版)

测试信号分析与处理-第3章(打印版)
-3-
关于 m = 0 偶对称。
即: m=-(N-1), …,-1,0,1,…,(N-1), 长度为2N-1
-4-
§3.1 相关函数估计的计算式
估计质量如何?
ˆ 估计均值: E[ Rxx (m)] = E[
N −|m|−1 1 ∑ x(n) x(n + m)] N − | m | n =0
§3.1 相关函数估计的计算式
j =1 n
⎡ sq(1) sq(1) sq(2) sq(1) ⎢ sq(1) sq(2) sq(2) sq(2) ⎢ 按从小到大排序, ⎢ M M 比较平方和: ⎢ ⎣ sq(1) sq(10) sq(2) sq(10)
sq(10) sq(1) ⎤ sq(10) sq(2) ⎥ ⎥ ⎥ O M ⎥ L sq(10) sq(10) ⎦ L L
相关函数和线性卷积运算的关系
x 线性卷积: (m) ∗ y (m) = ∑ x(m − k ) y (k )
N −1
相关函数和线性卷积运算的关系
说明: ● 相关函数与线性卷积的计算形式相似,都包 含着变量的移位、相乘和求和,差别只是卷 积多一个序列的翻转,因而两者仅差一个负 号;

相关函数:Rxy (m) =
l
x ( n) :
R 将平方和相近的波形相加求平均: _ model = ∑ R(i,:) (l − k + 1)
i=k
Rxy (m) :
- 27 -
- 28 -
相关运算
2. 自相关法检测信号的周期
信号的检测: x (n ) = s(n ) + u(n )
(白噪声)
y ( n) :
x (n ) 中有无 s (n) ?

信号分析与处理答案第二版完整版

信号分析与处理答案第二版完整版

信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。

解已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数〔三角形式和指数形式〕。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数〔FS 〕为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数〔FS 〕的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

假设:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数〔FS 〕的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n那么的指数形式的傅利叶级数〔FS 〕为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ 其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 假设周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:〔1〕)(1t f 的谱线间隔和带宽〔第一零点位置〕,频率单位以kHz 表示; 〔2〕)(2t f 的谱线间隔和带宽; 〔3〕)(1t f 与)(2t f 的基波幅度之比; 〔4〕)(1t f 基波与)(2t f 三次谐波幅度之比。

信号分析与处理-杨西侠-课后答案二三五章

信号分析与处理-杨西侠-课后答案二三五章

2—1 画出下列各时间函数的波形图,注意它们的区别1)x 1(t) = sin Ω t ·u(t )2)x 2(t ) = sin [ Ω ( t – t 0 ) ]·u(t )3)x 3(t) = sin Ω t ·u ( t – t 0 )4)x 2(t) = sin [ Ω ( t – t 0 ) ]·u ( t – t 0 )-2-2 已知波形图如图2—76所示,试画出经下列各种运算后的波形图(1)x ( t-2 )(2)x ( t+2 )(3)x (2t)(4)x (t/2 )(5)x (-t)(6)x (—t-2)(7)x ( -t/2—2 )(8)dx/dt2-3 应用脉冲函数的抽样特性,求下列表达式的函数值(1)⎰+∞∞--)(tt xδ(t) dt = x(—t0)(2)⎰+∞∞--)(tt xδ(t) dt = x(t0)x (-t-2)(3)⎰+∞∞--)(0t t δ u(t —2t ) dt = u (2t )(4)⎰+∞∞--)(0t t δ u(t – 2t 0) dt = u (-t 0)(5)()⎰+∞∞--+tetδ(t+2) dt = e 2—2(6)()⎰+∞∞-+t t sin δ(t-6π) dt =6π+21(7)()()[]⎰+∞∞-Ω---dt t t t e t j 0δδ=()⎰+∞∞-Ω-dt t etj δ–⎰+∞∞-Ω--dt t t e t j )(0δ= 1—t j eΩ- = 1 – cos Ωt 0 + jsin Ωt 02—4 求下列各函数x 1(t )与x 2(t ) 之卷积,x 1(t )* x 2(t)(1) x 1(t ) = u(t ), x 2(t ) = e—at· u(t) ( a>0 )x 1(t)* x 2(t) =⎰+∞∞---ττττd t u eu a )()( =⎰-ta d e 0ττ =)1(1at e a--x 1(t )* x 2(t ) =ττδτδτπd t t u t )]1()1([)]()4[cos(---+-+Ω⎰+∞∞-= cos [Ω(t+1)+4π]u (t+1) – cos[Ω(t —1)+4π]u(t —1)(3) x 1(t) = u (t) – u(t-1) , x 2(t) = u(t ) – u (t —2)x 1(t )* x 2(t ) =⎰+∞∞-+-----τττττd t u t u u u )]1()()][2()([当 t 〈0时,x 1(t )* x 2(t) = 0当 0<t 〈1时,x 1(t)* x 2(t ) =td τ⎰= t当 1<t <2时,x 1(t)* x 2(t ) =21d τ⎰= 1当 2<t<3时,x 1(t )* x 2(t ) = 12t d τ-⎰=3-t当 3〈t 时,x 1(t )* x 2(t) = 0(4) x 1(t) = u (t —1) , x 2(t) = sin t · u(t)x 1(t )* x 2(t ) =⎰+∞∞---ττττd t u u )1( )( )sin(=⎰⎰∞==01-t 01-t 0| cos - d sin 1)d --u(t sin ττττττ= 1- cos (t-1)2—5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t )在一个周期( 0<t<T )的波形 (1) x(t)是偶函数,只含有偶次谐波分量f (t ) = f(—t ), f (t ) = f (t ±T/2)(2) x (t)是偶函数,只含有奇次谐波分量 f (t ) = f (-t ), f (t) = —f(t ±T/2)(3) x(t)是偶函数,含有偶次和奇次谐波分量f(t) = f(—t)(4) x(t)是奇函数,只含有奇次谐波分量f(t)= —f(—t), f(t) = -f(t±T/2)(5) x(t)是奇函数,只含有偶次谐波分量f(t) = -f(—t), f(t) = f(t±T/2)(6)x(t)是奇函数,含有偶次和奇次谐波分量f(t)= —f(-t)2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量(a)这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。

