2017中考数学最新经典动点问题_十大题型
中考数学动点题型全归纳
中考数学动点题型全归纳
中考数学动点题型往往与圆、椭圆、双曲线等曲线有关,因此要求考生理解更深,运用相应的公式将各种题型归纳如下:
一、求曲线上的一点到其它曲线的距离
以半径为r的圆为例,求该圆上一点P到另一圆或者椭圆上的一点Q的距离,可以利用它们的公式,将它们的焦点分别求出,然后求出两点之间的距离。
二、求曲线上最短的距离
可以根据曲线的公式来求出最短的距离。
以下面的两个椭圆为例:
A、椭圆公式:$frac{x^2}{a^2}+frac{y^2}{b^2}=1$;
B、椭圆公式:$frac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$
可以得出最短距离为:$sqrt{(h-a)^2+(k-b)^2}$。
三、求曲线上点到直线的距离
以半径为r的圆为例,求圆上一点P到直线ax+by+c=0上点Q的距离,可以用圆的标准方程将圆和直线求出截距,然后求出两点之间的距离即可。
四、求曲线上最近点到直线的距离
以半径为r的圆为例,设直线ax+by+c=0上一点Q,可以用图形的知识,将这条直线的截距求出,并利用圆的标准方程结合截距,从而求出最近点到直线的距离。
- 1 -。
专题10:动点问题的常见题型和解题方法(终稿)
2017—2018学年度第二学期初三数学中考复习专题十:动点问题的常见题型和解题方法(提高)动点问题是近年来中考的的一个热点问题.常求:等腰、直角、相似三角形和四边形的形状,一般都要分类;面积、周长、线段和差的关系和最值.解这类题目要“以静制动”,即把动态问题,变为静态问题来解. 常用:几何方法——相似(全等)、勾股定理、面积关系建立方程或函数. 代数方法——设坐标或元,通过图形中特殊关系建立方程或函数.特别注意:几何方法和代数方法往往是不是孤立的,是相互交融的,即数形结合. 一、热点再练1.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是()A B C D2.如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间(单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).3.如图,在梯形ABCD 中,AD ∥BC ,AD=6,BC=16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.4.如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .第2题 第3题(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PDQB 是菱形.二、规律剖析(一)因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ =90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图【基本方法】等腰三角形的存在性问题,一般要分类讨论;两腰相等可能转化为两角相等或者转化为其他线段之间关系,一般会用到勾股定理或相似中的比例式列方程.【思路点拨】1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.(二)因动点产生的直角三角形问题例 2如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A (-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【基本方法】直角三角形的存在性问题,一般要分类讨论;遇到直角时一般考虑勾股定理或直角三角形相似或三角函数或代数法中的直线解析式. 【思路点拨】1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点. 2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程. 4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 【变式】条件不变,如果△MON 的边与AC 平行,求t 的值.(三)因动点产生的相似三角形问题例3如图,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,【基本方法】相似三角形的存在性问题,一般都要分类讨论;如果有两个角相等,那这两个角一般是对应角,所以只要讨论两种情况.【思路点拨】1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA可以分割为共底的两个三角形,高的和等于OA.(四)因动点产生的平行四边形问题例4如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC 向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2【基本方法】平行四边形的存在性问题,一般都要分类讨论;比如已知的边是平行四边形的边或对角线,但本题四边形PDBQ 为菱形,只要满足一组对边平行且相等和一组邻边相等.【思路点拨】1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.(五)因动点产生的面积问题例5如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.【基本方法】面积问题的关键是用坐标表示线段长度. 【思路点拨】1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD .3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方.4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值. 三、分层作业1.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__ __(填序号).图(1) 图(2)第1题Q第2题第3题2.如图,∠ACB=60○,半径为2的⊙0切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2π B.4π C.32D.43.如图,在△ABC中,∠ABC=90º,AB=3,BC=4,P是BC边上的动点,设BP=x.若能在AC边上找到一点Q,使∠BQP=90º,则x的取值范围是.4.直角坐标系中直线AB交x轴,y轴于点A(4,0)与B(0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过秒第4题后动圆与直线AB相切.5.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.5,∠C=30°.点D从点C出发沿CA方向6.如图,在Rt△ABC中,∠B=90°,BC=3以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.7.如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(2m ,m ),翻折矩形OABC ,使点A 与点C 重合,得到折痕DE .设点B 的对应点为F ,折痕DE 所在直线与y 轴相交于点G ,经过点C 、F 、D 的抛物线为c bx ax ++=2y .(1)求点D 的坐标(用含m 的式子表示)(2)若点G 的坐标为(0,-3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点P ,使PM =21EA ?若存在,直接写出P 的坐标,若不存在,说明理由.。
2017年全国中考数学真题分类动态型问题2017(解答题)
2017年全国中考数学真题分类动态型问题 解答题三、解答题1. (2017四川广安,26,10分)如图,已知抛物线y =-x ²+bx +c 与y 轴相交于点A (0,3),与x正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标.(3分)(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过支点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPN 为矩形.(3分)②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.(4分)思路分析:(1)把A 点的坐标代入y =c bx x ++-2,求出c 的值,由对称轴是直线x =1可求出b 的值,即可求出抛物线的解析式;令y =0,求出方程x 的两个值,然后根据题意舍去不合题意的解,即可求得点B 的坐标;(2)①当四边形OMPN 为矩形时,满足条件PM =ON ,据此列一元二次方程求解;②△BOQ 为等腰三角形时,可能存在OQ =BQ ,OQ =OB ,OB =BQ 三种情形,需要分类讨论,逐一进行判断计算.解:(1)∵知抛物线y =c bx x ++-2与y 轴交于点A (0,3), ∴c =3,∵对称轴是直线x =1, ∴1)1(2=-⨯-b,解得b =2,∴抛物线的解析式为:y =322++-x x ; 令y =0,得322++-x x =0,解得1x =3,2x =-1(不合题意,舍去), ∴点B 的坐标为(3,0).(2)①由题意得ON =3t ,OM =2t ,则点P (2t ,3442++-t t ), ∵四边形OMPN 为矩形,∴PM =ON ,即3442++-t t =3t , 解得1t =1,2t =43-(不合题意,舍去), ∴当t =1秒时,四边形OMPN 为矩形;②能,在Rt △AOB 中OA =3,OB =3,∴∠B =45°, 若△BOQ 为等腰三角形,有三种情况: (I)若OQ =BQ ,如答图1所示: 则M 为OB 中点,OM =21OB =23, ∴t =23÷2=43;(II)若OQ =OB 时, ∵OA =3,OB =3,∴点Q 与点A 重合,即t =0(不合题意,舍去); (III)若OB =BQ 时,如答图2所示: ∴BQ =3,∴BM =BQ ·cos 45°=3×22=223,∴OM =OB -BM =3-223=2236-, ∴t =2236-÷2=4236-. 综上所述,当t 为43秒或4236-秒时,△BOQ 为等腰三角形.2.(2017浙江丽水·23·10分)如图1,在Rt△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q从点A出发以a(cm/s)的速度沿AB运动.P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C,C2两段组成,如图2所示.1(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ 的面积,求x的取值范围.思路分析:过点P作PD⊥AB于点D.(1)先用含x的代数式表示PD,再根据三角形的面积公式确定y与x之间的函数表达式,由函数的图象得到x,y的一组对应值代入可求a的值;(2)在Rt△PBD中,由解直角三角形知识,用含x和sinB的式子表示PD,同样根据三角形面积公式建立y与x的关系,由函数图形得到x,y的一组对应值,求得sinB,进而确定图2中图象C段的函数2表达式;(3)先求出图象C1段与图象C2段函数值相等时对应的x的值,得到图象C1段函数的最大值,并求出图象C1段函数的最大值在图象C2段对应的x的值,结合函数图象可得到x的取值范围. 解:过点P作PD⊥AB于点D.(1)在图1中,∵∠A =300,PA =2x ,∴PD =PA ·sin 300=2x ·21=x ,∴y =2212121ax x ax PD AQ =⋅=⋅.由图象得,当x =1时,y =21,则211212=⋅a ,∴a =1.