[实验报告]用非线性电路研究混沌现象

合集下载

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。

但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。

1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。

于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。

从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。

该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。

混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。

【实验目的】1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。

2.学会测量非线性器件伏安特性的方法。

【实验仪器】非线性电路混沌实验仪【实验原理】图1 非线性电路 图2 三段伏安特性曲线1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。

较理想的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1 电路的非线性动力学方程为:11211Vc g )Vc Vc (G dtdVc C ∙--∙=L 2122i )Vc Vc (G dtdVc C +-∙=式中,导纳21W W 1G +=,1C V 和2C V 分别表示加在1C 和2C 上的电压,L i 表示流过电感器L 的电流,g 表示非线性电阻R 的导纳。

2. 有源非线性负阻元件的实现:有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:采用两个运算放大器(一个双运放 353LF ) 和六个配置电阻来实现,其电路如图3所示,它的伏安 特性曲线如图4所示。

非线性电路中的混沌现象实验报告

非线性电路中的混沌现象实验报告

非线性电路中的混沌五:数据处理:1.计算电感L在这个实验中使用了相位测量。

根据RLC 谐振定律,当输入激励频率时LCf π21=,RLC 串联电路达到谐振,L 和C 的电压反向,示波器显示一条45度斜线穿过第二象限和第四象限。

实测:f=32.8kHz ;实验仪器标记:C=1.095nF 所以:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估计不确定性:估计 u(C)=0.005nF ,u(f)=0.1kHz 但:32222106.7)()(4)(-⨯=+=CC u f f u L L u 这是mH L u 16.0)(=最后结果:mH L u L )2.05.21()(±=+2、有源非线性负电阻元件的测量数据采用一元线性回归法处理: (1) 原始数据:(2) 数据处理:根据RU I RR =流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11对应的1R I 值。

对于非线性负电阻R1,将实验测量的每个(I ,U )实验点标记在坐标平面上,可以得到:从图中可以看出,两个实验点( 0.0046336 ,-9.8)和( 0.0013899 ,-1.8)是折线的拐点。

因此,我们采用线性回归的方法,分别在V U 8.912≤≤-、 、 和8V .1U 9.8-≤<-三个区间得到对应的 IU 曲线。

0V U 1.8≤<-使用 Excel 的 Linest 函数找到这三个段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12-20.02453093-0.002032U I经计算,三段线性回归的相关系数非常接近1(r=0.99997),证明区间IV 内的线性符合较好。

应用相关绘图软件可以得到U<0范围内非线性负电阻的IU 曲线。

非线性电路中的混沌现象_电子版实验报告范文

非线性电路中的混沌现象_电子版实验报告范文

1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得:mHC f L 32.23)108.30(10145.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222108.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 18.0)(=最终结果:mH L u L )2.03.23()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550 -10.350-10.150-9.550-9.350-9.150-8.350-8.150上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

基础物理实验报告第3页基础物理实验报告(2)数据处理:根据RU I RR可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。

故我们在V U 150.9750.11-≤≤-、550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

⎪⎩⎪⎨⎧≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌实验报告本实验旨在通过搭建非线性电路,观察其在一定条件下的混沌现象,并对实验结果进行分析和总结。

