土与结构相互作用PPT课件
土与结构相互作用
土与结构相互作用在建筑结构的设计计算中,通常是将上部结构、地基和基础三者分开来考虑,作为彼此离散的独立结构单元进行静力平衡分析计算。
在上部结构的设计计算中,不考虑基础刚度的影响;而在设计基础时,也未考虑上部结构的刚度,只计算作用在基础顶面的荷载;在验算地基承载力和进行地基沉降计算时,亦忽略了基础的刚度,而将基底反力简化为直线分布,并视其为柔性荷载,反向施加于地基。
这种设计方法在50年前大型、高层建筑没有出现的情况下,可以说是适用的。
但随着高层、大型、复杂建筑的修建,地基相对上部结构来说相互柔性,因而,地基刚性的假设不再成立,在设计结构时,就必须考虑地基与上部结构的相互作用问题,把二者作为一个整体进行耦合分析。
土与结构相互作用理论研究已经有相当丰富的经验,已取得了一些成果。
土与结构相互作用分为静相互作用和动相互作用。
土与结构静力相互作用理论主要有:Meyerhof G G博士提出估算框架等效刚度的公式以考虑共同作用,在计算箱型基础土与结构共同作用时,按箱基抗弯刚度与上部框架结构考虑柱影响的有效刚度比例来分配总弯矩。
Cheung Y K应用有限元研究地基基础的共同作用,为共同作用的发展提出了另一发展方向。
Haddain M J利用子结构分析方法研究地基基础与上部结构的共同作用,为利用有限元分析高层建筑结构打下基础。
土与结构动力相互作用理论:Lsymer和Richart 提出了解决土与结构动力共同作用的集中参数法,为解决土与结构动力共同作用的计算奠定了基础。
Paramelee 率先对土和结构系统提出了比较合理的力学模型:将地基理想化为半无限空间,上部结构理想化为带刚性底板的单自由度刚架,其刚性底板搁置在地基土表面。
这一力学模型的提出,标志着土与结构动力共同作用的研究进入深化阶段。
Chopra ,Perumalswami 在分析大坝与基础在地震作用下的共同作用时提出了子结构法,使当时的数值计算分析方法能够在复杂体系中得以有效应用。
土力学基础工程ppt课件(完整版)精选全文
b d 0[x ()2z2]2
z p [ n (am n r a cr tn m c a 1 ) t n ( n a m ( 1 n ) n 2 1 ) m 2 ] s p 0
2.4 土的压缩性
土的压缩性高低,常用压缩性指标定量 表示。压缩性指标,通常由工程地质勘 察取天然结构的原状土样,进行室内压 缩试验测定。
<0.005
0 4 0
小 于 某 粒 径 的 土 粒 质 量 /%
100
80
60
40
20
0 10
1
0 .1
0 .0 1
1 E -3
粒 径 /mm
1.1.2 土中水
(1)结合水
强结合水、弱结合水
(2)自由水
重力水、毛细水
(3)气态水
(4)固态水
双电层
• 结合水概念
强结合水、弱结合水
• 双电层概念
k l e 2
2.2.4 基底附加压力
p 0p ch p 0 h
2.3 地基附加应力
2.2.1 基本概念
1、定义
附加应力是由于外荷载作用,在地基中产生的应力增 量。
2、基本假定
地基土是各向同性的、均质的线性变形体,而且在深 度和水平方向上都是无限延伸的。
2.2.2 竖向集中力作用时的地基附加 应力布辛奈斯克解答
• 均布条形荷载下地基中附加应力的分布规律:
(1) 地基附加应力的扩散分布性; (2) 在离基底不同深度处各个水平面上,以基底中心点下轴
线处最大,随着距离中轴线愈远愈小; (3) 在荷载分布范围内之下沿垂线方向的任意点,随深度愈
向下附加应力愈小。
4、三角形分布条形荷载
dp pd
土壤的结构和组成ppt全篇
在购买的VIP时长期间,下载特权不清零。
100W优质文档免费下载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起
VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
内容特权
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次发放,全年内有效
赠送的共享文档下载特权自VIP生效起每月发放一次,每次发放的特权有效期为1个月,发放数量由您购买的VIP类型决定。
赠送每月15次共享文档下载特权,自VIP生效起每月发放一次,持续有效不清零。自动续费,前往我的账号-我的设置随时取消。
由于各种矿物质抵抗风化的能力不同,它们经受风化后,在各粒级中分布的多少也不相同。矿物的粒级不同,其化学成分也有较大的差异。在较细颗粒中,Ca、Mg、P、K等元素的含量较大。一般而言,土粒越细,所含养分越多,反之则越少。