信号分析第三章答案

信号分析第三章答案

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。

解 (a) ⎰-=Ttjk dt et x Tk X 011)(1)(ωω⎰-=τω011dt AeTtjk 2121τωτωτk Sae T A k j -= )2(1Tπω=t jk k j k e e k Sa TA t x 11212)(ωωττωτ⋅=∴-∞-∞=∑3.1解 (b) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=Tt jk dt te T A T011ω⎰--⋅=T t jk e td jk T A 012][11ωω ⎰-+-=T t jk dt e T jk Ak j A 02112ωωπkjA π2= )2(1T πω= ⎰=Tdt t x TX 0)(1)0(2A =∑∞≠-∞=+=∴)0(122)(k k t jk e kjA At x ωπ解 (c) ⎰-=Ttjk dt et x Tk X 011)(1)(ωωdt e TTtjk T T ωπ--⋅=⎰442cos1dt e e Tt k j t k j T T ][21111)1()1(44ωω+---+=⎰][)1(121][)1(1214)1(4)1(14)1(4)1(11111Tk j Tk j Tk j Tk j e ek j T e e k j T ωωωωωω++-----⋅+-⋅+--⋅=2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2)1(412)1(41-++=k Sa k Sa t jk k e k Sa k Sat x 1)2)1(2)1((41)(ωππ-++=∴∑∞-∞= )2(1T πω=解 (d) ⎰--=221)(1TT t jk n dt e t TF ωδT1=∑∞-∞==∴k tjk eTt x 11)(4ω3.2 求题图3.2所示信号的傅里叶变换。

信号分析第三章答案

信号分析第三章答案

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。

解(a)⎰-=T tjk dtetxTkX11)(1)(ωω⎰-=τω11dtAeTtjk2121τωτωτkSaeTA kj-=)2(1Tπω=解 (b) ⎰-=T tjk dtetxTkX11)(1)(ωω⎰-=T tjk dtteTAT011ω⎰--⋅=T tjketdjkTA12][11ωω解 (c) ⎰-=T tjk dtetxTkX11)(1)(ωωdteTTtjkTTωπ--⋅=⎰442cos1dteeTtkjtkjTT][21111)1()1(44ωω+---+=⎰解 (d)⎰--=221)(1TTtjkndtetTFωδT1=3.2 求题图3.2所示信号的傅里叶变换。