在此过程中,我们使用了一些基本的电子元件,如电阻、电容和电感等,通过合理的连接和控制参数,成功地观察到了混沌现象的产生。

首先,我们搭建了一个基本的非线性电路,其中包括了电源、电阻、电容和二极管等元件。

通过调节电路中的参数,我们观察到了电压和电流的非线性响应,这表明电路的行为不再遵循简单的线性关系。

接着,我们进一步调整电路参数,尤其是电容和电阻的数值,使电路处于临界状态,这时我们观察到了电路输出信号的混沌波形。

混沌波形表现出了随机性和不可预测性,这与传统的周期性信号有着明显的区别。

在观察混沌波形的过程中,我们发现了一些有趣的现象。

首先,混沌波形的频谱分布呈现出了宽带特性,这说明混沌信号包含了多个频率成分,这也是混沌信号难以预测的重要原因之一。

其次,混沌信号的自相关函数表现出了指数衰减的特性,这表明混沌信号的相关性极低,难以通过传统的方法进行分析和处理。

最后,我们还观察到了混沌信号的分形特性,即信号在不同时间尺度下呈现出相似的结构,这也是混沌信号独特的特征之一。

综合以上实验结果,我们可以得出以下结论,非线性电路在一定条件下会产生混沌现象,混沌信号具有随机性、不可预测性、宽带特性、自相关性低和分形特性等特点。

这些特点使得混沌信号在通信、加密、混沌电路设计等领域具有重要的应用前景。

同时,我们也需要注意到混沌信号的复杂性和不确定性,这对于混沌信号的分析和处理提出了挑战,需要进一步的研究和探索。

总之,本实验通过搭建非线性电路,成功地观察到了混沌现象,并对混沌信号的特性进行了初步的分析和讨论。

通过本次实验,我们对混沌现象有了更深入的理解,也为混沌信号的应用和研究提供了一定的参考和启发。

希望本实验能够对相关领域的研究和工程实践有所帮助。

感谢各位的参与和支持!非线性电路混沌实验小组。

日期,XXXX年XX月XX日。

[实验报告]用非线性电路研究混沌现象

[实验报告]用非线性电路研究混沌现象

用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。

学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。

本实验中所用的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。

2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。

图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。

图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。

1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。

可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。

非线性实验报告

非线性实验报告

1. 了解非线性电路混沌现象的产生原理及特点;2. 掌握混沌吸引子、倍周期和分岔等概念;3. 通过实验观察非线性电路的混沌现象。

二、实验原理混沌现象是自然界和工程技术中普遍存在的一种非线性现象。

在非线性电路中,混沌现象的产生主要与电路的非线性特性有关。

本实验采用非线性电路模拟混沌现象,通过观察电路输出信号的波形,分析混沌现象的产生、发展及演化过程。

三、实验仪器与设备1. 约结电子模拟器;2. 低频信号发生器;3. 数字示波器;4. 100kHz正弦波振荡波作为参考信号。

四、实验步骤1. 连接实验电路,确保连接正确无误;2. 打开约结电子模拟器,设置参数,使电路工作在非线性状态;3. 用低频信号发生器输出正弦波信号,作为输入信号;4. 用数字示波器观察电路输出信号的波形,记录波形;5. 调整电路参数,观察混沌现象的产生、发展及演化过程;6. 分析实验结果,总结混沌现象的特点。

五、实验结果与分析1. 实验过程中,当电路工作在非线性状态时,输出信号波形出现混沌现象;2. 通过调整电路参数,可以观察到混沌吸引子的产生、倍周期和分岔等现象;3. 实验结果表明,非线性电路混沌现象的产生与电路的非线性特性密切相关。

1. 非线性电路混沌现象的产生与电路的非线性特性密切相关;2. 混沌吸引子、倍周期和分岔等现象是混沌现象的重要特征;3. 通过实验观察,可以更好地理解非线性电路混沌现象的产生及演化过程。

七、实验注意事项1. 实验过程中,注意观察电路输出信号的波形,记录波形;2. 调整电路参数时,应缓慢进行,避免电路参数突变导致实验失败;3. 实验结束后,对实验数据进行整理和分析,总结实验结果。

八、实验总结本次实验通过非线性电路模拟混沌现象,成功观察到了混沌吸引子、倍周期和分岔等现象。

实验结果表明,非线性电路混沌现象的产生与电路的非线性特性密切相关。

通过本次实验,加深了对混沌现象的理解,提高了实验操作技能。

【免费下载】非线性电路中的混沌现象 电子版实验报告

【免费下载】非线性电路中的混沌现象 电子版实验报告

非线性电路中的混沌现象学号:37073112 姓名:蔡正阳日期:2009年3月24日五:数据处理:1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率时,RLC 串联电路将达到谐振,L 和C 的电压反相,在LCf π21=示波器上显示的是一条过二四象限的45度斜线。

测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度:估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=CC u f f u L L u 即mHL u 16.0)(=最终结果:mHL u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理:(1)原始数据:R V RVRV71200-122044.9-81753.4-421000-11.82036.2-7.81727.5-3.812150-11.62027.2-7.61699.6-3.68430-11.42017.8-7.41669.4-3.46390-11.22007.9-7.21636.7-3.25100-111997.5-71601.2-34215-10.81986.7-6.81562.4-2.83564-10.61975.3-6.61519.7-2.63070-10.41963.4-6.41472.3-2.42680-10.21950.9-6.21420-2.22369-101937.6-61360.9-22115-9.81923.7-5.81295.1-1.82103.1-9.61909-5.61281.8-1.62096.8-9.41893.4-5.41276.7-1.42090.2-9.21876.9-5.21270.1-1.22083.4-91859.5-51261.1-12076.3-8.81840.9-4.81247.8-0.82068.9-8.61821.2-4.61226-0.62061.2-8.41800.1-4.41148.9-0.42053.3-8.21777.6-4.21075-0.2(2)数据处理:根据可以得出流过电阻箱的RU I R R=电流,由回路KCL 方程和KVL 方程可知:RR RR U U I I =-=11由此可得对应的值。

