随机过程4(34)精品PPT课件

合集下载

通信原理-随机过程课件

通信原理-随机过程课件
一个随机过程在时间上是否具有某种 稳定的统计特性。如果一个随机过程 在长时间观察下表现出稳定的统计特 性,则称该随机过程具有遍历性。
遍历性的数学描述
对于一个随机过程,如果存在一个常 数$c$,使得对于任意的时间$t$,有 $E[X(t)]=c$,则称该随机过程具有遍 历性。其中$X(t)$表示在时刻$t$的随 机变量的取值。
标量乘法
标量乘法满足结合律和分 配律,即对于任意标量a 和任意随机过程X,有 a(X+Y)=aX+aY。
线性变换的应用
信号处理
在通信系统中,信号经常 需要进行线性变换以实现 调制、解调、滤波等操作 。
控制系统
在控制系统中,线性变换 被广泛应用于系统的分析 和设计,如传递函数、状 态方程等。
图像处理
在图像处理中,线性变换 被广泛应用于图像的增强 、滤波、变换等操作。
04
CATALOGUE
随机过程的平稳性
平稳性的定义
平稳性定义
一个随机过程如果对于任何正整数n,以及任何非负整数k,其n维联合分布函 数与n+k维联合分布函数相同,则称该随机过程是严平稳的。
数学表达式
若对于任意的正整数n和任意的非负整数k,都有P(X_1, X_2, ..., X_n) = P(X_1+k, X_2+k, ..., X_n+k),则称随机过程{X_t}是严平稳的。
06
CATALOGUE
随机过程的功率谱密度
功率谱密度的定义
功率谱密度
表示随机信号的功率随频率的分布, 是描述随机信号频域特性的重要参数 。
定义方式
功率谱密度函数通常由傅里叶变换来 定义,将随机信号的时域表示转换为 频域表示。

随机过程及其统计描述ppt课件.ppt

随机过程及其统计描述ppt课件.ppt

任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ

随机过程课件

随机过程课件


1
m X (t1 )][ x2 m X (t 2 )] f ( x1 x2 ; t1 , t 2 )dx1dx 2 f ( x1, x2 ; t1 , t 2 )dx1dx 2
x x


1 2
X(t) 协方差与相关函数的关系为 当 mx (t ) 0 时 C X (t 1 , t 2 ) R X (t 1 , t 2 ) 在协方差定义中取t1=t2=t,就有
为XT 的均值函数或数学期望。其中F(x,t)是过程 的一维分布函数。 若是连续型随机变量,有 mX (t) xf(x,t)dx 其中f(x,t)是一维分布密度。 12

2.随机过程的方差 若 DX (t) 2 (t) E[X(t) mX (t)]2 存在,t∈T, X 称为X(t)的方差。 x (t) Dx (t) 称为X(t)的标准差。 它们描绘过程的样本曲线在各个t时刻对均 值 m X ( t ) 的离散程度, 对每个t1∈T, EX (t1 ) 反映t1状态取值的概率平均。 DX (t1 ) 反映t1状态取值与 EX (t1 ) 离散程度。 在工程中随机过程的均方值具有物理意义,比 较有用。均方值定义为: E[ X 2 (t )] X (t ) DX (t ) E( X 2 (t )) E 2 ( X (t )) 有关系式: 13 Dx (t ) x (t ) [mx (t )]2 即
第一章. 随机过程的基本概念
§1.1 随机过程及其概率分布
在实际问题中,有时需要对随机现象的变化进 行研究,这时就必须考虑无穷个随机变量或一族 随机变量, 我们就称这种随机变量族为随机过程。 例1: 生物群体的增长问题。在描述群体的发展 或演变过程中, 以 Xt 表示在时刻 t 群体的个数, 则 对每一个 t ,Xt 是随机变量。假设我们从 t =0 开 始每隔24小时对群体的个数观测一次, 则{Xt , t =0, 1, 2, ...}是一个随机过程。 例2: 电话呼唤问题。某电话总机在[0,t]时间 内收到的呼唤次数用 Xt 来表示, 则对于固定的 t , 1 Xt 是随机变量。于是{Xt , t ∈[0, ∞)}是随机过程。