解 (a)dtAeX t j⎰--=221)(ττωω2ωττSaA=解 (b)设)()('2txtg=,).()("2'2txtg=由傅氏变换的微积分性质知:解 (c)TtTtAtxεεcos)]4()4([)(3--+=利用傅氏变换性质知:解 (d)ωωωjTTjAeeTSaTATtxF---=2'42)]([]2[)(224ωωωωωTjTjeTSaejAX---=∴或TjTj ejAeTAXωωωωω----=)1()(24解 (e)ωωωωω43454242)(TjTjeTSaATeTSaATX---=题图3.23.1解 (f) ⎰∞--=06)(dt e e X t j t ωαω∞+-+-=0)(1t j e j ωαωαωαj +=13.3 若已知)()]([ωX t x F =,试求下列信号的傅里叶变换。

(1) )2(t tx解 ωωd dX jt tx F )()]([= (2) )3(-t tx解 ωω3)()]3([j e X t x F -=-(3) )3(t x -解 ωω3)()]3([j e X t x F =+(4) )3()3(--t x dtdt 解 )()](['ωωX j t x F =(5) )(b at x +解 ωωjb e X b t x F )()]([=+(6)⎰∞-+td x ττ)23(解 令v =+23τ 则有:)23(31)(23+=⋅⎰+∞-t g dv v x t , dv v x t g t⎰∞-=)(31)( )]0()()([31)]([X j X t g F ωπδωω+=,ωωπδωω2)]0()()([31)]2([j e X j X t g F +=+3.4 在题图3.2(b)中取τ=T ,将)(2t x 进行周期为T 的周期延拓,得到周期信号)(t x T ,如题图3.4(a)所示;取)(t x T 的12+N 个周期构成截取函数)(t x N ,如题图3.4(b)所示。

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。

(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。

特征方程0412=-λ,解得特征根为21,2121-==λλ。

所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。

信号分析与处理(第3版)-第3章part1(时域分析)

信号分析与处理(第3版)-第3章part1(时域分析)

14
五、离散信号的描述-序列的表示方法
• 集合表示法:
{x(n)}={……, 0,1,2,3, 4,3,2,1,0,……}
n=0
n值规定为自左向右逐一递增
• 公式表示法: x(n) 4 n , n 3
x(n)
• 图形表示法:
4
3
2 1
5 4 3 2 1 0 1 2 3 4 5 n
15
1、单位脉冲序列
奈奎斯特(Nyquist)频率: s 2m
10
2、由抽样信号恢复原连续信号
• 取主频带 X () :
• 时域卷积定理: X () X s ()H ()
xs (t) x(nTs ) (t nTs ) n
h(t )
c
Sa( ct )
x(t) xs (t) * h(t)
n
c
x(nTs
• 频谱发生了周期延拓,即将原连续信号的频 谱X()分别延拓到以±s, ±2s ……为中心的
频谱,其中s为采样角频率
• 频谱的幅度乘上了因子1/Ts,其中Ts为采样周 期
9
二、时域采样定理
对于频谱受限的信号x(t),如果其最高频率分量为 ωm,为了保留原信号的全部信息,或能无失真地恢 复原信号,在通过采样得到离散信号时,其采样频 率应满足ω s ≥ 2ωm
• 预习内容:
• 离散信号的频域分析
• 实验1:信号的采样与恢复
34
•即
y(n) {1,1,4,23,32,13,34,21,5,20} 32
7、两序列相关运算
• 序列的相关运算被定义为
xy (n) x(m) y(n m) m
• 可以用卷积符号“*”来表示相关运算
xy (n) x(n) * y(n)