(2)当点P 在BC 上时(如图2),PB =5×2-2x =10-2x .∴PD =PB ·sinB =(10-2x )·sin B .∴·y=B x x PD AQ sin )210(2121⋅-⋅=⋅.由图象得,当x =4时,y =34,∴144(108)sin 23B ⨯⨯-=,∴sinB =31,∴y =x x x x 353131)210(212+-=⋅-⋅.(3)由C 1,C 2的函数表达式,得x x x 35312122+-=,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =221x 的最大值为y =22⨯21=2.将y =2代入函数y =x x 35312+-,得2=x x 35312+-,解得x 1=2,x 2=3,∴由图象得,x 的取值范围是2<x <3.3. (2017浙江丽水·24·12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AEAD=n . (1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ABAD的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.思路分析:设AE =a ,则AD =n A .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EF A .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =n A .(1)由对称得AE =FE ,∴∠EAF =∠EF A .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EFA +∠EFG =900.∴∠FGA =∠EFG ,∴FG =EF .∴AE =EG .(2)当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =900,∵∠DAC +∠BAC =90°,∴∠ABE =∠DA C .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴DCAEDA AB =.∵AB =D C .∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =n a ,∴n an naAB AD ==.(3)若AD =4AB ,则AB =a n 4.当点F 落在线段BC 上时(如图2),EF =AE =AB =A .此时an4=a ,∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =900,则点F 落在AC 上,由(2)得n ABABn AB AD ==4,即,∴n =16. ②若∠CGF =900(如图3),则∠CGD +∠AGF =90°.∵∠FAG +∠AGF =90°,∴∠CGD =∠FAG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DG C .∴DCAEDG AB =.∴AB ·DC =DG ·AE ,即a a n a n⋅-=)2()4(2,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).∴当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.4. (2017山东枣庄25,10分) 如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F ′,设点F ′的坐标为(0,m ),由相似三角形的判定及性质可得出点F ′的坐标,根据点B 、F ′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN 、PQ 交于点O ′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P 、Q 的位置,设出点Q 的坐标为(2,2n ),由正方形的性质可得出点M 的坐标为(2-n ,n ).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解:(1)将点B (6,0)、C (0,6)代入212y x bx c =-++中,得:0=-18+66b c c +⎧⎨=⎩,解得:26b c =⎧⎨=⎩,∴抛物线的解析式为21262y x x =-++.∵221126=-2)822y x x x =-++-+(,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴'OF BEOB DE=.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6-2=4,DE=8-0=8,OB=6,∴OF′3BEOBDE⨯=∴点F′(0,3)或(0,-3).设直线BF的解析式为y=k x±3,则有0=6k+3或0=6k-3,解得:k=-12或k=12,∴直线BF的解析式为y=-12x+3或y=12x-3.联立直线BF与抛物线的解析式得:21321262y xy x x⎧=-+⎪⎪⎨⎪=-++⎪⎩①或21321262y xy x x⎧=+⎪⎪⎨⎪=-++⎪⎩②,解方程组①得:172xy=-⎧⎪⎨=⎪⎩或6xy=⎧⎨=⎩(舍去),∴点F的坐标为(-1,72);解方程组②得:392xy=-⎧⎪⎨=⎪⎩或(舍去),∴点F的坐标为(-3,-92).综上可知:点F 的坐标为(-1,72)或(-3,-92). (3)设对角线MN 、PQ 交于点O ′,如图2所示.∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形, ∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上, 设点Q 的坐标为(2,2n ),则点M 的坐标为(2-n ,n ).∵点M 在抛物线21262y x x =-++的图象上,∴n =21-2-)2(2)62n n +-+(,即22160n n +==,解得:1171n =-,1-171n =-.∴点Q 的坐标为(2,217-2)或(2,-217-2).5. (2017四川泸州,25,12分)如图,已知二次函数y =ax ²+bx +c (a ≠0)的图象经过A (-1,0),B (4,0),C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA =∠CAO (O 是坐标原点),求点D 的坐标; (3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E ,F ,若△PEB ,△CEF 的面积分别为S 1,S 2,求S 1-S 2的最大值.思路分析:(1)根据待定系数法求解;(2) 设BD 直线与y 轴的交点为M (0,t ).根据tan ∠MBA =tan ∠CAO 列关于t 的方程求解t ,从而可确定直线BD 解析式,再求直线BD 与抛物线交点坐标即可,注意分类讨论;(3) 过点P 作PH //y 轴交直线BC 于点H ,设P (t ,at ²+bt +c ),表示出根据直线BC 表达式点H 的坐标,计算线段PH 长度;用t 表示直线AP 表达式,解出点E 、F 坐标从而可表示出线段CF ,将S 1-S 2用t 表示,根据二次函数性质求最值.解:(1)由题意得:设抛物线的解析式为:y =a (x +1)(x -4); 因为抛物线图像过点C (0,2), ∴-4a =2,解得a =-12.所以抛物线的解析式为:y =-12 (x +1)(x -4),即:y =-12 x 2+32x +2.(2)设BD 直线与y 轴的交点为M (0,t ). ∵∠DBA =∠CAO ,∴∠MBA =∠CAO ; ∴tan ∠MBA =tan ∠CAO =2; ∴||4t =2,即:t =±8. 当t =8时,直线BD 解析式为:y =-2x +8.联立,228,132.22y x y x x =-+⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩ 223,2.x y =⎧⎨=⎩所以,点D (3,2).当t =-8时,直线BD 解析式为:y =2x -8.联立228,132.22y x y x x =-⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩225,18.x y =-⎧⎨=-⎩ 所以,点D (-5,-18).综上:满足条件的点D有:D1(3,2),D2(-5,-18).(3)过点P作PH//y轴交直线BC于点H,设P(t,-12t2+32t+2),BC直线的解析式为y=-12x+2,故:H(t,-12t+2),∴PH=y P-y H=-12t2+2t;AP直线的解析式为:y=(-12t+2)(x+1),取x=0得:y=2-12t;故:F(0,2-12t),CF=2-(2-12t)=12t;联立(2)(1),212.2ty xy x⎧=-+⎪⎪⎨⎪=-+⎪⎩解之得:x E=5tt-;∴S1=12(y P-y H)(x B-x E)=12(-12t2+2t)(5-5tt-);S2=12•2t•5tt-.∴S1-S2=12(-12t2+2t)(5-5tt-)-12•2t•5tt-,即:S1-S2=-32t2+5t=-32(t-53)2+256.所以,当t=53时,S1-S2有最大值,最大值为256.6.(2017四川成都,28.12分)如图1,在平面直角坐标系xOy中,抛物线2:C y ax bx c=++与x轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '. (1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点为P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.解:(1)∵抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB =, ∴抛物线C 的对称轴是y 轴,A (22,0),(22,0),B -设抛物线C 的解析式为(22)(22)y a x x =+-,即,28y ax a =-,∴84a -=,∴12a =-,抛物线C 的解析式为2142y x =-+;(2)如图,∵点(),0F m 是x 轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C ',∴(2,4)D m '-,∴设抛物线C '的解析式为21(2)42y x m =--.令抛物线C '过点D (0,4),有214442m =⋅-,∴24m =,∴2m =(舍去负值); 由221(2)42142y x m y x ⎧=--⎪⎪⎨⎪=-+⎪⎩,有22114(2)422x x m -+=--,即222280x mx m -+-=,当抛物线C '与抛物线C 有唯一交点时,有2222444(28)4320b ac m m m ∆=-=--=-+=, ∴22m =(舍去负值). ∴m 的取值范围是2<m <22.(3)∵P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,∴点P 在y =x 上,由2142x x =-+,解得122,4x x ==-(不合题意,舍去),∴点P 的坐标为(2,2).∵抛物线C '的解析式为21(2)42y x m =--,F (m ,0),由对称性可知,四边形PMP ′N 能成为正方形,即△PMF 为以F 为顶点的等腰直角三角形.①若0<m ≤2时,如图2①,过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM , ∴KF =LM =2,KP =FL =2-m ,∴M (m +2,m -2),代入2142y x =-+中,得2680m m +-=,解得,12317,317m m =-+=--(不合题意,舍去).