随机过程的基本概念ppt课件

随机过程的基本概念ppt课件
求X(t)的均值、均方值和方差。
.
2.3 平稳随机过程
三、相关系数及相关时间
也称为归一化协方差函 数或标准协方差函数。
相关系数: rX()KXX 2 ()RX()X 2mX 2
相关时间:
0
0 rX()d
rX ( )
1
rX(0) 0.05
0
0
相关时间示意图
.
2.3 平稳随机过程
三、相关系数及相关时间
为随机过程X(t)的二维概率分布。定义
fX(x1,x2,t1,t2)2FX(xx11,xx22,t1,t2)
为随机过程X(t)的二维概率密度。 注意:X(t1)及X(t2)为同一随机过程上的随机变量。
.
2.2 随机过程的统计描述
2、二维概率分布
例2、设随机相位信号
X (n )co s( n/1 0 )
.
2.2 随机过程的统计描述
二、随机过程的数字特征(连续)
• 协方差函数
K X ( t 1 , t 2 ) E { [ X ( t 1 ) m X ( t 1 ) ] [ X ( t 2 ) m X ( t 2 ) ] } (1)如果 KX(t1,t2)0,则称 X (t1 )和 X (t2 )是不相关的。
.
2.3 平稳随机过程
一、定义
(1)严格平稳随机过程
f X ( x 1 , ,x n ,t 1 , ,t n ) f X ( x 1 , ,x n ,t 1 , ,t n )
一维概率密度: fX(x,t)fX(x)
二维概率密度: fX (x 1 ,x 2 ,t1 ,t2 ) fX (x 1 ,x 2 ,) t1 t2
接收机噪声
5
x1(t) 0

随机过程课件.ppt

随机过程课件.ppt

随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。

随机过程PPT课件

随机过程PPT课件

4、自相关序列性质
◆ 若平稳随机序列不含任何周期分量,则
lim
m
RX
(m)

RX
()

mX2
lim
m
K
X
(m)

K
X
()

0
◆ 如果Y (n) X (n n0 ),其中n0为某一个固定的离散时刻, 则有RY (m) RX (m),KY (m) KX (m)
◆ K X (m) RX (m) mX2
概率密度函数
2020/2/18
fX (x1, x2,L
, xN ;1, 2,L
, N)

N FX (x1, x2,L , xN ;1, 2,L x1x2 L xN
, N)
3
4.1 离散时间随机过程基本概念
二、概率分布
4、相互独立
FX (x1, x2 ,L , xN ;1, 2,L , N ) FX (x1;1)FX (x2; 2)L FX (xN ; N )

FXn (xn; n) xn
概率分布函数 FXn (xn, xm;n, m) PXn xn, Xm xm
概率密度函数
3、n维情况
fXn
( xn
,
xm ;
n,
m)

2 FXn
(xn , xm; xnxm
n,
m)
概率分布函数 FX (x1, x2,L , xN ;1, 2,L , N) PX1 x1, X2 x2,L , XN xN
线性独立的含义是随机序列X n和Ym中的任意两个随机变量都互不相关。
统计独立一定线性独立,反之不一定
2020/2/18

概率论与数理统计经典课件随机过程

概率论与数理统计经典课件随机过程
3
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,

《数学随机过程》PPT课件

《数学随机过程》PPT课件
所以X与Y不相关。 故 (X,Y )=0 X与Y不相关
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .

概率论与统计课程学习讲义 (34)

概率论与统计课程学习讲义 (34)

X (t,2 ) a cos(t ) -a cos t, - t
其中常数a
0, 且P(1 )
2 3
P( X
(0)
a)
P(2 )
1 3
所以
10
0
F
(
x,
0)
1 3
1
x -a -a xa xa
同理,根据X(4 )可能取的值为
X(4
,1 )
a
cos
4
2a 2
X(4
,2 )
a
cos
4
2a 2
11
可得:
0
X 2a 2
F
(
X
,
4
)
1 3
- 2a 2
X
2a 2
1
X 2a 2
第二节 随机过程的概率分布
1
设{X (t),t T} 是一随机过程,对于参数集 T 中的任 意n个元素: 即过程的 n 个状态 t1, t2 , , tn
X (t1) X (e,t1), X (t2) X (e,t2), , X (tn) X (e,tn)
(n 个随机变量)的联合分布
称为随机过程 X (t) 的n 维分布函数, n 1,2,3, 一维分布函数 F(x1;t1) P{X (t1) x1}
12
再求二维分布。随机矢量(X (0), X ( ))可能的取值为
2
(
X
(0,
1
),
X
(
4
,
1
))
(a,
2 a) 2
(
X
(0,
2
),
X
(
4
,
2
))