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案Chap1. 1.4()()()()()()()()()()()()()()()()()()()1212122121122121222y 11102y 0.5111y 0.5 1.513y 013013y 0.51110.5 1.513tttt t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t ττττττττττττττττττ+∞-∞----=*=-=-≤≤⎧⎪⎨=≤≤⎪⎩=-=-=+-<≤=-=-=-++<<=≤-≥≤-≥⎧⎪=+-<≤⎨⎪-++<<⎩⎰⎰⎰⎰⎰1.8()()()()()()()()000000001200220222cos sin 222cos 0,1,2,2sin 0,1,2,n n n T T T n T T n T a x t a n t b n t a x t dtT a x t n t dtn T b x t n t dtn T ∞=---=+Ω+Ω⎡⎤⎣⎦==Ω==Ω=∑⎰⎰⎰傅立叶级数公式()()[]()()()[]()()()∑∞=⎥⎦⎤⎢⎣⎡Ω-Ω-+=-=-==⎪⎩⎪⎨⎧<≤<≤-=1002212201cos cos cos 1cos 141cos 1cos 15.020220 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x ππππππππ代入公式得:()()()()()()[]()()[]()()∑∞=Ω-⎥⎦⎤⎢⎣⎡Ω-Ω-+=-=-===Ω=Ω-=10022222012212cos 1cos cos 11411cos 115.0cos 2(b)n n n Tjn t n n t n n n t x n b n n a a n n X en X Tt x t x πππππππ得到:根据时移性质:()()()()()[]()()[]()∑⎰∑∞=-∞=Ω-+=-=Ω==Ω+=1022322020201003cos cos 1221cos 12cos 41cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππππ偶对称,1.12()()()()()()()()()()()()()()()()()()()()()()()()2)cos()cos(cos cos cos cos 1lim cos cos cos cos 1lim cos cos cos cos 1lim2221212222222112122222222211112122211122222111ττττθτθθτθθτθτθθττΩ+Ω=-ΩΩ+-ΩΩ=+-Ω+Ω++-Ω+Ω=+-Ω++-Ω+Ω++Ω=-=⎰⎰⎰⎰--∞→--∞→-∞→+∞∞-*A A dt t A t A t t A T dt t A t A t t A T dt t A t A t A t A T dtt x t x R TT T TTT TTTChap2.2.7 (1)左移 (2)右移 (3)先翻转再右移 (4)先翻转再左移 (5)压缩 2.10()()()()()∑+∞-∞=-*=*=k k n h k R n h n R n y()()()()1111111000212232132--=+++++=-≥--=+++++=-<≤=<+-++--+a a a a a a a a n y N n aa a a a a n y N n n y n N n n N n N n n完全重叠部分重叠无重叠 Chap3.3.1 ()()()()()0n k k k n k k n h k x n h n x n y -+∞-∞=-+∞-∞=⋅=-*=*=∑∑βα()()()()()()()()()()()⎪⎩⎪⎨⎧=≠-=⋅=++>⎪⎩⎪⎨⎧=+-≠-=⋅=-+≤≤=<---+=---=-+------∑∑βααβαβαβαββαβααβαβαβαβα0100010100-11-10100000n n N N n k N n nk kn n n nk nn k k n N n y N n n n n n y N n n n n y n n N n n n n n n 完全重叠部分重叠无重叠3.2见书P109-112 (1)()()0ωω-j e X (2)()ωd e dX jjw(3)()jwe X - (4)()jweX -*(5)()jwkj e X eω- (6)()()jw jw e X e X --21**π(7)()()()jwjwe X e X --21*-3.8()()()()()()()()()34,23,12,0114,13,12,11,10=========h h h h x x x x x()()()()[]()()()()[]卷积点循环卷积等于其线性故)(点循环卷积)()线性卷积(881L 36 6 6 6 6 23 5 6 6 6 3 1 01=-+==⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==-*=∑∑∞+-∞=∞+-∞=N M n y k n h k x n y N n y k n h k x n y k N N k注y(1)=0,y(1)=1, y(2)=3…… 3.11()()()()()()()()1....2,1,0212101021010-=======--=--=-=--=-=∑∑∑∑∑rN k r kX en x en x W n x k Y en x Wn x k X n rkN j N n rNnkj N n knrN N n Nnkj N n knNN n πππ3.14 见书P118通常待分析的信号是连续信号,为了能应用离散傅立叶变换需要对连续时间信号进行采样,若ms f f 2≤,采样信号的频谱中周期延拓分量互相重叠,这就是混叠现象。

信号分析与处理第2版_赵光宙(第3_4章)习题答案

信号分析与处理第2版_赵光宙(第3_4章)习题答案

⎞ ⎟ 1 ⎡2 3π π ⎤ 2 ⎟ = 2π ⎢ n sin( 4 n) − n sin( 4 n)⎥ ⎦ ⎣ ⎟ ⎠
=
1 nπ
πn ⎤ 3πn ⎡ sin( ) − sin( )⎥ ⎢ 4 4 ⎦ ⎣
8.设 x(n) ↔ x(Ω) 对于如下序列,用 x(Ω) 表示其 DTFT (3) x(n) − x(n − 2) 利用 DTFT 的线性时移特性:
1

