第四章因式分解知识树

合集下载

北师大版八年级数学下册同步精品第四章 因式分解(单元小结)

北师大版八年级数学下册同步精品第四章 因式分解(单元小结)

考点专练
例4:把多项式因式分解:ax2-ay2=
.
解析:先提取公因式a,再根据平方差公式进行二次分解.
注意平方差公式:a2-b2=(a+b)(a-b),
则ax2-ay2=a(x2-y2)=a(x+y)(x-y).
答案:a(x+y)(x-y)
考点专练
【知识点睛】 符合用平方差公式因式分解的多项式一般有以下特点: 1.有两项. 2.两项都能写成平方的形式. 3.符号相反.
知识专题
四、运用公式法分解因式
平方差公式 a2-b2=(a+b)(a-b)
完全平方公式 a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
把a2+2ab+b2和a2-2ab+b2这样的式子称为完全平方式。 利用乘法公式把某些多项式因式分解,这种因式分解 的方法叫做公式法。
知识专题
即:一个多项式 →几个整式的积
知识专题
二、分解因式的方法: (1)、提取公因式法 (2)、运用公式法 (3)、十字相乘法 (4)、分组分解法
知识专题
三、提公因式法分解因式
整式乘法: m(a+b+c)=ma+mb+mc, 逆变形得到 因式分解的第一种方法:ma+mb+mc=m(a+b+c)
知识专题
“因式分解”法产生的密码,方便记忆.原理是:如对于多项 式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时, 则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可 以把“018162”作为一个六位数的密码.对于多项式4x3-xy2, 取x=10,y=10时,用上述方法产生的密码有哪些?

第四章因式分解

第四章因式分解

第四章因式分解第四章因式分解1.因式分解一、基本知识点1、因式分解:把一个多项式化成几个整式的积的形式,这种变形叫因式分解。

(1).因式分解是恒等变形;(2)因式分解的对象是多项式;(3)结果是乘积形式;(4)分解后的每一个因式必须是整式;(5)分解到不能再分为止。

2、因式分解与整式乘法的关系:互逆过程。

(整式乘法可以验证因式分解的正确与否)二、知识拓展与应用1、下列由左到右的变形属于因式分解的是()22221(a+3)(3)9;1(1)();2x 3)(32)A a aB x x xC a b a bD y -=-+=++=++-、、、、6xy-4x+9y-6=( 2、已知多项式x 4+2x 3-x+m 能因式分解,且有因式x+1. (1)当x=-1时,求多项式x 4+2x 3-x+m 的值。

(2)求m 的值。

3、如图4.1.1是由一个正方形和两个长方形组成的一个大矩形,根据图形,写出一个因式分解的等式。

4、证明:一个三位数的百位上的数字与个位上的数字交换位置,则原数与新数之差能被99整除。

5、多项式x 2-3x -10因式分解的结果是() A 、(x+2)(x-5)B 、(x+2)(x+5)C 、(x-2)(x-5)D 、(x-2)(x+5)6、已知关于x 的二次三项式3x 2+mx -n=(x+3)(3x -5),求:m 、n 的值。

7、关于x 的多项式6x 2-11x+m 因式分解后有一个因式2x -3,试求m 的值。

8、试说明817-279-913能被45整除。

2.提起公因式法一、基本知识点1、公因式:多项式各项中都含有的相同的因式(包括数)。

2、公因式的确定:(1)系数(第一项是负数时,提出负号);确定数字因数;(2)找各项都有的字母;(3)各项都有的字母的最小指数。

3、提公因式法分解因式:(1)确定公因式;(2)用公因式去除这个多项式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。