随机过程马尔科夫过程 ppt课件

随机过程马尔科夫过程 ppt课件
3442马尔可夫链的状态分类ijij3542马尔可夫链的状态分类ii1称状态i为非常返的ii不返回到i期望值表示由i出发再返回到i的平均返回时间iinfiiii定义3642马尔可夫链的状态分类首达概率与n步转移概率有如下关系式定理44对任意状态iijij定义3742马尔可夫链的状态分类ijij3842马尔可夫链的状态分类引理42周期的等价定义gcdgcd例例4848设马尔可夫链的状态空间i123转移概率矩阵为求从状态1出发经n步转移首次到达各状态的概率3942马尔可夫链的状态分类121212124042马尔可夫链的状态分类同理可得11134142马尔可夫链的状态分类以下讨论常返性的判别与性质数列的母函数与卷积的卷积的母函数4242马尔可夫链的状态分类定理45状态i常返的充要条件为规定则由定理44iiiiii4342马尔可夫链的状态分类iiiiii4442马尔可夫链的状态分类4542马尔可夫链的状态分类ii同理ii4642马尔可夫链的状态分类定理47设i常返且有周期为d则其中ndiindii4742马尔可夫链的状态分类由定理47知对d的非整数倍数的nndiindiindii4842马尔可夫链的状态分类子序列所以d1从而i为非周期的i是遍历的ndiindiilim而由定理limlimndii4942马尔可夫链的状态分类状态的可达与互通状态i与状态j互通ij
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ

《随机过程》课件

《随机过程》课件

马尔可夫过程的定义与性质
马尔可夫过程是一种重要的随机过程,具有马尔可夫性质,即未来状态只与当前状态有关。本部分将详 细介绍马尔可夫过程的定义和特性。
马尔可夫过程的应用
马尔可夫过程在很多领域都有广泛的应用,如金融风险评估、自然语言处理和社交网络分析等。我们将 义与性质
《随机过程》PPT课件
随机过程是一个重要的数学概念,本课件将深入介绍随机过程的定义、分类 以及常见例子,帮助您全面理解随机过程的本质。
随机过程的定义与随机变量的区别
了解随机过程和随机变量的不同之处对于理解随机过程的基本概念至关重要,本部分将详细讨论它们的 区别及其意义。
随机过程的分类及常见例子
随机过程可以根据其性质和特征进行分类,例如马尔可夫过程、泊松过程、布朗运动等。我们将介绍每 种类型的定义和常见应用。
布朗运动在金融和物理领域的 应用
布朗运动在金融领域和物理领域有着广泛的应用,如金融市场模型和粒子扩 散模型。我们将介绍一些相关的应用场景。
随机过程在数据分析中的应用
频率分析
利用随机过程的特性进行频率域信号分析, 如功率谱估计和频谱分析。
信号处理
利用随机过程的随机性和噪声模型进行信号 处理和滤波。
泊松过程是一种重要的随机过程,具有独立增量和平稳增量的特性。本部分 将详细介绍泊松过程的定义以及其它一些重要的性质。
泊松过程的应用
泊松过程在很多实际问题中具有重要的应用,如事件发生的模拟、人流和交通流量的预测等。我们将分 享一些实际案例。
布朗运动的定义与性质
布朗运动是一种连续时间的随机过程,具有随机漂移和随机扩散的特性。本部分将详细探讨布朗运动的 定义和一些重要的性质。
时域分析
通过对随机过程的统计特性进行分析,如均 值、方差和自相关函数。

《随机过程》课件

《随机过程》课件

泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。

随机过程课件

随机过程课件

3.2 随机过程的数字特征
为Ft x ,密度函数为t x , f 则
t T,随机过程 X t , t T 的一维分布函数

2 Xt
二、方差函数
Var X t E X t EX t
称为随机过程X t , t T 的方差函数 .
若E X t x dFt x , 则称随机
5
1 e 2
2 t
1 e 2
2 t
e
2 t
P X P X P X P X
3.3 离散事件和离散型随机过程
P X t1 X t 2 1
t1
t1
t1 t1
1, X 1 P X 1, X 1 1, X 1 P X 1, X 1 1P X 1 P X 1P X 1

3.3 离散事件和离散型随机过程
E X i p 1 p 2 p 1
E X i p 1 p 1
2

Var X i E X i EX i 1 2 p 1
2 2

2
E Yn E
n2 p 1

Ft1 ,,tn x1 ,, xn P X t1 x1 ,, X t n xn


称为随机过程X t , t T n维分布函数 的 .
4 Ft1 ,,tn x1 , , xn : n 1, t1 , , t n T
0
称为X t , t T 的有穷维分布函数族.
3.3 离散事件和离散型随机过程
Y Y P X t 1 P t 1 t 3

随机过程课件

随机过程课件

解得实值连续函数
x( t ) = x0e , t ≥ 0.
2)随机性方法 设时刻t 细菌数为随机变量X(t),设(t, t+Δt)内 增加的细菌数与Δt 有关而与t无关, 在X(t)=x条件下,X(t+Δt)变为x+1个的概率为
λt
P{X ( t + ∆t ) = x + 1 X ( t ) = x} = λx∆t + o(∆t )
X(t) p
2cost 2/3
-2cost 1/3
特别
X(0) 2
p 2/3
1
-2 1/3
X(
π
4 p
)
2
− 2
2/3
1/3
2) 分析
2
x(t,ω1)=2cost
-1
− 2
x(t,ω2)=-2cost