②若m >2,如图2②过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM ,∴KP =FL =2-m ,∴M (m -2,2-m ),代入2142y x =-+中,得260m m -=,解得,126,0m m ==(不合题意,舍去).综上,m 的值为317-+或6.7. (2017浙江金华,24,12分)如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0),动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA —AB —BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,25(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值. (3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图2思路分析:(1)用待定系数法可直接即可;(2)由题意知,OP =t ,PC =14-t ,PC 边上的高线为23x +23,可得S 与t 二次函数表达式,用配方法或公式法求得S 的最大值;(3)本小题应注意t 的取值范围,分4种情况分类讨论,得到有关t 的有关方程,求得相应的t 值.解:(1)设AB 所在直线的函数表达式为y =kx +b ,把A(3,33),B(9,53)代入y=kx+b,得⎪⎩⎪⎨⎧=+=+.359,333bkbk解得⎪⎩⎪⎨⎧==.32,33bk∴AB所在直线的函数表达式为y=33x+23.(2)由题意知,OP=t,PC=14-t,PC边上的高线为23t+23,∴S=21(14-t)(23t+23)=-43t2+235t+143(2≤t≤6) .当t=5时,S有最大值为4381.(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图3),可得方程()222142314233ttt-=⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛.解得t1=47,t2=0(舍去),此时t=47.②当2<t≤6时,线段PQ的中垂线经过点A(如图4),可得方程()()[]222)23333-=-+tt(.解得t1=2573+,t2=2573-(舍去),此时t=2573+.③当6<t≤10时,10线段PQ的中垂线经过点C(如图5),可得方程14-t=25-25t,解得t=322.图3 图4 图5 20线段PQ的中垂线经过点B(如图6),可得方程()()222)625935⎥⎦⎤⎢⎣⎡-=-+tt(.解得t 1=722038+,t 2=722038-(舍去),此时t =722038+. 综合上述,t 的值为47,2573+,322,722038+.图68. (2017浙江衢州,24,12分)在直角坐标系中,过原点O 及点A (8,0)C (0,6)作矩形OABC .连结OB ,点D 为OB 的中点,点E 时线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒. (1)如图1,当t =3时,求DF 的长.(2)如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.(3)连结AD ,当AD 将△DEF 分成的两部分面积之比为1∶2时,求相应t 的值.xy DFE CB A Oxy第24题 图2A BCEF DOxyDF E CB A Oxy ODF E CB A 图2M N xy OG 1N MA B CE F Dxy OG 2DFE CB A M N思路分析:(1)当t =3时,点E 为AB 中点.DE 为△ABO 的中位线.(2)过D 作DM ⊥OA ,DN ⊥AB ,垂足分别为M 、N .利用△DMF ∽△DNE 即可求解.(3)AD将△DEF分成的两部分面积之比为1∶2即可转化为AD与EF交点G为EF的三等分点,注意讨论G点所处的位置.解:(1)当t=3时,如图1,点E为AB中点.∵点D为中点,∴DE∥OA,DE=12OA=4.∵OA⊥AB,∴DE⊥AB.∴∠OAB=∠DEA=90°又∵DF⊥DE,∴∠EDF=90°.∴四边形DFAE是矩形,∴DF=AE=3.(2)∠DEF的大小不变.如图2:过D作DM⊥OA,DN⊥AB,垂足分别为M、N.∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BDDO =BNNA,ODDB=OMMA.∵点D为OB中点,∴M,N分别是OA,AB中点.∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN.又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴DFDE =DMDN=34.∵∠EDF=90°,∴tan∠DEF=34.(3)过D作DM⊥OA,DN⊥AB,垂足分别为M、N.若AD将△DEF的面积分成1∶2的两部分,设AD交EF于点G,则易得点G为EF的三等分点.①当E到达中点之前时,NE=3-t,由△DMF∽△DNE得MF=34(3-t).∴AF=4+MF=-34t+254.∵G1为EF的三等分点,∴G1(37112t+,23t)由点A(8,0),D(4,3)得直线AD的解析式为y=-34x+6.G 1(37112t+,23t)代入,得t=7541.②当E越过中点之后,NE=t-3,由△DMF∽△DNE得MF=34(t-3).∴AF=4-MF=-34t+254.∵G2为EF的三等分点,∴G2(3236t+,13t).代入直线AD解析式y=-34x+6,得t=7541.9.(2017山东德州)(本小题满分10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.思路分析:(1)由折叠知PB =PE ,BF =EF ,结合平行线的性质,易得∠EPF =∠BPF =∠EFP ,故有EP =EF ,从而可得四边相等,则四边形BFEP 为菱形;(2)①在Rt △CDE 中,已知CD 长,CE =CB ,利用勾股定理计算DE 的长,进而可得AE 的长;又知AB 的长,且BP =PE ,故Rt △APE 中,利用勾股定理构建方程求解PE 的长.②点Q 与点C 重合时,点E 离A 点最近,①中已求此时AE 的长.当点P 与点A 重合时,则点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB .两者之差就是点E 在边AD 上移动的最大距离.解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称.∴PB =PE ,BF =EF ,∠BPF =∠EPF . 又∵EF ∥AB ,∴∠BPF =∠EFP . ∴∠EPF =∠EFP .∴EP =EF . ∴BP =BF =FE =EP . ∴四边形BFEP 为菱形.(2)①如图2,∵四边形ABCD 为矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称, ∴CE =BC =5cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE =4cm .A B C D PFQ E 图1 A BDC PF(Q )E图2A B C D PFQ E 图1 A BDC PF(Q )E图2∴AE =AD -DE =5cm -4cm =1cm .∴在Rt △APE 中,AE =1,AP =3-PB =3-PE ,∴EP 2=12+(3-EP )2,解得EP =35cm .∴菱形BFEP 边长为35cm .②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1cm . 当点P 与点A 重合时,如图3,点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm .10. (2017山东威海,23,10分)已知:AB 为⊙O 的直径,2=AB ,弦1=DE ,直线AD 与BE 相交于点C ,弦DE 在⊙O 上运动且保持长度不变,⊙O 的切线DF 交BC 于点F . (1)如图1,若AB DE //,求证:EF CF =;(2)如图2,当点E 运动至与点B 重合时,试判断CF 与BF 是否相等,并说明理由.思路分析:(1)连接OD ,OE 先根据三边相等说明△ODE 是等边三角形,再分别说明△AOD 、△OEB 、△ADE 是等边三角形,最后计算∠3、∠4度数利用三线合一说明结论;(2)先说明BC 是切线,由切线长定理知∠1=∠2,再根据∠3+∠2=∠1+∠C =90°说明∠3=∠C ,可证明DF =CF =BF .证明:连接OD ,OE ,图3EDBQA (P )∵AB=2,∴OA=OD=OE=1.∵DE=1,∴△ODE为等边三角形.∴∠1=60°.∵DE∥OB,∴∠1=∠2=60°.∴∠3=90°, ∠1=30°.∵OA=OD,∴△OAD为等边三角形.∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.同理,∠5=60°.∴△CDE为等边三角形∵DF切⊙O于点D,∴OD⊥DF.∴∠3=90°-∠1=30°.∴∠4=30°.∴∠3=∠4.∴CF=EF.(2)相等.当点E与点B重合时,直线BC与⊙O只有一个公共点,所以BC为⊙O的切线.∵DF切⊙O于点D,∴BF=DF.∴∠1=∠2.∴AB为直径,∴∠ADB=∠BDC=90°.∴∠3=∠C.∴DF=CF.∴CF=BF.11.(2017山东菏泽,23,10分)(本题10分)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC 于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以2cm/s的速度沿BD向点D运动,设运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.图1 图2思路分析:(1)由正方形性质和垂直的性质就可以得出∠ADN=∠BAF ,利用“AAS ”可以得出△ADN ≌△ABF 就可以得到结论AF =MN ;(2)①由AD ∥BF 可得△ADE ∽△FBE ,利用AD DEBF BE=可以构造y 关于t 的函数表达式;②由(1)可知△MAN ∽△ABF ,所以MA ABAN BF=,又BN =2AN ,所以662t BF-=,用含t 的代数式表示BF ,结合①中的关系式,可以构造关于t 的方程求出t 的值,从而求出BN 、BF ,最后利用勾股定理求FN 的长. 解:(1)证明:如图1,∵四边形ABCD 是正方形, ∴AD=DC=AB=BC ,∠DAB=∠ABC=∠BCD=∠ADC=90°. ∵MN ⊥AF ,∴∠DHA=∠NHA=90°∴∠ADH+∠HAD=90°,∠NHA+∠HAD=90°, ∴∠ADH=∠NAH . 在△ADN 与△ABF 中,,,,ADN BAF AD AB DAN ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADN ≌△ABF , ∴AF =MN .(2)①∵正方形的边长为6cm , ∴,∵设运动时间为t s ,根据题意得BE=cm , ∴DE= BD -BE=(6) cm , ∵AD ∥BF , ∴△ADE ∽△FBE , ∴AD DEBF BE=, ∵BF =y cm ,∴6y=,即66ty t=-,∴y 关于t 的函数表达式为66ty t=-. ②∵BN =2AN ,AB=6cm , ∴AN=2cm ,BN=4cm,由(1)得△MAN ∽△ABF ,又DM=t cm ,AM=(6-t) cm , ∴MA AB AN BF =,即662t BF-=, ∴36BF t =-,又66ty t=-, ∴36t -=66t t- 解得t=2s , 当t=2时,BF=66ty t=-=3cm,在Rt △NBF 中,5=, ∴当BN =2AN 时, FN 的长为5.12. (2017年四川绵阳,25,14分)(本题满分14分)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1cm /s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)求y 取最大值时,求sin ∠NEF 的值.25.