因式分解知识点归纳总结

因式分解知识点归纳总结

因式分解知识点归纳总结
定义与基本概念
定义:把一个多项式化为几个整式的积的形式,这种变形叫做因
式分解,也叫作把这个多项式分解因式。

关系:因式分解是整式乘法
的逆过程。

分解方法
提公因式法:
公因式:多项式中的每一项都含有的因式,称为公因式。

找法:
取多项式各项系数的最大公约数为公因式的系数,各项中相同字母取
最低次幂的积。

公式法:
平方差公式:a² - b² = (a + b)(a - b)完全平方公式:a² +
2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²
十字相乘法:适用于二次项系数为1的二次三项式,如x² + (a + b)x + ab = (x + a)(x + b)。

分组分解法:将多项式分组,然后提取每组的公因式或应用其他方法进行分解。

应用与重要性
应用:因式分解在数学求根作图、解一元二次方程等方面有广泛
应用,是解决许多数学问题的有力工具。

重要性:学习因式分解的方
法与技巧,不仅是掌握数学内容所需,而且对于培养解题技能、发展
思维能力都有着十分独特的作用。

注意事项
在进行因式分解时,要注意分解彻底,即分解到每个因式都不能
再进一步分解为止。

注意公因式的提取要准确,避免遗漏或错误。


记并理解常用的公式和定理,以便在分解过程中灵活运用。

综上所
述,因式分解是数学中的一个重要概念和方法,通过学习和掌握相关的知识点和技巧,可以更好地应用它来解决实际问题。

八年级下册数学第四章因式分解教案

八年级下册数学第四章因式分解教案

八年级下册数学第四章因式分解§1、因式分解一、因式分解的概念1、 下列有左边到右边的变形中,哪些是因式分解?哪些不是因式分解?为什么?(1)ab+ac+d=a(b+c)+d (2)a 2-1=(a-1)(a+1) (3)(a+1)(a-1)=a 2-1(4)(x+2y )(x-2y )=x 2-4y 2 (5) x 2y-xy 2-1=xy (x-y )-1 (6) a 2-4ab+4b 2=(a-2b )2 (7)ax+ay+a=a (x+y )(8)(9)(10) (11)(12)a (x +y )=ax +ay (13) X 2-4x +4=x (x -4)+4 (14)10x 2-5x =5x (2x -1) (15)X 2-16+3x =(x +4)(x -4)+3x(16)、mx+nx+k=(m+n )x +k ; (17)14x 2y 3=2x 2•7y 3; (18)(a+b )(a-b )=a 2-b 2; (19)4x 2-12xy+9y 2=(2x-3y )2 二、因式分解与整式乘法的关系1、根据乘法运算的算式,把下列多项式因式分解(1) 36–25x 2; (2) 16a 2–9b 2; 1.36-x 2 (3)a 2- b 2 (4)x 2-16y 2 (5)x 2y 2-z 2(6) 9(a+b)2–4(a –b)2. (7)(x -2)2-9 (8)(x +a )2-(y -b )2(10)814-a ;(9)-25(a +b )2+4(a -b ) (11)xy xy 09.0413+-;(12)()()a y a x -+-1122; (13)22212y x -. 2、根据乘法运算的算式,把下列多项式分解因式.分解因式:(1)15a 2-25a b 2=________; (2)4x 6-1=________;(3)2x 2+x y -y 2=________; (4)9m 2+6m n +n 2=________. 三、因式分解与整式乘法关系的应用1、若ax+A 能分解为a (x-2y+3),则A=2、若x^2+ax+a -3因式分解结果为(x+b)(x -1),分别求a 、b 的值3、如果x m -1因式分解的结果是(x 2+1)(x+1)(x -1),则m 的值为4、如果多项式x 的平方+ax+b(a,b 都是常数)因式分解的结果是(x -1)(x+3) 那么ab=5、若x 2+5x+c 因式分解的结果为(x+b )(x+3),则b= ,c=6、把x 2+5x+c 分解因式,得(x+2)(x+3),则c 的值=______.7.如果把多项式x 2—8x+m 分解因式得(x —10)(x+n ),那么m=_________,n=_________. 8.若4a 2+kab+9b 2可以因式分解为(2a —3b )2,则k 的值为_________. 9.若x —1是x 2—5x+c 的一个因式,则c=_________.10.将关于x 的二次式2x 2+4x+k 分解因式,若有一因式为(x+3),则实数k=________. 11.9x 3y 2+12x 2y 2—6xy 3中各项的公因式是_________.12因式分解:(x+y )2—3(x+y )=_________.13将x+x 3—x 2分解因式的结果是_________. 四、利用因式分解解决整除问题 1、试探究817-279-913能否被45整除 6、利用因式分解说明:36^7-6^12能被140整除2、993-99能被100整除吗?能被99整除吗?3、当n 为整数时,证明:两个连续奇数的平方差(2n+1)2-(2n-1)2是8的倍数;4、证明:若a 为整数,(2a+1)2-1能被8整除。