1 ⎡ ⎣

2
(
n =−∞
⎤ ⎡8 nπ )δ (ω − nω1 )⎥ ∗ ⎢ 2 ⎥ ⎦ ⎢ ⎣ T0
n = −∞
∑ 2πδ (ω − nω )⎥ ⎥
1

⎤ ⎦
n = −∞
∑X
− nω1 ) =
8π T0
n = −∞
∑ Sa

2
(
nπ nπ )δ (ω − nω1 − nω0 ) = 4ω0 Sa 2 ( )δ (ω − nω1 − nω0 ) 2 2 n =−∞

(t )e
− jω1t
8 dt = T

T0 16 δ (t )e − jnω1t dt T − 0 16
=
8 T0
所以 δ T1 (t ) =
n = −∞ 0 ∞
∑T

8
e jnω1t
F 对上式进行 Fourier 变换,可得 δ T1 (t ) ← ⎯→
8 T0
n = −∞
∑ 2πδ (ω − nω )



⎧ 1 n ⎪( ) (3) x3 (n) = ⎨ 2 ⎪ ⎩ 0 x3 ( n ) =
n = 0,2,4,L 其它

信号分析与处理答案

信号分析与处理答案

2.3 10
已知信号
x(t)
=
sin(t)
×
(u(t)

u(t

π)),求(1) x1(t)
=
d2 dt2
x(t)
+
x(t);
(2)
x2
(t)
=
∫t
−∞
x(τ )dτ 。
答:(1)
dx(t) dt
=
cos(t) × (u(t) − u(t − π)) + sin(t) × (δ(t) − δ(t − π))
6 第五章
24
6.1 补 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 补 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1+cos(2t) 2
,
E
= ∞, P
= 1/2.
(4) E = 4/3, P = 0;
(5) E = ∞, P = 1;
(6) E = ∞, P = 1/2.
2 第二章 P. 23
2.1 1
应用∫冲∞激信号的抽样特性,求下列表达式的函数值
(1) f (t − t0) · δ(t)dt = f (−t0) ∫−∞∞
x2(t)
=

1
− cos(t) ∞
, ,
if (t ∈ (0, π]) if (t > π)

信号分析与处理课后答案

信号分析与处理课后答案




(6) x(t ) = cos 2πt × u (t )
jΩ ( n + N )
.c
= e jΩn ,因此有 e jΩn = 1 。
om
da
课后答案网
答案: (1) 是周期信号, T =
(8) 是周期信号, T = 16
kh
3.试判断下列信号是能量信号还是功率信号。 (1) x1 (t ) = Ae
−t
t≥0
(2) x 2 (t ) = A cos(ω 0 t + θ )
解: (1) x1 (t ) = Ae
−t
t≥0
2
T →∞ 0
2 A2 A2 ⎛ 1 ⎞ A −2T lim ( e − 1) = − lim ⎜ = − 1⎟ = 2 T →∞ ⎝ e 2T −2 T →∞ ⎠ 2
∴ x1 (t )为能量信号
kh
=∞
da
= lim [ 2T −
sin 4T sin(2 + 2π )T sin(2 − 2π )T sin 4π T ⎤ + − − 4 2 + 2π 2 − 2π 4 ⎥ ⎦
w
sin(2 − 2π )T sin(2 − 2π )T sin 4π T sin 4π T ⎤ − − − 4 − 4π 4 − 4π 8 8 ⎥ ⎦
A2 1 ⎞ ⎛ 1 lim ⎜ − ⎟=0 2T T →∞ 2 2T ⎠ ⎝ 2Te
aw
T



(3) x3 (t ) = sin 2t + sin 2πt
(4) x 4 (t ) = e sin 2t
w
w
T →∞

信号分析与处理 中国电力出版社第三章习题解答第二版

信号分析与处理 中国电力出版社第三章习题解答第二版

习题33-1 如题3-1图所示电路,已知12R =Ω,24R =Ω,1L H =,0.5C F =,()2()t S u t e t V ε-=,列出()i t 的微分方程,求其零状态响应。

(S u t ()t题3-1图解:设通过电容C 的电流为)(t i c ,根据KVL 定律列写回路方程,可得)())()(()()()(12t u t i t i R dtt di Lt i t R s c =+++ )()()()())()())()((2212111212t u dt t i d CL R dt t di C R R t i R dt t di L t i R dtt di L t i R dt dCi s c =+++++= 整理得,)(2)(6)(5)(22t e t i dt t di dtt i d tε-=++ 两边求拉斯变换,在零状态响应下312211)3)(2)(1(2)(12)()65(2+++-+=+++=+=++s s s s s s s i s s i s s求拉斯反变换得)()2()(32t e e e t i t t t ε---+-=3-2 已知描述系统的微分方程和初始状态如下,试求系统的零输入响应、零状态响应和全响应。