(1)能,……………………………………………………………………1分如图,四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,………………2分即8t=44-2t,解得t=58.……………………………………4分(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.……………………………………5分当0<t<2时,连接EM,易证△ANF∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.…………………………6分所以,…………………………………7分当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,………………………………………9分所以,综上所述,.……………………………………10分(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,…………………………11分由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,…………………12分所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.………………………………14分思路分析:(1)若四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,代入求解;(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.当0<t<2时,连接EM,易证△ANF ∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.所以,当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,所以,(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.13. (2017四川南充,25,12分)如图(1),已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为-83,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时,如图(2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′.P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【思路分析】(1)根据点O ,A 的坐标以及顶点M 的纵坐标,建立三元一次方程组求解.(2)直线l 是一、三象限的角平分线,因此可知四边形BECE ′是正方形.设点E 的横坐标为m ,根据对称性用m 表示点B 的横坐标,根据点C 在抛物线上,用m 表示点C 的纵坐标.根据EC =EB 建立关于m 的方程并求解,由此可知直线l 平移的距离.再利用平移的规律(或待定系数法)求出l ′的解析式.(3)易知△OB ′N ′是等腰直角三角形.分以下三种情形①PN ′=PB ′;②N ′P =N ′B ′;③B ′P =N ′B ′讨论点P 的存在性.其中情形①直接用对称性求解;第②种情形通过比较N ′B ′与点N ′到直线l ′的大小,推断出此种情形不存在,第③种情形根据两腰相等建立方程求解. 解:(1)∵抛物线过点(0,0),(4,0),顶点纵坐标为-83,得20,0164,84.34c a b c ac b a ⎧=⎪⎪=++⎨⎪-⎪-=⎩解得2,38,30.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求二次函数表达式为y =23x 2-83x .(2)∵直线l 的解析式为y =x ,∴直线l 与x 轴成45°的角. ∵l ∥l ′,∴∠CBE =45°.又CE ⊥x 轴,∴△BCE 是等腰直角三角形.图#备用题′图(1)图(2)∵△BCE′是由△BCE沿直线l′折叠得到,∴四边形BECE′是正方形.∵点C在y=23x2-83x的图象上,∴设C(m,23m2-83m).则E(m,0).∵点E与点B关于对称轴x=2对称,∴点B的坐标为(4-m,0).∵EC=EB,∴-(23m2-83m)=4-m-m,即m2-7m+6=0.解得m1=1,m2=6.∵点C在x轴下方的抛物线上,∴m=1(舍去m=6),因此点B的坐标为(3,0).∴将直线y=x向右平移3个单位得直线l′.∴l′的解析式为y=x-3.(3)∵△BON是等腰直角三角形,∴旋转后△B′ON′顶点的坐标为O(0,0),B′(,N′.①当PB′=PN′时,由对称性可知,当P(0,-3)时,△PB′N′是等腰三角形.②当B′P=B′N′时,延长B′O交BN于点F,得B′F⊥BN,B′F=3又B′N′=BN=B′F>B′N′.∵B′P≥B′F,∴这种情况不存在.③当PN′=B′N′时,因点P在l′上,所以设P(m,m-3),则(m2+(m-32=18.解得m1=,m2.图#∴当P或)时,△PB ′N ′为等腰三角形.综上所述,符合条件的点P 的坐标为P 1(0,-3),P 2,P 3).14. (2017四川攀枝花,23,12分)如图13,在平面直角坐标系中,直线MN 分别与x 轴,y 轴交于点M (6,0),N (0,2 3 ),等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图13的位置沿x 正方向以每秒1个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图14所示),设△ABC 平移的时间为t (s ), (1)等边△ABC 的边长 ;(2)在运动过程中,当t = 时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时,点P 从△ABC 的顶点B 出发,以每秒2个单位长度的速度沿折线BA →AC 运动,当点P 运动到C 时即停止运动,△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似,求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 最大值及此时点P的坐标.图13 图14思路分析:(1)由题易知OM =6,ON =2 3 ,∴MN =4 3 ,∴∠NMO =30°,∵∠ABC =60°,∴∠BAM =90°,即AB ⊥MN ,∴AB =12OM =3,即等边三角形边长为3;(2)由等边三角形的性质易知当MN 垂直平分AB 时,C 点与M 点重合,∴OB =OM -MC =3,即t =3.(3)①当P 点在线段AB 上运动时,则OB =t ,PB =2t 则BM =6-t ,PA =3-2t ,△PEF 与△MNO 相似分为△PEF ∽△MON 或△PEF ∽△NOM 两种对应情况思考;②当点P在线段AC上运动时,11332222PEFt S EF PH t∆-==288=-+23823232t⎫=-+≤⎪⎝⎭(332t≤≤)∴当t=32时,maxS=解析:(1)3;(2)3(3)①当P点在线段AB上运动时,则OB=t,BP=2t则BM=6-t,32PA t=-,△PEF与△MNO相似分为△PEF∽△MNO或△PEF∽△NOM两种对应情况,当△PEF∽△MON时,则∠EPF=∠EFA=∠EMB=30°,∴AE=12AF=14AP=324t-,BE=12BM=62t-.又BE=AB-AE=3-324t-,∴3-32642t t--=,解得t=34;当△PEF∽△NOM时,若点P在线段BE上,则∠PFE=∠NMO=30°,即PF∥OM,∴△PAF是等边三角形,∴EF垂直平分PA,∴BE=BP+12PA=32+t,又BE=12MB=62t-,∴3622tt-+=,解得1t=;当△PEF∽△NOM时,若点P在线段AE上,则P点与A点重合,即32t=;综上所述:t=34或1或32;②当点P在线段AC上运动时,则BM=6-t,PC=6-2t,3 2≤t≤3.∴BE=12BM=3-2t,即AE=2t,∴EF= 3 AE=32t,AF=2AE=t,∴CF=AC-AF=3-t,∴PF=PC-CF=3-t.作PH⊥EF于H点,由∠AFE=30°,可知PH=12PF=32t-.xyFEANMO CBPH11332222PEFtS EF PH t∆-==233388t t=-+23393932t⎛⎫=--+≤⎪⎝⎭(332t≤≤)∴当t=32时,max9332S=.15.(2017四川达州1,7分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若86CE CF==,,求OC的长;(2)连接AE AF、.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.思路分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,所以有OC=OE=OF,再求出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(2)这个四边形已经有一个角是90°,只要证明出它是平行四边形即可,如果它是平行四边形,则它的对角线互相平分,由此可得点O的位置.解:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF=228+6=10,∴OC=12EF=5;(2)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.16.(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E.设点P 的运动时间为t(s).(1)若m=6,求当P、E、B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个过程中,有且只有一个时刻t,使点E到直线BC的距离等于3.求所有这样的m的取值范围.D思路分析:(1))如图,P、E、B三点在同一直线上,连接EC.①在Rt△BEC中,计算BE的值;②在Rt△ABP中,利用勾股定理列出关于的方程,解之t值可求;(2)如图,P、E、B三点在同一直线上,连接EC,过点E作EF⊥BC于F.①在Rt△EFC中,利用勾股定理求出CF;②利用相似三角形的判定与性质求得BF;③根据m=BC=BF+CF计算m的值解:(1)如图,P、E、B三点在同一直线上,连接EC.D∵四边形ABCD是矩形,∴AB=CD,AD=BC.∵PD=t,m=6,∴PA=6-t.∵点D,点E关于直线PC的对称.∴PE=t,EC=DC=AB=4,∠CEP=∠CDP=90°.在Rt△BCE中,∵BC=6,CE=4,∴BE在Rt△ABP中,∵AB2+AP2=BP2,即42+(6-t)2=(t)2,∴t=6-2(2)如图,连接EC,过点E作EF⊥BC于F.D 当P、E、B三点在同一直线上时, m有最大值.∵点D,点E关于直线PC的对称.∴EC=DC=AB=4,∠CEP=∠CEB=90°.在Rt△EFC中,∵EF2+CF2=EC2,即32+CF2=42,∴CF=7.在Rt△EFC中,EF⊥BC,∴△BFE∽△EFC.∴BFEF=EFCF,∴ EF2=BF·CF,即32=BF·7,∴BF=97.∴m=BC=BF+CF=977+7=1677.当点E在AB时,m有最小值,此时. m=7.综上,所以满足条件的m的取值范围是7≤m≤1677.17.