高考数学模拟复习试卷试题模拟卷09912

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷

【考情解读】

1.综合考查函数的性质;

2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;

3.考查函数的最值. 【重点知识梳理】

1.几类函数模型及其增长差异 (1)几类函数模型

函数模型 函数解析式

一次函数模型 f(x)=ax +b (a 、b 为常数,a≠0) 反比例函数模型

f(x)=k

x +b (k ,b 为常数且k≠0) 二次函数模型

f(x)=ax2+bx +c(a ,b ,c 为常数,a≠0)

指数函数模型

f(x)=bax +c

(a ,b ,c 为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=blogax +c

(a ,b ,c 为常数,b≠0,a>0且a≠1) 幂函数模型

f(x)=axn +b (a ,b 为常数,a≠0)

(2) 函数性质 y =ax(a>1) y =logax(a>1)

y =xn(n>0)

在(0,+∞) 上的增减性 单调递增 单调递增

单调递增

增长速度

越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐

表现为与y 轴平行

随x 的增大逐渐表现为与x 轴平行

随n 值变化而各有不同

值的比较 存在一个x0,当x>x0时,有logax

2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;

(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;

(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:

[难点正本 疑点清源]

1.要注意实际问题的自变量的取值范围,合理确定函数的定义域. 2.解决实际应用问题的一般步骤

(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质. (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题. (3)解模:用数学知识和方法解决转化出的数学问题. (4)还原:回到题目本身,检验结果的实际意义,给出结论. 【高频考点突破】 考点一 二次函数模型

例1、某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y =x2

5-48x +8 000,已知此生产线年产量最大为210吨.

(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

【探究提高】

二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.

【变式探究】 某产品的总成本y(万元)与产量x(台)之间的函数关系是y =3 000+20x -0.1x2 (0

A .100台

B .120台

C .150台

D .180台 考点二 指数函数模型

例2、诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资

料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f(x)表示第x(x ∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推).

(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;

(2)试根据f(x)的表达式判断网上一则新闻“度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)

【探究提高】

此类增长率问题,在实际问题中常可以用指数函数模型y =N(1+p)x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a(1+x)n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.

【变式探究】 已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t +21-t(t≥0,并且m>0).

(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. .

考点三 分段函数模型

例3、为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间

的函数关系可近似地表示为y =⎩⎨⎧

1

3x3-80x2+5 040x ,x ∈[120,144,1

2x2-200x +80 000,x ∈[144,500],

且每处理一吨二氧化碳得到可

利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.

(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

【探究提高】本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.

【变式探究】根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=⎩⎪⎨⎪⎧

c

x ,x

c

A ,x≥A

(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分

别是( )

相关文档
最新文档