因式分解的知识点总结

因式分解的知识点总结

因式分解的知识点总结因式分解的知识点总结篇1因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必需是整式②结果必需是积的形式③结果是等式因式分解与整式乘法的关系:m(a+b+c)公因式:一个多项式每项都含有的公共的`因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

分解因式注意;①不准丢字母②不准丢常数项注意查项数③双重括号化成单括号④结果按数单字母单项式多项式次序排列⑤相同因式写成幂的形式⑥首项负号放括号外⑦括号内同类项合并。

因式分解的知识点总结篇21.因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2.因式分解的方法:常用“提取公因式法”“公式法”“分组分解法”“十字相乘法”。

3.公因式确实定:系数的最大公约数?相同因式的最低次幂。

注意公式:a+b=b+a;a—b=—(b—a);(a—b)2=(b—a)2;(a—b)3=—(b—a)3、4.因式分解的公式:(1)平方差公式:a2—b2=(a+b)(a—b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2—2ab+b2=(a—b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的.字母都具有整体性;(3)因式分解的最终结果要求分解到每一个因式都不能分解为止;(4)因式分解的最终结果要求每一个因式的首项符号为正;(5)因式分解的最终结果要求加以整理;(6)因式分解的最终结果要求相同因式写成乘方的形式。

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)敏捷分组;(8)提取分数系数;(9)打开部分括号或全部括号;(10)拆项或补项。