(1)22()()43()()d y t dy t y t x t dt dt ++=,(0)(0)1y y '==,()()x t t ε= (2)22()()()44()3()d y t dy t dx t y t x t dt dt dt++=+,(0)1y =,(0)2y '=, ()()t x t e t ε-=解:(1)求零状态响应)(t y zi当激励为零时,0)(3)(4)(22=++t y dt t dy dt t y d特征方程,0342=++λλ,解特征方程根,3,121-=-=λλ,则齐次解为t t zi e c e c t y 321)(--+=,代入初始条件:1)0()0(21=+==c c y y zi ,13)0()0(21''=--==c c y y zi ,解得1,21-==c c ,即零输入响应)()2()(3t e e t y t t zi ε---= 求零状态响应)(t y zs ,)()(t t x ε=,设方程的特解,0)(c t y p =,将其代入微分方程得,31)(=t y p )()31(321t e c e c y t t zs ε++=--,代入初始条件,031)0()0(21=++==c c y y zs03)0()0(21''=--==c c y y zs ,解得61,2121=-=c c零状态响应,)()612131(3t e e y tt zs ε--+-=; 全响应,).()652331(3t e e y y y tt zi zs ε---+=+= (2)求零输入响应)(t y zi当激励为零时,齐次微分方程,0)(4)(4)(2=++t y dtt dy dt t y d 特征方程,0442=++λλ,解得特征根,221-==λλ,则齐次解t zi e t c c t y 221)()(-+=,代入初始条件,4,2)0(,1)0(2'1====c y c y即零输入响应,)()14()(2t e t t y t zi ε-+=; 求零状态响应)(t y zs ,)()(t e t x t ε-=;设方程的特解,tp e c t y -=0)(,代入微分方程得,tp e t y -=2)(t t zs e e t c c y --++=2)(221,代入初始条件,2,02)0(11-==+=c c y zs1,01)0(22'-==+=c c y zs零状态响应,)(]2)2([2t e e t y t t zs ε--++-=; 全响应,)(]2)13[(2t e e t y y y t tzs zi ε--++=+=。

信号分析与处理第一章答案坤生二版

信号分析与处理第一章答案坤生二版

1第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t e t x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x nn(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t e t x t εεπ)]4()1([3)(---=n n n x n εε2(7) t t t t x cos )]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtd t x εε(12) )()5()(n n n x --+-=εε(13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε31.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t e t x -=解 能量有限信号。

信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t x E ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x nn解 能量有限信号。

信号能量为: ()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n x E(3) t t x π2sin )(=解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ(4) n n x 4sin )(π=解 功率有限信号。

信号分析与处理第一章答案芮坤生二版

信号分析与处理第一章答案芮坤生二版

2 x(n) x(n 1) x(n) 2n1 2n1 2n
10
1.8 判断下列信号是否为周期信号,若是周期的,试求其
最小周期。
(1) x(t) cos(4t ) 6

周期信号,
T1

2
(2) x(t) sin(2t)(t) 解 非周期信号。 (3) x(t) et cos(2t) 解 非周期信号。
x(t)
1
t
-1 0 1 2
题图 1.3
4
(1) x(t 2)
x(t 2)
1
0 1 23
t
4
(2) x(t 2)
x(t 2)
1
t
-3 -2 -1 0
(3) x(2t)
x(2t)
1
t
-1/2 0 1
(4) x( 1 t) 2
x(t / 2)
1
t
-2 -1
012
3
4
(5) x(t)
x(t)
(11)

0

-2 -1 0 1 2 3 4 t
(12) x(n) (n 5) (n)
(12) 1
0 -3-2 -1 0 1 2 3 4 5 6 7 8 910 n
(13)
t
x(t) ( 1)d
(13)
1
2
0
01 t
(14) x(n) n(n)
(14)
(6) x(n) cos( n 3) 8
解 周期信号, N1 16。
(7) x(n) cos(7 n) 9
解 周期信号, N1 18。
(8) x(n) con(16n) 解: 非周期信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。