非线性混沌电路实验报告

非线性混沌电路实验报告

非线性混沌电路实验报告一、实验目的本实验旨在通过设计和搭建一个非线性混沌电路,了解混沌理论的基本原理,并观察和分析混沌电路的输出特性。

二、实验原理混沌理论是一种描述非线性系统行为的数学理论。

混沌系统有着极其敏感的初始条件和参数,微小的初始条件差异可能导致系统行为的巨大差异。

混沌电路是模拟混沌系统行为的电路,通过合适的电路设计和参数设置,可以实现混沌现象。

三、实验步骤及结果1.搭建电路2.参数设置根据实验要求,设置电路中的参数:L1=0.67H,L2=0.07H,C=0.001F,V1=2V,V2=0.6V。

3.实验观察连接电路电源后,用示波器观察电路输出的波形,并记录实验结果。

在实验观察中,我们可以看到输出波形呈现出混沌现象。

混沌信号的特征是没有周期性,具有高度的随机性和复杂性。

四、实验分析通过实验观察结果,我们可以看到混沌电路输出的波形呈现出混沌现象。

混沌信号的特征是没有周期性,具有高度的随机性和复杂性。

这是由于混沌系统对初始条件和参数的敏感性所导致的。

混沌电路通过合适的电路设计和参数设置,模拟了混沌系统的行为。

通过调整电路中的元件值和电源电压,可以改变混沌电路的输出特性。

这为混沌系统的研究和应用提供了重要的实验手段。

五、实验总结本实验通过设计和搭建一个非线性混沌电路,对混沌理论的基本原理进行了实践探究。

通过观察和分析混沌电路的输出特性,我们认识到混沌系统的随机性和复杂性。

混沌电路有着广泛的应用领域,例如密码学、通信和图像处理等。

这些应用都是基于混沌信号具有的随机性和复杂性。

通过深入研究混沌电路,我们可以更好地理解和应用混沌系统。

非线性电路与混沌实验报告

非线性电路与混沌实验报告

非线性电路与混沌实验报告非线性电路与混沌实验报告引言非线性电路与混沌是现代电子学与控制理论中的重要研究领域。

混沌现象的出现使得我们对于系统的行为有了更深入的理解,并且在通信、密码学、图像处理等领域中有着广泛的应用。

本文将介绍我们进行的非线性电路与混沌实验,并对实验结果进行分析和讨论。

实验背景非线性电路是指电流和电压之间的关系不遵循线性规律的电路。

而混沌是指一种看似无序的、无法预测的动态行为。

非线性电路中的混沌现象是由于系统的非线性特性导致的,通过合适的电路设计和参数调节,可以实现混沌现象的产生和控制。

实验目的本实验的目的是通过设计和搭建非线性电路,观察和分析混沌现象的产生和特性。

我们希望通过实验验证混沌现象的存在,并进一步了解混沌现象对于系统的影响和应用。

实验装置我们使用了一块实验板和一些基本的电子元器件,如电阻、电容和二极管等。

通过搭建电路并连接到示波器,我们可以观察到电路的输出波形,并进一步分析和研究电路的行为。

实验过程我们首先设计了一个基于二极管的非线性电路。

通过合理选择电阻和电容的数值,我们成功地实现了混沌现象的产生。

接下来,我们调节了电路的参数,观察到了混沌现象的不同特性。

我们记录了电路输出的波形,并进行了数据分析和处理。

实验结果实验结果表明,我们所设计的非线性电路确实产生了混沌现象。

通过观察示波器上的波形,我们可以看到波形呈现出复杂的、无规律的变化。

通过进一步的分析,我们发现电路的输出呈现出分形特性,即具有自相似的结构。

这一结果与混沌现象的特性相吻合。

讨论与分析通过实验,我们进一步了解了非线性电路与混沌现象之间的关系。

非线性电路的设计和参数调节对于混沌现象的产生和控制起着重要的作用。

混沌现象的存在使得系统的行为变得复杂且难以预测,这对于某些应用来说可能是不利的,但在其他领域中却可以发挥重要作用。

例如,在密码学中,混沌信号可以用于加密和解密,提高信息的安全性。

结论通过本次实验,我们成功地设计和搭建了一个非线性电路,并观察到了混沌现象的产生和特性。

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌实验报告本次实验旨在探究非线性电路中的混沌现象,并通过实验数据分析和理论推导,对混沌现象进行深入研究和分析。