(2017山东潍坊)(本小题满分12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=23.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转α(0°<α<360°),得到△D′E′C,连接AD′、BE′,边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由.②连接AP,当AP最大时,求AD′的值.(结果保留根号)思路分析:(1)由平移性质及特殊角度,易知四边形MCND ′的两组对边分别平行,即为平行四边形.显然,△MCE ′和△NCC ′均为等边三角形,故要使□MCND ′再为菱形,只需E ′C =CC ′,此时CC ′=3;(2)①分两种情况讨论:当α≠180°时,根据旋转性质易证△ACD ′≌△BCE ′,故有AD ′=BE ′;当α=180°时,显然两线段长均为两等边三角形的边长之和,故也有结论AD ′=BE ′;②根据三角形的三边关系先确定AP 最长时情况,即A 、C 、P 三点共线,然后画出示意图,根据等边三角形的性质得AP ⊥D ′E ′,最后在Rt △APD ′中利用勾股定理计算AD ′的长. 解:(1)当CC ′=3时,四边形MCND ′为菱形. 理由:由平移的性质得CD ∥C ′D ′,DE ∥D ′E ′.∵△ABC 为等边三角形,∴∠B =∠ACB =60°. ∴∠ACC ′=180°-60°=120°.∵CN 为∠ACC ′的角平分线,∴∠NCC ′=60°. ∵AB ∥DE ,DE ∥D ′E ′,∴AB ∥D ′E ′. ∴∠D ′E ′C ′=∠B =60°.∴∠D ′E ′C ′=∠NCC ′,∴D ′E ′∥CN . ∴四边形MCND ′为平行四边形.∵∠ME ′C ′=∠MCE ′=60°,∠NCC ′=∠NC ′C =60°, ∴△MCE ′和△NCC ′为等边三角形,故MC = CE ′,NC =CC ′. 又E ′C ′=23,CC ′=3,∴CC ′=CE ′. ∴MC =CN ,∴四边形MCND ′为菱形.(2)AD ′=BE ′.理由:当α≠180°时,由旋转的性质得∠ACD ′=∠BCE ′. 由(1)知AC =BC ,CD ′=CE ′,。
动点问题所有的题型
动点问题所有的题型
动点问题涉及的题型非常多,以下是一些常见的动点问题题型:
1. 直线运动中的动点问题:这类问题中,动点在直线上移动,需要求出动点的坐标或者轨迹方程。
2. 圆周运动中的动点问题:这类问题中,动点在圆周上运动,需要求出动点的轨迹方程或者运动时间。
3. 抛物线中的动点问题:这类问题中,动点在抛物线上运动,需要求出动点的坐标或者轨迹方程。
4. 双曲线中的动点问题:这类问题中,动点在双曲线上运动,需要求出动点的坐标或者轨迹方程。
5. 椭圆中的动点问题:这类问题中,动点在椭圆上运动,需要求出动点的坐标或者轨迹方程。
6. 多边形中的动点问题:这类问题中,动点在多边形边上运动,需要求出动点的坐标或者轨迹方程。
7. 函数图像中的动点问题:这类问题中,动点在函数图像上运动,需要求出动点的坐标或者函数解析式。
8. 行程问题中的动点问题:这类问题中,两个或多个动点在同一直线上运动,需要求出它们相遇的次数或者距离。
9. 工程问题中的动点问题:这类问题中,两个或多个动点在同一直线上运动,需要求出它们完成工程所需的时间或者距离。
10. 速度问题中的动点问题:这类问题中,动点在直线或曲线上运动,需要求出它的速度或者加速度。
以上仅是动点问题的一些常见题型,实际上还有很多其他类型的动点问题。
九年级中考压轴——动点问题集锦
九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。
过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。
1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。
2) 四边形MNQP的面积为S,运动时间为t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。
函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。
动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。
设运动的时间为t 秒。
1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。
3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。
3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。
动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
初中数学动点问题大全
初中数学动点问题大全动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。
题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。
2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。
3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。
角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线O 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP S S ∆∆的值;如果变化,请说明理由.O x y (备用图)O xy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a ).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S AP S AO ∆∆=.∴1ABP ACP S S ∆∆=.即当a 变化时,ABP ACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CM PM BC AB AC ∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)12217x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得11x =+,21x =-(不合题意,舍去)∴P(1+0).综上所述,P 的坐标为(1,0)或(1+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.A B CD M N EF (图1)AB C D M N E F变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DF DC CE =.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y .22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2(DC AD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=a a x ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOC OA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-m m m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒A C BO yx∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=∵1BC =,设CD x =,AF y =,∴11x x y=-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∴BE BF BC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCDS BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴BH =16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC(2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y =又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAP PDC C C x =- ,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,)2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN AB AB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC 1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AE CB FA B D GC EF变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴AB AF BC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴AB AF BC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x36①当F 点在线段AD 上时DG =CG -CD =x x x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。
中考数学专题复习之几何图形动点问题
12,∴AB= 12 =2 3 ,又∵△ABE是等边三角形,∴BE=AB=2 3,即PD+ PE的最小值为2 3 .
专题二 几何图形动点问题
类型3 同侧差最大值问题 【问题】两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值 最大. 【解决思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B, P三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延 长,与直线l的交点即为点P.
2 AN
-PN=PM′-PN≤M′N=2,延长M′N交BD于点P′,连接P′M,∴
例4题图
当点P运动到P′时,即点M′、N、P′共线时,M′N=P′M′-P′N=2,
∴PM-PN的最大值为2.
例4题解图
专题二 几何图形动点问题
模型二 “一点两线”型(两动点+一定点)
【问题】点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N, 使得△PMN周长最小. 【解决思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之 间线段最短,将三条线段转化到同一直线上即可.
专题二 几何图形动点问题
例5 如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分 ∠AOB,且OP=6,则△PMN的周长最小值为( C )
213.∴PM-PO的最大值为
13
2.
例3题解图
专题二 几何图形动点问题
类型4 异侧差最大值问题 【问题】两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大. 【解决思路】将异侧点转化为同侧点,同类型3即可解决.