1.2.2 土壤的质地 由不同的粒级混合在一起所表现出来的土壤粗细状况称为土壤质地(或土壤机械组成)。土壤质地分类是以土壤中各粒级含量的相对百分比作标准的。
土壤质地在一定程度上反映了土壤矿物组成和化学组成,同时土壤颗粒大小和土壤的物理性质密切相关,并且影响土壤孔隙状况。因此对土壤水分、空气、热量的运动和养分转化均有很大的影响。质地不同的土壤表现出不同的性状,壤土兼有砂土和粘土的优点而克服了二者的缺点,是质地理想的土壤。
<返回>
土壤是由固、液、气三相物质组成的疏松多孔体。固相物质包括矿物质、有机质和土壤生物。在固相物质之间,为形状和大小不同的孔隙,孔隙中存在水分和空气。土壤三相物质的比率因土壤种类而异,并且经常变化。土壤中所含多量化学元素的丰度顺序如下:O>Si>Al>Fe=C=Ca>K>Na>Mg>Ti>N>S,这个次序与地壳组成大体一致,所不同的是由于土壤中集结了大量生物体,因此C、N、S的含量相对较高。从环境污染角度来看,土壤还是藏污纳垢之处,含有各种生物的残体、排泄物、腐烂物;还含有来自大气、水体及固体废物中的各种污染物以及农药、肥料残留物等。
土壤的剖面形态和土壤结构ppt课件
一、土壤剖面形态
1、土壤剖面 2、自然土壤剖面 3、旱地耕作土壤剖面 4、水田耕作土壤剖面
• 1、土壤剖面:从地表向下所挖出的垂直切 面叫土壤剖面。 • 2、发生层:土壤剖面一般是由平行于地表、 外部形态各异的层次组成,这些层次叫土 壤发生层或土层(在土壤形成过程中,由 于物质的迁移和转化,土壤分化成一系列 组成、性质和形态各不相同的层次,称为 发生层 )
有结构土
无结构土
5、团粒结构,土质疏松 5、土体紧实,不利于根 多孔,利于植物根系生长 系生长,也不利于农业操 ,利于农业操作。 作。
6、具备良好的肥力基础 。
6、需改良。
土壤结构的破坏
• 1、雨水的冲刷、人畜的践踏、农机具的镇 压、不合理的耕作 • 2、化学破坏 K、Na、NH4 • 3、生物破坏
无结构土 3、表土失水,体积也要 搜索,但小孔隙过多,不 易完全切断,下部土壤水 份可源源上升补充蒸发, 水份损失大,土壤抗旱力 弱。
有结构土
无结构土
4、团粒内部,常为水份 占据,有机质行腐化而积 累;团粒之间,常为空气 所占据,有机质行矿化而 释放。既有保肥,也有供 肥,保肥供肥较为协调。
4、在土壤较干时,有机 质行矿化释放,但因缺水 ,植物不能吸收养分;当 水份含量高,植物能够吸 收养分时,有机质又行腐 化而积累,释放的养分少 。故土壤保肥供肥关系不 协调。
一、土壤结构体的类型和特征
1、粒状结构和团粒结构
⑴ 土粒的结持体外观形态近似圆球形:0.25~10mm,
旱土中多此类。小于0.25mm的为微团粒,水田中多为此 类
a. 在水中分散的,为粒状结构;
b. 在水中能稳定存在的,为团粒结构。
⑵ 特征: a.多形成于有机质含量高的土壤表层,以根系附近分布 较多。 b.结构内部,毛管孔隙丰富,蓄水保肥能力强,结构体 之间,通气透水能力强。
土-结构相互作用-群桩分析
第一章问题描述土体尺寸为3.6*2.16*1.56,单元尺寸为0.06,上层土体厚度为1.44,下层碎石厚度为0.12,圆桩的水平截面的形心坐标为:1号桩X=1.2,Y=1.08;2号桩X=1.8,Y=1.08;3号桩X=2.4,Y=1.08;4号桩X=1.8,Y=1.68;5号桩X=1.8,Y=0.48。
桩的起始Z坐标为0.06,终止坐标为1.56.直径为0.15。
桩上方有一立方体承台,承台上方有一连接构件,连接一质量块。
各种材料的材料参数如下表所示。
表1-1 各种材料的材料参数输入脉冲的宽度为0.015秒,时间步长为0.00001秒,步数为16384步。
通过自由场程序构造垂直向上入射的SV波。
第二章数值计算结果2.1群桩各个水平截面的剪力时程图2.1.1一号桩各个水平截面的剪力时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.1.2二号桩各个水平截面的剪力时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.1.3三号桩各个水平截面的剪力时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.1.4四号桩各个水平截面的剪力时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.1.5五号