解 (a) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=τω011dt Ae Tt jk 2121τωτωτk Sa e T A k j -= )2(1Tπω= tjk k j k e e k Sa TA t x 11212)(ωωττωτ⋅=∴-∞-∞=∑解 (b) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=Tt jk dt te T A T011ω⎰--⋅=T tjk e td jk T A 012][11ωω ⎰-+-=T t jk dt e T jk Ak j A 02112ωωπkjA π2= )2(1T πω= ⎰=T dt t x T X 0)(1)0(2A= ∑∞≠-∞=+=∴)0(122)(k k t jk e kjA At x ωπ3.1解 (c) ⎰-=Ttjk dt et x Tk X 011)(1)(ωωdt e T Tt jk T T ωπ--⋅=⎰442cos 1dt e e Tt k j t k j TT ][21111)1()1(44ωω+---+=⎰][)1(121][)1(1214)1(4)1(14)1(4)1(11111Tk j Tk j Tk j Tk j e ek j T e e k j T ωωωωωω++-----⋅+-⋅+--⋅= 2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2)1(412)1(41-++=k Sa k Sat jk k e k Sa k Sat x 1)2)1(2)1((41)(ωππ-++=∴∑∞-∞= )2(1Tπω=解 (d)⎰--=221)(1T T tjk n dt et TF ωδT1=∑∞-∞==∴k tjk eTt x 11)(4ω3.2 求题图3.2所示信号的傅里叶变换。

解 (a) dt Ae X t j ⎰--=221)(ττωω2ωττSaA =解 (b) 设)()('2t x t g =,).()("2'2t x t g =题图3.2τττωτωτAe AeAt g F j j 422)]([22'2-+=-τωττAA42c o s 4-⋅=由傅氏变换的微积分性质知: 0'2'22)]([)()]([)]([=⋅+=ωωπδωt g F j t g F t g F ωωττj A 12c o s 4-⋅= 0222)]([)()]([)]([=⋅+=ωωπδωt g F j t g F t x F 22c o s 14ωωττ-⋅=A 22)4(4s i n 2ωωττ⋅=A 42)(22ωττωSa A X =∴解 (c) t TT t T t A t x πεε2cos )]4()4([)(3--+=利用傅氏变换性质知:]4)2(4)2([4)(3TT Sa T T Sa AT x πωπωω-++=]4242[4πωπω-++=T Sa T Sa AT解 (d) ωωωjT Tj Ae e T Sa T AT t x F ---=2'42)]([ 0'4'44)]([)()]([)]([=⋅+=ωωπδωt x F j t x F t x F ]2[2ωωωωjT Tj e e T Sa j A ---=]2[)(224ωωωωωTj Tj e TSa e j A X ---=∴ 或 T j T j e j A e TA X ωωωωω----=)1()(24解 (e) ωωωωω43454242)(TjTj e T Sa AT e T Sa AT X ---=][42442ωωωωTj Tj Tj e e e T Sa AT ---=ωωω22244Tj e T Sa jAT -=解 (f) ⎰∞--=06)(dt eeX tj t ωαω∞+-+-=0)(1t j e j ωαωαωαj +=13.3 若已知)()]([ωX t x F =,试求下列信号的傅里叶变换。

(1) )2(t tx解 ωωd dX jt tx F )()]([= )2(2)2()2(2121)]2(2[21)]2([ωωωωX d d j d dX jt tx F t tx F =⋅==(2) )3(-t tx解 ωω3)()]3([j e X t x F -=-])([)]3([3ωωωj e X d djt tx F -=-ωωωω33')(3)(j j e X e jX --+=(3) )3(t x -解 ωω3)()]3([j e X t x F =+ ωω3)()]3([j e X t x F --=-(4) )3()3(--t x dtdt 解 )()](['ωωX j t x F =)]([)](['ωωωX j d dj t tx F =)]()(['ωωωX X +-= ωωωω3')]()([)]3()3[(j e X X t x dtdt F -+-=--(5) )(b at x +解 ωωjb e X b t x F )()]([=+ωωa bj e a X ab at x F )(1)]([=+(6)⎰∞-+td x ττ)23(解 令v =+23τ 则有:)23(31)(23+=⋅⎰+∞-t g dv v x t , dv v x t g t⎰∞-=)(31)( )]0()()([31)]([X j X t g F ωπδωω+=,ωωπδωω2)]0()()([31)]2([j e X j X t g F +=+ ωωπδωω32)]0()3(3)3([91)]23([j e X j X t g F +=+).()0(3)3(31)23(32ωδπωωττωX e j X d x j t +=+∴⎰∞-3.4 在题图3.2(b)中取τ=T ,将)(2t x 进行周期为T 的周期延拓,得到周期信号)(t x T ,如题图3.4(a)所示;取)(t x T 的12+N 个周期构成截取函数)(t x N ,如题图3.4(b)所示。