因式分解知识点归纳总结

因式分解知识点归纳总结

因式分解知识点归纳总结因式分解是数学中的一个重要知识点,它在代数的各个领域中有着广泛的应用。

因式分解是将一个多项式表示为乘积的形式,使得每个乘积因子都是原多项式的一个因子。

通过因式分解,我们可以更好地理解多项式的结构、性质和特点。

一、基本概念和思想1.多项式:由变量和常数的乘积相加或相减而成的代数表达式。

2.因式:在乘积中的每个项。

3.因式分解:将一个多项式表示为乘积的形式。

4.公因式提取:在多个项中提取出一个公共的因子,然后将其提取出来。

5.公式:将其中一种特殊形式的多项式因式分解的方法。

二、因式分解的基本方法1.提取公因子:在多个项中提取出一个公共的因子。

2.完全平方公式:将二次多项式表示为完全平方的形式。

3.平方差公式:将二次多项式表示为一个平方差的形式。

4.组合因式法:将多项式按照特定的方式分组,然后进行因式分解。

5.因式定理:根据多项式的特征和性质,通过试探法找到一个因式,然后进行因式分解。

6.代换法:通过适当的代换,将多项式转化为一个更易于因式分解的形式。

三、因式分解的应用1.简化运算:可以通过因式分解将复杂的数学计算简化为更简单的形式,提高计算的速度和效率。

2.解方程:通过因式分解将方程转化为一个乘积的形式,可以更方便地求解方程的解。

3.获得更多信息:因式分解可以给出多项式的根的信息,从而帮助我们更好地理解多项式的特点和性质。

4.拓展推广:通过因式分解的方法,可以推广到更高次数的多项式,进行更深入的数学研究和应用。

四、因式分解的注意事项1.因式分解的结果应尽可能简化,即将多项式表示为最简形式的乘积。

2.对于不同类型的多项式,有不同的因式分解方法,需要根据具体情况选择合适的方法。

3.因式分解中的变量可以是实数、复数或其他数学对象,需要根据具体情况进行分析和处理。

4.在进行因式分解时,需要注意运算规则和性质,避免出现错误。

总结起来,因式分解是数学中的一个重要概念和方法,它在代数的各个领域中有着广泛的应用。

浙教版七年级数学下册 第四章 因式分解复习教案

浙教版七年级数学下册 第四章 因式分解复习教案

第四章 因式分解一、提公因式法.知识点1:分解因式的定义1.分解因式:把一个多项式化成几个_整式的乘的积,这种变形叫做分解因式,它与整式的 乘法互为逆运算。

分解因式需知;(1)只有多项式才能够分解因式,单项式不能分解因式(2)结果必须是整式,不能有分式出现(3)结果必须是积的形式【经典例题】判断下列从左边到右边的变形是否为分解因式:①8)3)(3(892+-+=+-x x x x ( ) ②)49)(49(4922y x y x y x -+=- ( )③ 9)3)(3(2-=-+x x x ( ) ④)2(222y x xy xy xy y x -=+- ( )知识点2:公因式公因式: 定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;【经典例题】:1错误!未指定书签。

.的公因式是多项式 963ab - aby abx -+_________2错误!未指定书签。

.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3. 342)()()(n m m n y n m x +++-+的公因式是__________知识点3:用提公因式法分解因式提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。

1可以直接提公因式的类型:(1)3442231269b a b a b a +-=________________; (2)11n n n a a a +--+=___________(3)(3)542)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值2.式子的第一项为负号的类型:(1)①33222864y x y x y x -+- =_______________②243)(12)(8)(4n m n m n m +++-+-=_______(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时)如: 22188y x +- 【变式练习】1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D..y x 431--2.分解因式-5(y -x)3-10y(y -x)33. 公因式只相差符号的类型:公因式相差符号的,要先确定取哪个因式为公因式,然后把另外的只相差符号的因式的负号提出来,使其统一于之前确定的那个公因式。

因式分解总结知识点

因式分解总结知识点

因式分解总结知识点一、多项式的基本知识1.多项式的定义多项式是由多个单项式相加或相减而成的代数式。

一般的形式为:$P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$。

其中,$a_n, a_{n-1}, \cdots, a_1, a_0$ 是常数,$x$ 是变元,$a_nx^n, a_{n-1}x^{n-1}, \cdots, a_1x, a_0$ 分别称为多项式 $P(x)$ 的各项,$a_n$ 称为多项式 $P(x)$ 的首项系数,$a_0$ 称为常数项。

2.多项式的次数如果多项式 $P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 中 $a_n \neq 0$,则$n$ 称为多项式的次数,记作 $\deg P(x) = n$。

3.多项式的分类按照多项式的次数和各项系数的类型,多项式分为一元多项式和多元多项式,一元多项式又可以分为单项式和多项式,多项式还可以按照各项系数的类型分为整系数多项式、有理系数多项式、实系数多项式和复系数多项式等等。

二、因式分解的基本方法1.提公因式法提公因式法是因式分解的一个基本方法,它适用于形如 $ax^2 + bx + c$ 的二次三项式,其中 $a, b, c$ 是常数。

例如对于 $2x^2 + 3x + 1$,我们可以先找到它的两个因式 $2x$ 和 $1$,然后将原多项式分解为 $(2x + 1)(x + 1)$。

2.公式法公式法是因式分解的另一个基本方法,它适用于一些特定形式的多项式,如平方差公式$a^2 - b^2 = (a + b)(a - b)$,完全平方公式 $(a \pm b)^2 = a^2 \pm 2ab + b^2$,立方和公式 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ 等等。