桩各个水平截面的剪力时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.2群桩各个水平截面的弯矩时程图2.2.1一号桩各个水平截面的弯矩时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.2.2二号桩各个水平截面的弯矩时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.2.3三号桩各个水平截面的弯矩时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.2.4四号桩各个水平截面的弯矩时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.2.5五号桩各个水平截面的弯矩时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.3群桩各个水平截面形心点X方向的位移时程图2.3.1一号桩各个水平截面形心点X方向的位移时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.3.2二号桩各个水平截面形心点X方向的位移时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.3.3三号桩各个水平截面形心点X方向的位移时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.3.4四号桩各个水平截面形心点X方向的位移时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.3.5五号桩各个水平截面形心点X方向的位移时程图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.4群桩各个水平截面形心点X方向的位移频谱图2.4.1一号桩各个水平截面形心点X方向的位移频谱图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.4.2二号桩各个水平截面形心点X方向的位移频谱图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.4.3三号桩各个水平截面形心点X方向的位移频谱图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.4.4四号桩各个水平截面形心点X方向的位移频谱图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.4.5五号桩各个水平截面形心点X方向的位移频谱图Z=0.06 Z=0.30Z=0.54 Z=0.78Z=1.02 Z=1.26Z=1.44 Z=1.502.5群桩各个水平截面的内力峰值2.5.1一号桩各个水平截面的内力峰值2.5.2二号桩各个水平截面的内力峰值2.5.3三号桩各个水平截面的内力峰值2.5.4四号桩各个水平截面的内力峰值2.5.5五号桩各个水平截面的内力峰值2.6最大弯矩值最大的截面产生最大弯矩所对应时刻桩的挠曲线2.6.1一号桩的挠曲线最大弯矩值最大的截面为Z=1.32处截面,其最大弯矩值为0.464KN*m,该截面产生最大弯矩值所对应的时刻为T=0.01204s,此时桩的挠曲线如下图所示(横轴表示挠度,纵轴表示桩水平截面的位置(以水平截面形心的Z坐标值来表示))2.6.2二号桩的挠曲线最大弯矩值最大的截面为Z=0.06处截面,其最大弯矩值为3.031KN*m,该截面产生最大弯矩值所对应的时刻为T=0.03288s,此时桩的挠曲线如下图所示(横轴表示挠度,纵轴表示桩水平截面的位置(以水平截面形心的Z坐标值来表示))2.6.3三号桩的挠曲线最大弯矩值最大的截面为Z=1.32处截面,其最大弯矩值为0.464KN*m,该截面产生最大弯矩值所对应的时刻为T=0.01204s,此时桩的挠曲线如下图所示(横轴表示挠度,纵轴表示桩水平截面的位置(以水平截面形心的Z坐标值来表示))2.6.4四号桩的挠曲线最大弯矩值最大的截面为Z=1.26处截面,其最大弯矩值为0.519KN*m,该截面产生最大弯矩值所对应的时刻为T=0.01225s,此时桩的挠曲线如下图所示(横轴表示挠度,纵轴表示桩水平截面的位置(以水平截面形心的Z坐标值来表示))2.6.5五号桩的挠曲线最大弯矩值最大的截面为Z=1.26处截面,其最大弯矩值为0.519KN*m,该截面产生最大弯矩值所对应的时刻为T=0.01225s,此时桩的挠曲线如下图所示(横轴表示挠度,纵轴表示桩水平截面的位置(以水平截面形心的Z坐标值来表示))。