本文将从实验目的、实验原理、实验装置、实验步骤、实验结果和分析、实验结论等方面进行详细介绍。

实验目的。

1. 了解非线性电路中混沌现象的产生原理;2. 掌握混沌电路的基本工作原理;3. 通过实验数据分析,验证混沌电路的混沌特性。

实验原理。

混沌电路是一种非线性系统,其混沌现象来源于系统的非线性特性和反馈作用。

在非线性电路中,由于电压和电流的非线性关系,使得系统的输出信号呈现出复杂的、不可预测的混沌运动。

混沌电路的混沌特性通常表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态。

实验装置。

本次实验所需的主要仪器设备有,信号发生器、示波器、混沌电路实验板、电压表等。

实验步骤。

1. 将混沌电路实验板连接至信号发生器和示波器,并进行电路连接和参数设置;2. 调节信号发生器的频率和幅值,观察示波器上的波形变化;3. 记录实验数据,包括电路参数设置、示波器波形图、混沌电路输出信号的特性等。

实验结果和分析。

通过实验数据的记录和分析,我们观察到混沌电路在不同频率和幅值下的输出信号呈现出复杂的、随机的波形变化。

在一定范围内,混沌电路的输出信号表现出周期性、随机性和规律性交织的混沌特性,这与混沌电路的非线性特性和反馈作用密切相关。

实验结论。

通过本次实验,我们深入了解了非线性电路中的混沌现象及其产生原理。

混沌电路的混沌特性表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态,这为非线性系统的混沌现象提供了重要的实验验证和理论分析依据。

结语。

通过本次实验,我们对非线性电路中的混沌现象有了更深入的理解,同时也掌握了混沌电路的基本工作原理和实验方法。

混沌现象的研究不仅有助于深化对非线性系统的理解,还对信息处理、通信系统和混沌密码学等领域具有重要的理论和应用价值。

希望本次实验能为相关领域的研究和应用提供一定的参考和借鉴。

非线性混沌现象实验报告

非线性混沌现象实验报告

V0sinωtE研究性实验:包含非线性电感互感的混沌电路实验非线性电路中的混沌现象十分丰富,而且易于观察和测量。

因此,用非线性电路研究混沌现象受到广泛的重视。

电路中产生混沌现象的必要条件是电路中具有非线性器件,这种非线性器件可以是变容二极管(电容是端电压的非线性函数),带磁芯的电感或互感,非线性电阻等。

一.实验仪器和电路电感线圈一个,L0用于直流激磁,L1、L2为互感线圈,互感量为M。

电容箱二个,电阻箱二个信号发生器CA1640直流电源一台,电流表一块双踪示波器SS7802工作参数C1≈C2 ~ 0.5-0.8μFR1≈R2 ~ 1 - 5ΩE直流电源0-6VA电流约100mAV0sinωt信号源V0可调,0-50V(pp)频率f可调,~3000Hz电路方程222222221ddddddCituuiRtiLtiM==+++二.实验内容通过选择实验电路的参数,实现电路从定态进入混沌和从混沌带复杂的区域中部出现正规的周期窗口的过程。

从定态进入混沌有多种途径,实验主要研究从倍周期分岔,即在基频(1P),二分频(2P),四分频(4P),八分频(8P)……进入混沌状态的过程。

1.研究L0中电流对互感输出的影响。

2.研究改变信号源V0sinω幅值V0实现混沌的过程。

3.研究改变信号源角频率ω实现混沌的过程。

*4.周期和混沌信号的频谱观察与测量。

课前先准备教材p362上的思考题。

参考文献见教材P363。

非线性电路中的混沌现象实验理解与思考_研究性实验报告

非线性电路中的混沌现象实验理解与思考_研究性实验报告
这一步有助于理解和直观观察到非线性电路中的混沌现象的产生不存在,此步骤要注意 细微调节的重要行,示波器的辉度不光的粗细都要适当,因为三倍周期不四倍变化极为细微。
第5页
北航基础物理实验研究性报告
观察双吸引子的时候,注意它是丌断变化不跳跃的。这正是丌稳定不稳定的共存体,是混沌 现象存在的体现不意丿。 2.测量有源非线性电阷的伏安特性幵画出伏安特性图
北航基础物理实验研究性报告
非线性电路中的混沌现象实验理解与思考
摘要
本实验共分为 4 部分 第一部分为实验原理的阐述,基于对于实验原理的理解和讨论,介绍了混沌 现象的发现与完善,及本小组对于混沌现象的深入体会和理解。 第二部分为实验操作过程介绍,介绍了实验过程中详细的操作流程,和本 小组在做实验过程中的经验与总结。 第三部分为实验原始数据的处理,是在原有数据处理上的加深与全面分析。 第四部分即对于本实验的理论层面深入讨论与分析,是小组成员深入思考与 讨论的结果。
3.50E-03
3.00E-03
2.50E-03
2.00E-03
1.50E-03
1.00E-03
5.00E-04
0.00E+00
-2
0
将曲线关于原点对称可得到非线性负阷在 U>0 区间的 I-U 曲线:
I-V图(线性回归)
5.00E-03
I/A
4.00E-03
3.00E-03
2.00E-03
1.00E-03
(1)一倍周期:
一倍周期 (2)两倍周期:
Vc1-t
两倍周期 (3)四倍周期:
Vc1-t
四倍周期 (4)单吸引子:
Vc1-t
第 11 页
北航基础物理实验研究性报告