专题二 几何图形动点问题
例4 (2019陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的
中考数学--动点问题题型方法归纳
xA OQP By 动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1(20XX 年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)ABC OEFA B C O D 图(1) A BOE FC 图(2) 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论xyM CDP QOA B xyM CD PQOAB 3.如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
2017中考数学最新经典动点问题--十大题型
1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q 第一次在ABC △的哪条边上相遇?2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.364y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 485S =P O P Q 、、M3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点∥交直线l于点E,设直线l的旋转角为α.D.过点C作CE AB(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;α=°时,判断四边形EDBC是否为菱形,并说明理由.(2)当90α7如图,在梯形A B中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.。
数学动点问题经典题型
动点问题1、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.2、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCSS=.3、如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积.4、如图,在平面直角坐标系中,四边形ABCD 各顶点分别是A (0,0),B (7,0),C (9,5),D (2,7) (1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标, 若不能,说明理由.y P O C B A图1y xH O F ED A C B yQP DACO5、在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24. (1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.6.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴 和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)220a b b --=.(1) 则A 点的坐标为___________,C 点的坐标为__________;(2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP = S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由; (3) 点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC ∠+∠∠的值是否OCE FHGy xA6、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.10、在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.xy OCBAP QxyOCBA(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.11、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结PA ,PB ,使S △PAB =S △PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?12、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y是否存在点D 使得ADE BCE S S ∆∆=标;若不存在,请说明理由.(3)点F (5,n G 是x 轴上一点,若△ABG 点G 的坐标为 (用含n1、如图,正方形ABCD 的边长是1cm ,E 为CD 的中点.P 为正方形边上的一个动点,动点P 从A 出发沿A →B →C →E 运动,最终到达点E ,若点P 经过的路程为x cm .备用图(1)当x =1cm 时,求△APE 的面积; (2)若△APE 的面积为31,求x 的值.2、如图,在长方形ABCD 中,AB =4,AD =2.P 是AB 的中点,点Q 从点A 出发,以每秒1个单位的速度沿A →D →C →B 的方向运动,设Q 点运动的时间为x (秒). (1)求AP 的长.(2)若△APQ 的面积为S (平方单位),用含x 的代数式表示S (0<x <8).(3)如果点M 与点Q 同时从点A 出发,点M 以每秒3个单位的速度沿A →B →C →D 的方向运动;当M 、Q 两点相遇时,它们同时停止运动.在整个运动过程中,△AQM 按角来分类可以是什么三角形,请写出相应x 的取值范围.AD CBE P xADCBE备用图A D CBE备用图。
中考数学动点问题(含答案)
中考数学之 动点问题一、选择题:1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )94xyOPDA 、10B 、16C 、18D 、20 二、填空题:1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。
三、解答题:1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x ,EF 的长为y . ⑴求PM 的长(用x 表示);⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图).Q POBED CA图 13图 14图 12HBCDHBCDHM QP DCBA2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80<x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长;⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.3.(2008年白银)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.图1C Q → BDAP ↓ 图2G 2 4 6 8 10 1210 86 4 2 yOx参考答案一、选择 A二、填空:(1)(2)(3)(5) 三、解答:2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =x ,∴x y 231=. 图象如图所示.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x , ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是(4,12),∴12444212=⋅+⋅-k k . 解得23=k .则点P 的速度每秒23厘米,AC =12厘米.方法二:观察图象知,当x=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过(0,0),(4,12),(8,0),∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x ,∴kx kx y 42122+-=. ②比较①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差(或△PDQ 面积).②由⑵得 x x y 64322+-=.(方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=)∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)(4,0),(0,3); ··················· 2分 (2) 2,6; ····························· 4分 (3) 当0<t≤4时,OM =t . 由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . ··········· 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. ·········· 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. ··········· 8分S=矩形OABC 的面积-Rt△OAM 的面积- Rt△MBN 的面积- Rt△NCO 的面积=12-)4(23-t -21(8-t )(6-t 43)-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ·········· 7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t . ······ 8分 以下同方法一. (4) 有最大值.方法一: 当0<t≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ·············· 11分当4<t<8时,∵ 抛物线S=t t 3832+-的开口向下,它的顶点是(4,6),∴ S<6. 综上,当t=4时,S 有最大值6. ··················· 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ······· 11分 显然,当t=4时,S 有最大值6. ·················· 12分说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1分;否则,不给分.。
中考数学常见题型几何动点问题
中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中.∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发.沿射线AB 向点B 方向运动.动点Q 从C 点出发.沿射线CB 也向点B 方向运动。
如果点P 的速度是4CM/秒.点Q 的速度是2CM/秒.它们同时出发.几秒钟后.△PBQ 的面积是△ABC 的面积的一半?(3)在第(2)问题前提下.P,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1.E 为CD 边的中点. P 为正方形ABCD 边上的一个动点发.沿A →B →C →E 运动.到达点E.若点P 经过的路程为自变量x.△APE 的面积为函数y . (1)写出y 与x 的关系式(2)求当y =13时.x 的值等于多少?例3:如图1 .在直角梯形ABCD 中.∠B=90°.DC ∥AB.动点P 从B 点出发.沿梯形的边由B →C → D → A 运动.设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 .那么△ABC 的面积为( )A .32B .18C .16D .10 例4:直线364y x =-+与坐标轴分别交于A B 、两点.动点P Q 、同时从O点出发.同时到达A 点.运动停止.点Q 沿线段OA运动.速度为每秒1个单位长度.点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒.OPQ △的面积为S .求出S 与t 之间的函数关系式;(3)当485S =时.求出点P 的坐标.并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米.长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时.点M 与点A 重合.点N 到达点B 时运动终止).过点M N 、分别作AB 边的垂线.与ABC △的其它边交于P Q 、两点.线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中.t 为何值时.四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中.四边形MNQP 的面积为S .运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式.并写出自变量t 的取值范围.例6:如图(3).在梯形ABCD 中.906DC AB A AD ∠==∥,°,厘A米.4DC =厘米.BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动.动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动.两个动点同时出发.当其中一个动点到达终点时.另一个动点也随之停止.设动点运动的时间为t 秒. (1)求边BC 的长;(2)当t 为何值时.PC 与BQ 相互平分;(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式.求t 为何值时.y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