(1) 求周期信号)(t x T 傅里叶级数系数; (2) 求周期信号)(t x T 的傅里叶变换; (3) 求截取信号)(t x N 的傅里叶变换。

解 (1) 设单个三角波脉冲为)(t x ,其傅里叶变换42)(2TSaAT X ωω=根据傅里叶级数)(1ωk X T 和傅里叶变换)(ωX 之间的关系知:1)(1)(1ωωωωk T X Tk X ==14212ωωωk a TS AT T =⋅=)2(22421212πωπω===T k Sa A T k Sa A(2) 由周期信号的傅里叶变换知:)()(2)]([11ωωδωπk k X t x F k T T -=∑∞-∞= )(22212ωωδππk k Sa A k -=∑∞-∞=)(212ωωδππk k Sa A k -=∑∞-ℵ= (3) 因为)()(∑-=-=NN n N nT t x t x∑-=-=NNn N nT t x F t x F )]([)]([ωωj n TNNn eX --=∑=)(ωωωωjN TjT T N j e e e X -+--=11)()12(ωωωT T N X 21sin )21sin()(+=422T SaAT ω=ωωT T N 21sin )21sin(+⋅3.5 绘出下列信号波形草图,并利用傅里叶变换的对偶性,求其傅里叶变换。

(1) )()(01t t Sa t x π=(2) )()(022t t Sa t x π=[提示:参见脉冲信号和三角波信号的傅里叶变换]解(1) 2)]2()2([ωττπεπεaFS A t t A −→←--+, ∴根据对偶知: )]()([)(00t t t t t S Fa πωεπωεπ--+−→←)4(22ωττa F S A −→←解(2)根据对偶知:∴−→←Fa t t S )(02π3.6 已知)(t x 的波形如题图3.6(a)所示,(1) 画出其导数)('t x 及)(''t x 的波形图;(2) 利用时域微分性质,求)(t x 的傅里叶变换;(3) 求题图3.6(b)所示梯形脉冲调制信号t t x t x c c ωcos )()(=的频谱函数。

解(1) )('t x 及)("t x 的波形如下:(2) ][1)()]([222"τωτωτωτωτωj j j j e e e e X t x F --+--== )cos 2(cos 2τωτωτ-=)()0()()()]([221'ωδπωωωX j X X t x F +==∴ωωj X )(2=]cos 2[cos 2τωτωωτ-⋅=j )()0()()()]([11ωδπωωωX j X X t x F +==∴ωωj X )(1=]2cos [cos 22τωτωτω-= (3) )(21)(21)]([c c c X X t x F ωωωω-++=3.7 求下列频谱函数的傅里叶逆变换。

(1)ωj +21解 )(]21[21t e j F t εω--=+ (2)2)2(1ωj +解 222)2(1)2(]21[+=+-=+ωωωωj j j j d d j )(])2(1[221t te j F tεω--=+∴ (3)1)2(12++ωj)(t x1t -2τ -τ 0 ττ (a)题图3.6)(t x c1t-2τ 2τ(b)解 )2(21)2(21)2(112j j j j j j j ----++--=++ωωω )(]2121[]1)2(1[)2()2(21t e j e j j F tj t j εω--+---=++∴ ).(sin 2t t e t ε-=(4) ω2sin 4解 ][2142sin 422ωωωj j e e j--⋅= ][222ωωj j e e j ---= )]2()2([2]2sin 4[1--+-=∴-t t j F δδω(5)21ω解 )(2]1[ωπδ=F).(')](2[21]2[ωπδωπδωj d d j t F =⋅=∴ ………(3.7.5.1) 又)(1)]([ωπδωε+=j t F ).('1)](1[)]([2ωπδωωπδωωεj j d d jt t F +-=+=∴ ………(3.7.5.2) 由(3.7.5.1)、(3.7.5.2)式可知:)]([]2[12t t F tF εω-= )(2]1[21t t t F εω-=∴-]1)(2[2--=t t ε)(Sgn 21t t -=(6) 2/2sinωτωτ解 22sin)]2()2([ωτωτττετε=--+t t F)]2()2([1]2/2[sin1τετετωτωτ--+=-t t F*3.8 设输入信号为)()(4t et x tε-=,系统的频率特性为2561)(ωωωω-++=j j H ,求系统的零状态响应。

相关文档
最新文档