清华大学版土力学课件ppt
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
量为各层沉降量之和:
SSi
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
计算步骤
(a)计算原地基中自重应力分布 (b)基底附加压力p0 (c)确定地基中附加应力分布
地面
(d)确定计算深度zn
自重应力
(e)地基分层Hi
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
土的工程特性
(1)压缩性高; (2)强度低; (3) 透水性大
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
孔压系数
土体在不排水和不排气条件下,由外荷载 引起的孔隙压力增量与应力增最的比值。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
固结过程孔压系数的变化
外荷载 附加应力σz
土骨架:有效应力
孔隙水:孔隙水压力
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神, 充分发 挥中小 学图书 室育人 功能
土的抗剪强度
水利工程土力学教学课件:2.3土的结构与构造(土的各类)
絮状结构
角、边与面接触时净引力最大,因此絮 状结构的特征是土粒之间以角、边与面 的接触或边与边的搭接形式为主。土粒 呈任意排列,具有较大的孔隙,其强度 低,压缩性高,对扰动比较敏感。
02
土的构造
二、土的构造
土的构造是指同一土层中成分和大小都 相近的颗粒或颗粒集合体的相互关系特 征。土的构造是在土的生成过程和各种 地质因素作用下形成的,一般分为:
一、土的结构
2.蜂窝状结构:
较细的颗粒在水中因自重作 用单独下沉时,当碰到已沉积的 土粒,由于彼此之间引力大于重 力,接触后,下沉的土粒不再继 续下沉,与接触的土粒相链接, 形成链环单位,很多链环联结起来, 形成孔隙较大的蜂窝状结构。
蜂窝结构
一、土的结构
3.絮状结构:
细微粘粒大都呈针状或片状,质量极轻,在水中处于悬浮状态。当悬液介质发生变化时,土粒表面的 弱结合水厚度减薄,粘粒互相接近,凝聚成絮状物下沉,形成孔隙较大的絮状结构。
2.1.3 土的种类
1
土的结构
目录
2
土的构造
CONTENTS
3
土的特点
01
土的结构
一、土的结构
土的结构是指土颗粒或集合体的大小和形状、 表面特征、排列形式及它们之间的连接特征。
单粒结构 蜂窝状结构 絮状结构
一、土的结构
密实状态 疏松状态
1.单粒结构:
粗矿物颗粒在水或空气中在自重作 用下沉落形成的单粒结构,其特点是土 粒间存在点与点的接触。根据形成条件 不同,可分为疏松状态和密实状态。
土的种类
3.裂隙构造:
土体中有很多不连续的小裂 隙,如某些硬塑或坚硬状态的 黏土为此种构造,黄土具有特 殊的柱状裂隙等。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
地震波选取
●根据场地条件,通过调整实测地震波的幅值和时间尺度修正其 频谱。
地震加速度振幅的缩放:不改变频谱特性和持续时间。 地震波卓越周期调整: ●用实测地震波作为输入。 ●基于规范设计反应谱合成人工地震波。场地地震危险性分析,
汶川地震记录
15
地震动输入方式: 地震动水平输入 垂直向输入
●目前规范规定垂直输入为水平输入的2/3。
16
地震动输入方式的比较
土层地震 反应分析
17
设计地震动峰值加速度确定
●中国地震动参数区划图确定。 ●工程场地地震危险性分析中超越概率所提供的峰值加速度。
18
地震波
纵波(P波) :速度最大最先达到。 振动方向与传播方向一致。 引起地面上下颠簸振动 。
Duncan-Chang模型
超弹性模型
29
■每一次循环加载都有可恢复 的弹性变形和不可恢复的塑性 变形(永久变形)
■单调加载曲线是循环加载所 对应的骨干曲线。
Duncan-Chang模型 单调加载
循环加载
30
3.弹塑性模型——双曲线模型
双曲线作为土的应力应变弹塑性模型的主干线(骨干曲线)它是对称于原点 的
给出不同超越概率下的峰值加速度作为基底输入的加速度。
22
人工地震波的合成
Ⅳ类场地
Ⅲ类场地
Ⅱ类场地
Ⅰ类场地