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌_实验报告非线性电路混沌实验报告一、实验目的通过搭建非线性电路,观察和研究电路的混沌现象,深入理解和掌握混沌系统的特性。

二、实验原理混沌系统是一类非线性动力系统,其特点是对初始条件极其敏感,微小的初始条件变化会导致系统演化出完全不同的结果。

混沌系统的行为复杂、难以预测,具有高度的随机性。

在电路中,非线性元件的引入可以引起电路的混沌现象。

三、实验器材和仪器1. 函数生成器2. 示波器3. 混沌电路实验板4. 电源5. 电压表和电流表四、实验步骤1. 搭建混沌电路按照实验指导书上的电路图,搭建混沌电路。

其中,电路中需要包含非线性元件,如二极管、晶体管等。

2. 调节函数生成器将函数生成器连接到电路中,调节函数生成器的频率和幅度,使其能够提供合适的输入信号。

同时,设置函数生成器的触发方式和触发电平。

3. 连接示波器将示波器的输入端连接到电路输出端,调节示波器的触发方式和触发电平,使其能够正常显示电路的输出波形。

4. 开始实验打开电源,调节函数生成器和示波器,观察电路的输出波形。

记录不同参数下的波形变化,并观察混沌现象的特点。

五、实验结果与分析在实验中,我们观察到了电路的混沌现象。

随着参数的变化,电路输出的波形呈现出复杂的、不规则的变化。

即使是微小的参数调节,也会导致电路输出的波形发生明显的变化,呈现出不同的分形结构。

这表明混沌系统对初始条件的敏感性。

通过实验结果的观察和分析,我们深入理解了混沌系统的特性。

混沌系统的不可预测性和随机性使其在信息加密、随机数生成等领域具有广泛的应用价值。

六、实验总结通过本次实验,我们成功搭建了混沌电路,并观察到了电路的混沌现象。

通过实验的操作,我们对混沌系统的特性有了更深入的理解,并掌握了观察和研究混沌现象的方法。

混沌系统具有很高的随机性和不可预测性,这为信息加密、随机数生成等领域提供了新的思路和方法。

在今后的学习和研究中,我们将进一步探索混沌系统的特性,并应用于实际问题中。

实验十六混沌现象的实验研究

实验十六混沌现象的实验研究

实验十六混沌现象的实验研究【实验目的】1、观察非线性电路振荡周期混沌现象, 从而对非线性电路及混沌理论有一个深刻了解。

2、了解有源非线性单元电路的特性。

【实验仪器】1、非线性电路混沌实验仪2、示波器3、电感4、电位器5、测试用表棒和连接导线非线性电路混沌实验仪【实验原理】目前,科学家给混沌下的定义是:混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。

进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。

牛顿确定性理论能够完美处理的多为线性系统,而线性系统大多是由非线性系统简化来的。

因此,在现实生活和实际工程技术问题中,混沌是无处不在的。

混沌的发现和混沌学的建立,同相对论和量子论一样,是对牛顿确定性经典理论的重大突破,为人类观察物质世界打开了一个新的窗口。

所以,许多科学家认为,20世纪物理学永放光芒的三件事是:相对论、量子论和混沌学的创立。

非线性动力学及分岔与混沌现象的研究是近二十多年来科学界研究的热门课题,已有大量论文对此学科进行了深入的研究。

混沌现象涉及物理学、计算机科学、数学、生物学、电子学和经济学等领域,应用极其广泛。

1、非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R,它是一个有源非线性负阻器件,电感器L和电容器C2组成一个损耗可以忽略振荡回路:可变电阻Rv1+Rv2和电容器C1串联将振荡器产生的正弦信号移相输出,较理想的非线性元件R是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的,由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图(1) 图(2)图1 电路的非线性动力学方程为:()11211Vc g Vc Vc G dt dVc C ⨯--⨯= ()L i Vc Vc G dtdVc C +-⨯=21222Vc dtdiL L -= 式中,导纳G=1/(Rv1+Rv2),Vc1和Vc2分别表示加在C1和C2上的电压,iL 表示流过电感器L 的电流,g 表示非线性电阻的导纳。

实验48 非线性电路中混沌现象的研究

实验48 非线性电路中混沌现象的研究

第4章基础实验25 实验4.8 非线性电路中混沌现象的研究现代科学技术研究发现,非线性是真实世界的普遍特性,非线性问题大量出现在自然科学、社会科学和工程科学中,并起着重要的作用。