2017年中考数学压轴题专题汇编04 因动点产生的特殊四边形问题 (解析版)
【类型综述】特殊四边形的几何动点问题,很多困难源于问题中的可动点,常见的动点四边形有平行四边形、矩形、菱形等问题,其中尤其是平行四边形的问题出现次数最多。
实际上,求解特殊四边形的动点问题,关键是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式,确定运动变化过程中的数量关系、图形位置关系,分类画出符合条件的图形进行讨论,就能找到解决问题的途径,有效避免思维混乱。
【方法揭秘】我们先思考三个问题:1.已知A、B、C三点,以A、B、C、D为顶点的平行四边形有几个,怎么画?2.在坐标平面内,如何理解平行四边形ABCD的对边AB与DC平行且相等?3.在坐标平面内,如何理解平行四边形ABCD的对角线互相平分?图1 图2 图3如图1,过△ABC的每个顶点画对边的平行线,三条直线两两相交,产生三个点D.如图2,已知A(0, 3),B(-2, 0),C(3, 1),如果四边形ABCD是平行四边形,怎样求点D的坐标呢?点B先向右平移2个单位,再向上平移3个单位与点A重合,因为BA与CD平行且相等,所以点C(3, 1) 先向右平移2个单位,再向上平移3个单位得到点D(5, 4).如图3,如果平行四边形ABCD的对角线交于点G,那么过点G画任意一条直线(一般与坐标轴垂直),点A、C到这条直线的距离相等,点B、D到这条直线的距离相等.关系式x A+x C=x B+x D和y A+y C=y B+y D有时候用起来很方便.我们再来说说压轴题常常要用到的数形结合.如图4,点A是抛物线y=-x2+2x+3在x轴上方的一个动点,AB⊥x轴于点B,线段AB交直线y=x-1于点C,那么点A的坐标可以表示为(x,-x2+2x+3),点C的坐标可以表示为(x, x-1),线段AB的长可以用点A的纵坐标表示为AB=y A=-x2+2x+3,线段AC的长可以用A、C两点的纵坐标图4表示为AC=y A-y C=(-x2+2x+3)-(x-1)=-x2+x+2.通俗地说,数形结合就是:点在图象上,可以用图象的解析式表示点的坐标,用点的坐标表示点到坐标轴的距离.【典例分析】例1 如图1,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过A、B两点,并与x轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求点Q的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A、C、M、N为顶点的四边形为正方形,求此正方形的边长.】图1思路点拨1.第(2)题的等腰三角形只考虑QA=QB的情形.2.第(3)题的正方形不可能AC为边,只存在AC为对角线的情形.满分解答图2 图3 图4考点伸展如果把第(3)题中的正方形改为平行四边形,那么符合条件的点M有几个?①如果AC为对角线,上面的正方形AMCN是符合条件的,M(2,-1).②如图5,如果AC为边,那么MN//AC,MN=AC=2.所以点M的横坐标为4或0.此时点M的坐标为(4, 3)或(0, 3).第(2)题如果没有限制等腰三角形ABQ的底边,那么符合条件的点Q有几个?①如图2,当QA=QB时,Q(2, 2).②如图6,当BQ=BA B为圆心,BA为半径的圆与直线x=2有两个交点.m=±根据BQ2=10,列方程22+(m-3)2=10,得3(2,3+(2,3此时Q或.③如图7,当AQ=AB时,以A为圆心,AB为半径的圆与直线x=2有两个交点,但是点(2,-3)与A、B三点共线,所以Q(2, 3).图5 图6 图7例2如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.图1思路点拨1.把△ACG分割成以GE为公共底边的两个三角形,高的和等于AD.2.用含有t的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在.满分解答考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.,,,.1(1,4)2E t t +-1(1,4)2F t +(3,)Q t (3,0)C 如图2,当FQ =CQ 时,FQ 2=CQ 2,因此.2221(2)(4)2t t t -+-=整理,得.解得.240800t t -+=120t =-220t =+如图3,当EQ =CQ 时,EQ 2=CQ 2,因此.2221(2)(42)2t t t -+-=整理,得..所以,(舍去).213728000t t -+=(1320)(40)0t t --=12013t =240t =图2 图3例3 如图1,抛物线经过A (1, 0)、B (5, 0)、C 三点.设点E (x , y )是抛物线上一动点,且在x 轴10(0,3下方,四边形OEBF 是以OB 为对角线的平行四边形.(1)求抛物线的解析式;(2)当点E (x , y )运动时,试求平行四边形OEBF 的面积S 与x 之间的函数关系式,并求出面积S 的最大值;(3)是否存在这样的点E ,使平行四边形OEBF 为正方形?若存在,求点E 、F 的坐标;若不存在,请说明理由.思路点拨1.平行四边形OEBF 的面积等于△OEB 面积的2倍.2.第(3)题探究正方形OEBF ,先确定点E 在OB 的垂直平分线上,再验证EO =EB .满分解答(1)因为抛物线与x 轴交于A (1, 0)、B (5, 0)两点,设y =a (x -1)(x -5).代入点C ,得.解得.10(0,31053a =23a =所以抛物线的解析式为.22210(1)(5)4333y x x x x =--=-+图2 图3考点伸展既然第(3)题正方形OEBF 是存在的,命题人为什么不让探究矩形OEBF 有几个呢?如图4,如果平行四边形OEBF 为矩形,那么∠OEB =90°.根据EH 2=HO ·HB ,列方程.22(1)(5)(5)3x x x x ⎡⎤---=-⎢⎥⎣⎦或者由DE =OB =,根据DE 2=,列方程.1252254225225((1)(5)234x x x ⎡⎤-+---=⎢⎥⎣⎦这两个方程整理以后都是一元三次方程4x 3-28x 2+53x -20=0,这个方程对于初中毕业的水平是不好解的.事实上,这个方程可以因式分解,.51(4)(022x x x ---=如图3,x =;如图4,x =4;如图5,x =,但此时点E 在x 轴上方了.5212这个方程我们也可以用待定系数法解:设方程的三个根是、m 、n ,那么4x 3-28x 2+53x -20=.5254()()2x x m x n ---根据恒等式对应项的系数相等,得方程组解得441028,1010453,1020.m n m n mn mn ++=⎧⎪++=⎨⎪=⎩4,1.2m n =⎧⎪⎨=⎪⎩图4 图5例4如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为,求a 的值;54(3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图1 备用图思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么△AEF 与△CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(3)已知A (-1, 0)、D (4, 5a),x P =1,以AD 为分类标准,分两种情况讨论:①如图2,如果AD 为矩形的边,那么AD //QP ,AD =QP ,对角线AP =QD .由x D -x A =x P -x Q ,得x Q =-4.当x =-4时,y =a (x +1)(x -3)=21a .所以Q (-4, 21a ).由y D -y A =y P -y Q ,得y P =26a .所以P (1, 26a ).由AP 2=QD 2,得22+(26a )2=82+(16a )2.整理,得7a 2=1.所以P .a =(1,②如图3,如果AD 为矩形的对角线,那么AD 与PQ 互相平分且相等.由x D +x A =x P +x Q ,得x Q =2.所以Q (2,-3a ).由y D +y A =y P +y Q ,得y P =8a .所以P (1, 8a ).由AD 2=PQ 2,得52+(5a )2=12+(11a )2.整理,得4a 2=1.所以.此时P .12a =-(14)-,图1 图2 图3考点伸展第(3)题也可以这样解.设P (1,n ).①如图2,当AD 时矩形的边时,∠QPD =90°,所以,即.AM DN MD NP =5553a n a -=-解得.所以P .所以Q .235a n a +=235(1,)a a +3(4,)a-将Q 代入y =a (x +1)(x -3),得.所以3(4,a -321a a=a =②如图3,当AD 为矩形的对角线时,先求得Q (2,-3a ).由∠AQD =90°,得,即.解得.AG QK GQ KD=32335a a a -=--12a =-例5 如图1,已知抛物线C :y =-x 2+bx +c 经过A (-3,0)和B (0, 3)两点.将这条抛物线的顶点记为M ,它的对称轴与x 轴的交点记为N .(1)求抛物线C 的表达式;(2)求点M 的坐标;(3)将抛物线C 平移到抛物线C ′,抛物线C ′的顶点记为M ′,它的对称轴与x 轴的交点记为N ′.如果以点M 、N 、M ′、N ′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C 怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN =4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N 的右侧和左侧.满分解答图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么△MM ′D 的面积S 关于m 有怎样的函数关系?如图4,△MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为.22m -将代入y =-(x +1)2+4,得.所以DH =.22m x -=244m y =-+244m -所以S =.2311(4)2248m m m m -=-图4例6如图1,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点. (1)求抛物线的解析式;(2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.图1思路点拨1.第(2)题求∠ABO 的正切值,要构造包含锐角∠ABO 的角直角三角形.2.第(3)题解方程MN =y M -y N =BC ,并且检验x 的值是否在对称轴左侧.满分解答(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得解得,c =1.1,164 3.c b c =⎧⎨-++=⎩92b =所以抛物线的解析式是.2912y x x =-++(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5.如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,,4sin sin 5AOH OBC ∠=∠=所以. 图24sin 5AH OA AOH =⋅∠=所以,.35OH =225BH OB OH =-=在Rt △ABH 中,.4222tan 5511AH ABO BH ∠==÷=图3 图4考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标.那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得(如图5).2x =所以符合题意的点M 有4个:,,,.9(1,211(3,2(2-(2图5例7将抛物线c 1:x 轴翻折,得到抛物线c 2,如图1所示.2y =(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图1思路点拨1.把A 、B 、D 、E 、M 、N 六个点起始位置的坐标罗列出来,用m 的式子把这六个点平移过程中的坐标罗列出来.2.B 、D 是线段AE 的三等分点,分两种情况讨论,按照AB 与AE 的大小写出等量关系列关于m 的方程.3.根据矩形的对角线相等列方程.满分解答①B 、D 是线段AE 的三等分点,存在两种情况:情形一,如图2,B 在D 的左侧,此时,AE =6.