=0.05
=0.1 =0.15
=0.20
规范中四类场地标准加速度反应谱 曲线(烈度8度,设计地震动为1组)
同一场地不同阻尼比反应谱曲线 (烈度8度,二类场地)
23
本构模型
■土与结构相互作用系统动力灾变全过程分析。 ■在特定环境条件下结构工作性态分析。 ■非线性、非弹性数值分析的发展
24
一、土的本构模型
1.线性粘弹性模型 岩土介质在动力作用下通常表现出明显的阻尼,阻尼作用使土 体中的动能消散而损耗。具有线性粘性阻尼土介质的应力应变 关系为:
ecE
为 E土的弹性模量, 为土的粘性系数,
分别为土的应变和应变速率。
e
弹性恢复力, c 阻尼力 ,
上式的应力应变关系可以表示为:
28
2.非线弹性模型
岩土介质的线性模型一般只适用于低应力、土体不发生屈服的情况。当应 力较高时,土体将发生屈服,应力应变关系是非线性的。土体发生屈 服后,卸载路径不同于加载路径,卸载后存在不可恢复的塑性变形。 非线性弹性模型模拟土体屈服后的非线性变形,但忽略应力路径的影 响,即加载和卸载沿同一条路径。
10
土与结构相互作用系统分析涉及三大问题
地震动特性及地震动输入 本构关系(本构模型) 算法
11
地震动及地震动输入
地震动三要素: 地震动持续时间(s) 地震动强度特性 地震动频谱特性
12
东西向加速度时程(幅值2.101m/s2)
东西向加速度傅氏谱
南北向加速度时程(幅值3.417m/s2)
南北向加速度傅氏谱
13
●地震动输入是土与结构相互作用研究的首要前提。包括: (1)抗震设防水准:根据功能目标确定。 (2)地震动输入方式:
地震动基准面确定 地基边界面上的输入地震动参数 (3) 输入量值大小 ●目前获得的地震动记录大都为地表记录,基岩面记录较少。 ●强震记录较少。
14
汶川卧龙EW向记录: 反应谱、时域峰值谱、小波变换特 征谱、幅值谱的对比
上式第三项很快衰减为零,得到稳态的应变解为:
(t)(p )2M E2Esip n tpcops t
26
改写为: (t) M sinp( t) (p)2E2
应力应变轨迹方程
tan p
E
M
M (p)2 E2
M 22co sM M M 2si2n
引入坐标变换变成为应力应变轨迹椭圆标准方程:
E 1
25
上式ห้องสมุดไป่ตู้解为:
(t)ex p Et 10 t(t)ex E p t d t0
假如土体受到周期应力作用,且初始应变为零,即
(t)Msin pt
0 0
得到:
(t) (p)2 M E 2 E sp i n p t cp o p s t e x E p t
横波(S波): 振动方向与传播方向垂直。 引起地面的水平晃动。 是地震时造成建筑物破坏的主要原因。
面波:乐甫波,雷利波: ● S波达到地表时,它包括SH和SV波动,前者在水平平面 上振动,后者在垂直平面上振动。 ●是由纵波与横波在地表相遇后激发产生的混合波。
19
20
●由震源深处传播的地震波到达地表时其入射方向逐渐接近于垂直水平地表的 竖向。
1
不考虑相互作用 考虑相互作用
2
3
4
轴向弯曲变形
横切面剪切变形
5
剪切破坏
6
7
8
9
土与结构相互作用的分析系统
土体 界面接触 结构
土体材料力学特性 土体材料本构关系 土体与结构接触问题
弹性本构关系 非弹性本构关系 接触力学特性
接触本构关系
结构材料力学特性 结构材料本构关系
弹性本构关系 非弹性本构关系
一条双曲线,其方程表示为:
a b
Gmax
1
ab
0
1 a
Gmax 1 //r
2cos/2()2 2sin /(2)21
利用应力应变轨迹可求得一个周期内粘性元件消耗的能量为:
W d M 2 M ( )d ( d )
粘性阻尼主要产生两种效应:一是使应变反应滞后于应力一个相角
差 ; 二是荷载一周往返作用消耗的能量为 W 。
27
●线性粘弹性岩土介质在一次往返形成的应力应变轨迹称为滞回曲线,滞 回曲线所围成的面积是粘性阻尼消耗的能量。
土与结构相互作用
■是研究土与结构动力系统相互作用的数学模型、力学机理、耦 合效应、界面特性和计算分析方法等,解决多种介质的动力耦合 问题,为结构工程、岩土工程、地下工程、防护工程等众多领域 的动力分析和工程的动力可靠性设计提供理论基础和分析方法。 ■研究对象:地震波场中与地基或围岩相连的高层建筑、大型桥 梁、地下结构、大型水坝等在给定输入波场,研究结构及其附近 土体的动力反应。 ■动力相互作用问题:由振源出发的振动波,通过场地土层传播 输入结构体系使其振动;同时结构体系产生的惯性力如同新的振 源反过来作用于场地,引起新的地振动再作用于结构体系。