混沌的研究是20世纪物理学的重大事件,在现代非线性理论中,混沌是泛指在确定体系中出现的貌似无规律的、随机的运动。

混沌运动的基本特征是确定性中包含的非周期性和不可预测性,以及对初值的敏感性等。

混沌的研究表明,一个完全确定的系统,即使非常简单,由于自身的非线性作用,同样具有内在的随机性。

绝大多数非线性动力学系统,既有周期运动,又有混沌运动,而混沌既不是具有周期性和对称性的有序,又不是绝对的无序,而是可用奇怪吸引子来描述的复杂的有序,混沌是非周期的有序性。

以下我们用级联倍周期分岔的方式接近混沌,从一个简单的实验中去观察非线性的现象,并尝试着得到一些重要结论。

【实验目的及要求】1.学习有源非线性电阻的伏安特性。

2.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。

3.学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

【提供的主要器材】NCE-Ⅱ型非线性电路混沌实验仪、双踪示波器、铁氧介质电感、自备器件。

【实验预备知识】1.了解混沌起源混沌理论是一门对复杂系统现象进行整体性研究的科学。

我国科学家钱学森称混沌是宏观无序、微观有序的现象。

混沌理论的创立,将非线性系统表现的随机性和系统内部的决定性机制巧妙地结合起来。

20世纪60年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。

他当时用的计算机,储存数据的容量是小数点后六位数字,但是在打印输出数据时,为了节省纸张,只输出小数点后三位数字。

而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后的三位,与精确的数据有不到0.1%的误差。

就是这个原本应该忽略不计的误差,使最终的结果大相径庭,如图4-20所示。

1963年,洛伦兹在美国《气象学报》上发表了题为“确定性的非周期流”的论文,提出了在确定性系统中的非周期现象。

非线性电路混沌实验

非线性电路混沌实验

非线性电路混动实验研究王艺涵西南大学物理科学与技术学院,重庆 400715摘要:混沌来自非线性。

非线性电路中有十分丰富的分岔和混沌现象。

本实验建立由有源非线性负阻、LC振荡器和RC移相器组成的非线性电路,通过调整电路的参数,用示波器观察一倍周期、两倍周期、三倍周期、四倍周期、阵法混沌、奇异吸引子和双吸引子及有源非线性负阻原件的伏安特性。

通过观察,加深对混沌现象的认识。

关键字:非线性混沌现象伏安特性电路1.引言混沌理论和量子力学,相对论一起被称之为20世纪物理学的三大科学改革沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。

混沌来自非线性,是非线性系统中存在的一种普遍现象。

无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。

其中产生混沌现象最经典的非线性电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路,蔡氏电路是能产生混沌行为的最简单的自治电路,是至今所知唯一的混沌实际物理系混沌现象。

2.混沌现象及蔡氏电路的介绍2.1.混沌现象混沌现象是指发生在确定性系统中中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。

混沌现象对初始条件具有极端敏感性,只要初始条件稍有偏差或微小的扰动,则会使得系统的最终状态出现巨大的差异。

这可以生动的用“蝴蝶效应”来比喻:在做气象预报时,只要一只蝴蝶扇一下翅膀,这一扰动,就会在很远的另一个地方造成非常大的差异。

因此混沌系统的长期演化行为是不可预测的。

虽然,混沌现象的出现使我们无法对系统的长期行为进行预测,但是我们完全可以利用混沌的规律对系统进行短期的行为预测,这样比传统的统计学方法更加有效。

2.2.非线性电路—蔡氏电路蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为。

非线性电路中的混沌现象实验报告

非线性电路中的混沌现象实验报告

竭诚为您提供优质文档/双击可除非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间:20XX年11月8日,第十一周,周一,第5-8节实验者:班级材料0705学号20XX67025姓名童凌炜同组者:班级材料0705学号20XX67007姓名车宏龙实验地点:综合楼404实验条件:室内温度℃,相对湿度%,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号)1.约结电子模拟器约结电子模拟器的主要电路包括:1.1,一个压控震荡电路,根据约瑟夫方程,用以模拟理想的约结1.2,一个加法电路器,更具电路方程9-1-10,用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3,100khz正弦波振荡波作为参考信号2.低频信号发生器用以输出正弦波信号,提供给约结作为交流信号3.数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1.了解混沌的产生和特点2.掌握吸引子。

倍周期和分岔等概念3.观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。

混沌的最本质特征是对初始条件极为敏感。

1.非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。

除此之外,非线性关系还具有某些不同于线性关系的共性:1.1线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化1.4非线性是引起行为突变的原因2.倍周期,分岔,吸引子,混沌借用T.R.malthas的人口和虫口理论,以说明非线性关系中的最基本概念。