3.分组分解法分组分解法是对多项式中的部分项进行合并,以便进行进一步的因式分解。

因式分解的方法数学知识点归纳

因式分解的方法数学知识点归纳

因式分解的方法数学知识点归纳因式分解的方法数学知识点归纳知识要点:因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、公式法。

因式分解的方法注意三原则1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))4.最后结果每一项都为最简因式归纳方法:1.提公因式法。

2.公式法。

3.分组分解法。

4.凑数法。

[x^2+(a+b)x+ab=(x+a)(x+b)]5.组合分解法。

6.十字相乘法。

7.双十字相乘法。

8.配方法。

9.拆项补项法。

10.换元法。

11.长除法。

12.求根法。

13.图象法。

14.主元法。

15.待定系数法。

16.特殊值法。

17.因式定理法。

基本方法各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。

当各项的系数有分数时,公因式系数为各分数的最大公约数。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提尽全家都搬走,留1把家守提负要变号,变形看奇偶。

例如:-am+bm+cm=-(a-b-c)ma(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。

注意:把2a+1/2变成2(a+1/4)不叫提公因式如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式: (a+b)(a-b)=a^2-b^2,反过来为a^2-b^2=(a+b)(a-b)完全平方公式:(a+b)^2=a^2+2ab+b^2,反过来为a^2+2ab+b^2=(a+b)^2(a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

第4章 因式分解(单元小结)七年级数学下册(浙教版)

第4章 因式分解(单元小结)七年级数学下册(浙教版)

单元小结
【详解】解:∵x2-xy2 =x(x2-y2) ,=x(x+y)(x-y) ∵=50,y=20,则各个因式的值为x=50,x+y=70,x-y=30, ∴产生的密码不可能是307040, 故选:C.
单元小结 针对训练
1.有足够多如图的长方形和正方形的卡片,如果分别选取1号、2号、3 号卡片各1张、2张、3张,可不重叠、无缝隙拼成右图的长方形,则运 用拼图前后面积之间的关系可以写出一个因式分解的式子:______ .
数学(浙教版)
七年级 下册
第4章 因式分解
单元小结
单元小结
知识点一 因式分解的定义 把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把 这个多项式因式分解,也叫做把这个多项式分解因式. 想一想:整式乘法与因式分解有什么关系?
是互为相反的变形,即
因式分解
x2-1
(x+1)(x-1)
整式乘法
单元小结
【例8】在日常生活中如取款、上网等都需要密码,有一种用“ 因式分解”法产生的密码记忆方便.原理是:如对于多项式x4-y4 ,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9,则各个 因式的值是:x-y=0,x+y=18,x2+y2=162,于是就可以把 “018162”作为一个六位数的密码.对于多项式x3-xy2,取x=50 ,y=20,用上述方法产生的密码不可能是( ) A.503070 B.507030 C.307040 D.703050
单元小结 针对训练
1.(x+3)(2x-1)是多项式__________因式分解的结果
【详解】解:∵(x+3)(2x-1)=2x2+5x-3 ∴(x+3)(2x-1)是多项式2x2+5x-3因式分解的结果.

北师大版八年级下册第四章因式分解之因式分解

北师大版八年级下册第四章因式分解之因式分解

B
D x²-5x+6 =(x+2)(x+3)
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
(1)x²-x =x(x-1) 因式分解
(2)x²-1=(x+1)(x-1) 因式分解
(3) x(x-1)=x²-x 整式乘法
(4) (x+1)(x-1) =x²-1 整式乘法
判断下列各式哪些是整式乘法,
哪些是因式分解。
(1)x²-4y²=(x+2y)(x-2y) 因式分解
(2)(5a-1)²=25a²-10a+1 整式乘法
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
解这类题的步骤:第一利用整式的乘法得到 多项式;第二令得到的多项式与所求的多项 式相等;第三使其对应项的系数相等.
所以原式能被11整除.
试说明 32020 - 4 32019 7 32018
能被11整除.
32 52018 - 4332018 7 32018 32018 (32 - 4 3 7) 32018 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档