所以2(1+m )=6.解得m =2.123AB AE ==情形二,如图3,B 在D 的右侧,此时,AE =3.所以2(1+m )=3.解得.223AB AE ==12m =图2 图3 图4考点伸展第(2)题②,探求矩形ANEM ,也可以用几何说理的方法:在等腰三角形ABM 中,因为AB =2,AB ABM 是等边三角形.同理△DEN 是等边三角形.当四边形ANEM 是矩形时,B 、D 两点重合.因为起始位置时BD =2,所以平移的距离m =1.【变式训练】1.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:12PP =他还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:,.122x x x +=122y y y +=(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ;拓展:(3)如图3,点P (2,n )在函数(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在43y x =OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3.【解析】试题分析:(1)用P 1、P 2的坐标分别表示出OQ 和PQ 的长即可证得结论;试题解析:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1,∴Q 1Q =,∴212x x -OQ =OQ 1+Q 1Q =x 1+= ,∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ = =,即212x x -122x x +11222PQ P Q +122y y +线段P 1P 2的中点P (x ,y )P 的坐标公式为x =,y =;122x x +122y y +(2)①∵M (2,﹣1),N (﹣3,5),∴MN ;②∵A (2,2),B (﹣2,0),C (3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D (x ,y ),则x +3=0,y +(﹣1)=2,解得x =﹣3,y =3,∴此时D 点坐标为(﹣3,3),当AC 为对角线时,同理可求得D 点坐标为(7,1),当BC 为对角线时,同理可求得D 点坐标为(﹣1,﹣3),综上可知D 点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F ,又对称性可知EP =EM ,FP =FN ,∴PE +PF +EF =ME +EF +NF =MN ,∴此时△PEF 的周长即为MN 的长,为最小,设R (x ,),由题意可知43xOR =OS =2,PR =PS =n =2,解得x =﹣(舍去)或x =,∴R (,),∴65656585,解得n =1,∴P (2,1),∴N (2,﹣1),设M (x ,y ),则=, =n =22x +6512y +,85解得x =,y =,∴M (,),∴MN ,即△PEF 的周长的最小值为2511525115.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题2.(2017湖北省襄阳市)如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设24y ax bx =++CP =t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE =∠OCD ?(3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t的值.【答案】(1)B (10,4),C (0,4),;(2)3;(3)t 的值为或.215463y x x =-++103203试题解析:(1)在中,令x =0可得y =4,∴C (0,4),∵四边形OABC 为矩形,且A (10,0),∴B24y ax bx =++(10,4),把B 、D 坐标代入抛物线解析式可得:,解得:,∴抛物线解析10010444240a b a b ++=⎧⎨-+=⎩1653a b ⎧=-⎪⎪⎨⎪=⎪⎩式为;215463y x x =-++考点:1.二次函数综合题;2.分类讨论;3.动点型;4.压轴题.3.(2017山东省枣庄市)如图,抛物线 与x 轴交于点A 和点B ,与y 轴交于点C ,点212y x bx c =-++B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【答案】(1),D (2,8);(2)(﹣1,)或(﹣3,﹣);(3)(2,21262y x x =-++72922-+)或(2,).2--试题解析:(1)把B 、C 两点坐标代入抛物线解析式可得:,解得:,∴抛物线解析式为18606b c c -++=⎧⎨=⎩26b c =⎧⎨=⎩,∵=,∴D (2,8);21262y x x =-++21262y x x =-++21(2)82x --+(2)如图1,过F 作FG ⊥x 轴于点G ,设F (x ,),则FG =||,∵∠21262x x -++21262x x -++FBA =∠BDE ,∠FGB =∠BED =90°,∴△FBG ∽△BDE ,∴,∵B (6,0),D (2,8),∴E FG BFBG DE=(2,0),BE =4,DE =8,OB =6,∴BG =6﹣x ,∴,当点F 在x 轴上方时,有21264268x x x -++=-,解得x =﹣1或x =6(舍去),此时F 点的坐标为(﹣1,);21261262x x x -++=-72当点F 在x 轴下方时,有,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,21261262x x x -++=--﹣);92综上可知F 点的坐标为(﹣1,)或(﹣3,﹣);7292考点:1.二次函数综合题;2.分类讨论;3.动点型;4.压轴题.4. (2017湖北恩施第24题)如图12,已知抛物线过点,,过定点的直线2y ax c =+()2,2-()4,5()0,2F 与抛物线交于,两点,点在点的右侧,过点作轴的垂线,垂足为.:2l y kx =+A B B A B x C (1)求抛物线的解析式;(2)当点在抛物线上运动时,判断线段与的数量关系(、、),并证明你的判断;B BF BC ><=(3)为轴上一点,以为顶点的四边形是菱形,设点,求自然数的值;P y ,,,B C F P ()0,P m m (4)若,在直线下方的抛物线上是否存在点,使得的面积最大,若存在,求出点的坐标1k =l Q QBF △Q 及的最大面积,若不存在,请说明理由.QBF △【答案】(1)y=x 2+1;(2)BF=BC ,理由详见解析;(3)6;(4)当t=2时,S △QBF 有最大值,最大14+1,此时Q 点坐标为(2,2).试题解析:(1)把点(﹣2,2),(4,5)代入y=ax 2+c 得,解得,42165a c a c +=⎧⎨+=⎩141a c ⎧=⎪⎨⎪=⎩所以抛物线解析式为y=x 2+1;14(2)BF=BC .理由如下:设B (x ,x 2+1),而F (0,2),14∴BF 2=x 2+(x 2+1﹣2)2=x 2+(x 2﹣1)2=(x 2+1)2,∴BF=x 2+1,14141414∵BC ⊥x 轴,∴BC=x 2+1,∴BF=BC ;14(3)如图1,m 为自然数,则点P 在F 点上方,∵以B 、C 、F 、P 为顶点的四边形是菱形,∴CB=CF=PF ,而CB=FB ,∴BC=CF=BF ,∴△BCF 为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt △OCF 中,CF=2OF=4,∴PF=CF=4,∴P (0,6),即自然数m 的值为6;考点:二次函数综合题.5.(2017山东临沂第26题)如图,抛物线经过点,与轴负半轴交于点,23y ax bx =+-()2,3A -x B 与轴交于点,且.y C 3OC OB =(1)求抛物线的解析式;(2)点在轴上,且,求点的坐标;D y BDO BAC ∠=∠D (3)点在抛物线上,点在抛物线的对称轴上,是否存在以点,,,为顶点的四边形是M N A B M N 平行四边形?若存在。
初中数学动点问题及练习题附参考答案
初中数学动点问题及练习题附参考答案动点问题是初中数学中的一个重要部分,它涉及到点的运动与位置的变化。
通过解决动点问题,我们可以锻炼自己的逻辑思维能力,提高数学解题的能力。
本文将介绍初中数学中常见的动点问题,并附带一些练习题及其参考答案。
1. 直线运动问题直线运动是最简单的动点问题之一。
在直线运动中,点从一个位置沿直线运动到另一个位置。
我们通常需要确定点的位移、速度和时间等,以解决相关问题。
例如,小明从家里骑自行车出发,经过15分钟骑行到达学校,全程约5公里。
求小明的平均速度。
解:根据题意,小明骑行的时间为15分钟,即0.25小时。
位移为5公里。
根据速度的定义,速度等于位移除以时间,所以小明的平均速度为5公里/0.25小时=20公里/小时。
2. 圆周运动问题圆周运动是另一类常见的动点问题。
在圆周运动中,点围绕某一中心点做圆周运动。
我们通常需要确定点的角度、半径和时间等,以解决相关问题。
例如,一个车轮的半径为30厘米,转动一周需要走过的距离是多少?解:根据题意,车轮转动的一周是一个半径为30厘米的圆的周长。
周长等于2πr,其中π取3.14,r是半径。
所以车轮转动一周需要走过的距离为2×3.14×30=188.4厘米。
练习题:1. 小明以每小时60公里的速度从A地出发,向B地行驶,2小时后小刚以每小时80公里的速度从B地出发,向A地行驶。
求他们相遇时的距离。
2. 一个半径为15厘米的车轮转了5分钟,这段时间内车轮走过的距离是多少?参考答案:1. 解:小明行驶的距离为60公里/小时×2小时=120公里。
小刚行驶的距离为80公里/小时×2小时=160公里。
所以他们相遇时的距离为120公里+160公里=280公里。
2. 解:根据题意,车轮转了5分钟,即1/12小时。
车轮的周长为2×3.14×15=94.2厘米。
所以车轮走过的距离为94.2厘米/小时×(1/12)小时=7.85厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与
CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
A
Q
C
D
B P
2、直线与坐标轴分别交于两点,动点同时从点出发,
同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标;
(2)设点的运动时间为秒,的面积为,求出
与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.
3
64y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48
5
S =
P O P Q 、、M x
A
O Q
P
B
y
3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t 秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.
(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;
②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;
(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.
A A (备用图)
7如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点
D
运动.设运动的时间为t 秒. (1)求BC 的长.
(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.
A D
C B M N
8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;
(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
A D E B
F C
图4(备用)
A
D E B
F C
图5(备用)
A D E B
F C
图1 图2
A D
E
B
F C P
N M 图3 A D E
B
F
C
P
N M (第25题)
9如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t
(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与
PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90
AEF
∠=o,且EF交正方形外角DCG
∠的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF
△≌△,所以AE EF
=.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A D
F
C G
E
B
图1A D
F
C G
E
B
图2
A D
F
C G
E
B
图3。