虫口方程如下:xn?1xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。

在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。

非线性混沌实验报告

非线性混沌实验报告

一、实验目的1. 了解非线性混沌现象的产生机制和特点;2. 掌握非线性电路混沌现象的实验方法;3. 通过实验验证混沌现象在非线性电路中的存在和表现。

二、实验原理混沌现象是指非线性系统在初始条件和参数变化下,表现出对初始条件极为敏感、长期行为不可预测、复杂且非周期性的现象。

在非线性电路中,混沌现象通常由非线性元件(如非线性电阻、非线性电容等)引起。

本实验采用蔡氏振荡电路(Chua's circuit)作为研究对象,该电路具有以下特点:1. 简单易实现;2. 混沌现象明显;3. 可以通过调节电路参数来观察混沌现象的产生、发展和消失。

三、实验仪器与设备1. 数字示波器;2. 函数信号发生器;3. 万用表;4. 电路实验板;5. 连接线。

四、实验步骤1. 搭建蔡氏振荡电路,包括非线性电阻、线性电阻、电容和运算放大器等元件;2. 使用函数信号发生器为电路提供激励信号;3. 使用数字示波器观察电路输出信号的波形;4. 调节电路参数(如非线性电阻的值、电容的值等),观察混沌现象的产生、发展和消失;5. 记录不同参数下电路输出信号的波形,分析混沌现象的特点。

五、实验结果与分析1. 混沌现象的产生当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。

在非线性电阻值达到一定范围时,电路输出信号呈现出复杂的非周期性波形,即混沌现象。

2. 混沌现象的特点(1)对初始条件的敏感依赖性:在混沌现象中,电路输出信号的长期行为对初始条件极为敏感,微小变化可能导致截然不同的结果。

(2)复杂性和非周期性:混沌现象的输出信号具有复杂性和非周期性,无法用简单的数学公式描述。

(3)奇怪吸引子:混沌现象的长期行为可以用奇怪吸引子来描述,奇怪吸引子是一种具有复杂结构的有序结构。

3. 参数调节对混沌现象的影响(1)非线性电阻的值:非线性电阻的值对混沌现象的产生和消失具有关键作用。

当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。

非线性物理实验报告

非线性物理实验报告

实验名称:非线性电路的混沌现象研究实验日期:2023年X月X日实验地点:实验室XX室实验者:[姓名]指导教师:[姓名]一、实验目的1. 了解非线性电路的基本特性及其混沌现象的产生原理。

2. 掌握利用示波器观察非线性电路的混沌现象。

3. 学习分析非线性电路的混沌特性,如分岔、吸引子等。

二、实验原理非线性电路是指电路元件的伏安特性曲线不是直线,其伏安特性曲线呈曲线状。

在非线性电路中,电路参数的变化会导致电路输出信号的稳定性降低,甚至出现混沌现象。

混沌现象具有以下特点:1. 对初始条件的敏感性:微小变化可能导致系统行为产生巨大差异。

2. 无周期性:混沌系统的行为不具有周期性,其输出信号无法用简单的周期函数描述。

3. 吸引子:混沌系统具有吸引子,即系统状态在吸引子附近不断运动。

本实验采用非线性电路混沌实验电路,通过观察电路输出信号的波形,分析混沌现象的产生和特性。

三、实验仪器1. 示波器2. 函数信号发生器3. 电阻箱4. 电容箱5. 电源6. 电压表7. 电流表四、实验步骤1. 按照电路图连接实验电路,包括非线性元件、电阻箱、电容箱等。

2. 设置函数信号发生器输出正弦波信号,频率为1kHz,幅度为1V。

3. 调整电阻箱和电容箱,观察示波器上输出信号的波形。

4. 改变电路参数,如电阻、电容等,观察混沌现象的产生和变化。

5. 记录不同参数下混沌现象的波形特征,如分岔、吸引子等。

五、实验结果与分析1. 在实验过程中,当电阻和电容的值较小时,电路输出信号为稳定的正弦波。

2. 随着电阻和电容的增大,电路输出信号逐渐出现混沌现象,波形变得复杂。

3. 当电阻和电容的值达到一定范围时,电路输出信号呈现明显的混沌现象,波形呈现出分岔、吸引子等特征。

4. 通过调整电路参数,可以观察到混沌现象的产生、发展和消失过程。

六、实验结论1. 非线性电路中,混沌现象的产生与电路参数的变化密切相关。

2. 通过调整电路参数,可以控制混沌现象的产生和消失。

混沌效应测量实验报告

混沌效应测量实验报告

一、实验目的1. 了解混沌现象的基本特征和产生机理。

2. 掌握混沌效应测量的基本方法。

3. 通过实验验证混沌现象在非线性电路中的表现。

二、实验原理混沌现象是指在非线性系统中,由于初始条件的微小差异,导致系统长期行为表现出极端敏感性和不可预测性。

本实验采用非线性电路作为研究对象,通过测量电路中的电压、电流等物理量,观察混沌现象的产生和发展。

实验电路采用串联谐振电路,通过改变电路中的参数(如电感、电容、电阻等),使电路产生混沌现象。

混沌现象的测量主要依靠数字示波器、信号发生器等仪器。

三、实验仪器与设备1. 数字示波器2. 信号发生器3. 电阻箱4. 电感箱5. 电容箱6. 电路板7. 连接线四、实验步骤1. 搭建实验电路,包括串联谐振电路、非线性元件等。

2. 设置信号发生器,输出正弦波信号,频率为电路谐振频率。

3. 调整电阻箱、电感箱、电容箱等参数,使电路产生混沌现象。

4. 利用数字示波器观察混沌现象的波形,记录电压、电流等物理量。

5. 改变电路参数,观察混沌现象的变化,分析混沌现象的产生和发展规律。

五、实验结果与分析1. 混沌现象的产生通过调整电路参数,使电路产生混沌现象。

实验中观察到,当电路参数在一定范围内变化时,电路输出波形出现周期性、倍周期性、混沌等不同状态。

其中,混沌现象表现为波形无规律、周期性消失、信号幅值和频率不稳定等特点。

2. 混沌现象的测量利用数字示波器测量混沌现象的波形,记录电压、电流等物理量。

实验结果表明,混沌现象的波形具有以下特征:(1)波形无规律:混沌现象的波形呈现出复杂的非线性变化,难以用简单的数学模型描述。

(2)周期性消失:混沌现象的波形周期性消失,难以确定其周期。

(3)信号幅值和频率不稳定:混沌现象的信号幅值和频率随时间变化,表现出强烈的不稳定性。

3. 混沌现象的产生机理混沌现象的产生主要与非线性系统的初始条件和参数变化有关。

在实验中,通过调整电路参数,使电路产生混沌现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用非线性电路研究混沌现象
一. 实验目的
掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。

学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

二. 实验原理
1.非线性电路与非线性动力学
实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。

本实验中所用的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:
1121)(1
C C C C U g U U G dt dU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(2112
2 (1)
2C L U dt di L -=
式中,导纳V R G /1 ,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。

2.有源非线性负阻元件的实现
有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。

图3有源非线性器件 图4双运放非线性元件的伏安特性
实际非线性混沌实验电路如图5所示。

图5非线性电路混沌实验电路图
三. 实验步骤
测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。

1.按图5所示电路接线,其中电感器L 由实验者用漆包铜线手工缠绕。

可在线框
上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。

也可以用仪器附带的铁氧体电感器。

2.串联谐振法测电感器电感量。

要求测量通过电阻的电流值I=5mA(有效值)时电感器电感量。

3.把自制电感器接入图5所示的电路中,调节R1+R2阻值。

在示波器上观测图5所示的CH1-地和CH2-地所构成的相图(李萨如图),调节R1+R2电阻值由大到小时,描绘相图周期的分岔及混沌现象。

将一个环形相图的周期定为P,那么,要求观测并记录2P、4P、阵发混沌、3P、单吸引子(混沌)、
双吸引子(混沌)共六个相图和相应的CH1-地和CH2-地两个输
出波形。

测量非线性负阻电路(元件)的伏安特性
首先把有源非线性电阻元件与RC 移相器连线断开,然后接入
一电阻箱R。

测量线路如图6 所示。

由于非线性电阻G 是有源的,所以回路中始终有电流。

其中伏特表用来测量非线性元件两端的电压,安培表用来测量流过非线性元件的电流,电阻箱R 的作用是改变非线性元件的对外输出。

实验时,测量非线性单元电路在电压V<0 时的伏安特性,作I-U 关系图。

四.实验结果
倍周期分岔和混沌现象的观测结果:
一倍周期二倍周期
四倍周期 阵发混沌
三倍周期 单吸引子
五. 实验结论
在实验中观测到了明显的倍周期分岔和混沌现象,对混沌的概念有了初步的了解。

即确定
性系统产生的一种对初始条件具有敏感依赖性的回复性非周期运动。

通过调节电阻大小得到不同的利
萨如图形,也表现了混沌现象的三个特性,即对初始条件的敏感依赖性;临界水平,这里是非线性事件的发生点;分形维,它表明有序和无序的统一。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)
双吸引子
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。

相关文档
最新文档