(X(0),X(π/4)) ( −2,− 2 ) ( 2, 2 )
p
1/3
2/3
服从二维两点分布 问题: 随机变量X(0)和X(π/4)是否相互独立?
称F为XT 的有限维分布函数族.
XT的任意有 限维分布函 数的全体构 成的集合
定义3 过程{ X ( t ), t ∈ T } 的n 维特征函数定义为
φ (t1 , t 2 ,L , t n ; θ1 ,θ 2 ,L ,θ n )
= E {e
i [θ 1 X ( t 1 ) + L+θ n X ( t n )]
Tt1 ,L , Tt n 相互独立.
3) 独立增量过程
, 对任一正整数n及任意 t i ∈ T , t1 < t 2 < L < t n 随 机变量

《概率论与数理统计》课件-随机过程

《概率论与数理统计》课件-随机过程

06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 功率谱密度的概念
●工程实际中, 能量有限的信号x(t)称为 能量型信号, 可以定义它的总能量:
x2 (t)dt
当时间趋于无穷时,它的平均功率趋于零.
●另一类信号x(t),其能量是无限的,但平均功率有限.即
P lim 1 T x2(t)dt
T 2T T
称为 功率型信号.周期信号就是常见的功率信号.
说明信号的总能量等于能谱密度在全频域上的积分. 右式也是总能量的谱表达式.
由于实际中很多信号(函数)的总能量是无限的, 不满足绝对可积的条件,所以通常研究x(t)在 (-∞,+ ∞)上的平均功率,即
lim 1 T x2 (t)dt
T 2T T
为了能利用Fouier变换给出平均功率的谱表达式, 构造一个截尾函数:
§4 平稳过程的功率谱密度
● 之前对平稳过程的讨论都是在进行的. 在时域上描述了平稳过程的统计特征.
● 但对许多物理和工程领域中问题,不仅要研究其 在时域上的特性,还要研究其在频域内的特征,即 从频率的角度来研究随机过程的统计特征. 例如对信号处理、线性系统分析以及随机振动的 研究. 其中广泛采用的方法是频率域分析方法.
T e jt X (t)dt
T
称 lim E[ 1 T X 2 (t) dt] 为过程的平均功率.
T 2T T
定理1 设{X(t), -∞<t<+ ∞}是平稳过程,若RX(τ) 绝对可积,则有
S X
()
lim
T t
T
lim 1
T 2T
E[ FX (,T ) 2 ]=

S(x )
lim 1 T 2T
Fx (,T )
2
lim
T
1 2T
T
2
e jt x(t)dt
T
为确定性信号x(t)在处的功率谱密度
定义 设{X(t), -∞<t<+ ∞}是平稳过程,则称
lim
1E
T
2
e jt X (t)dt
T 2T
T
为平稳过程的功率谱密度. 简称谱密度. 并记
FX (,T )
n
f (z)dz 2 j Res[ f (z), zk ]
第一式说明功率谱密度曲线下的总面积(平均功率) 等于平稳过程的均方值.
第二式说明功率谱密度的零频率分量等于相关函数 曲线下的总面积.
谱密度的计算
●广义积分-可利用复变函数中的留数定理 ● 利用已知的基本公式和Fourier变换的性质等
● 利用已知的一些性质计算,P97
留数定理 函数f (z)在区域D内除有限个孤立奇点 z1, z2 ,..., zn外处处解析,C是D内包围诸奇点的一条 正向简单闭曲线,则
特别 对实平稳过程, 有RX ( ) RX ( )
S(X )
e
j
RX
(
)d
e
j
RX
(
)d
e
j(
)
RX
(
)d
S(X -) S(X -) S(X )
性质2 说明
1
RX (0) 2
S(X )d
S(X 0)
RX ( )d
平均功率
以上是 0, 0时,两对特殊的Fourier变换.
SX ()
e
j
RX
(
)d
,
RX
(
)
1
2
e
j
S
X
(
)d
- -
称上式为维纳-辛锌公式
2. 谱密度的性质和计算
性质1 平稳过程的谱密度是非负实函数. 特别 实平稳过程的谱密度是非负实偶函数.
证明
S X
()
lim
T
1 2T
E
T
2
e jt X (t)dt
T
SX ()为非负实函数.
T x2 (t)dt lim 1
T
T 4T
2
Fx (,T ) d
1
2
1
lim
T 2T
2
Fx (,T ) d
1
lim
1
2
T e jt x(t)dt d
2 T 2T T

S(x )
1 lim T 2T
Fx (,T
)
2
lim
T
1 2T
T
2
e jt x(t)dt
T
为(x t)在处的功率谱密度
设有确定性信号x(t)(时间函数)在区间(-∞,+ ∞)上绝对 可积,则x(t)的Fouier变换存在 (或说x(t)具有频谱).
Fx ()
x(t)e jt dt
逆变换
x(t)
1
2
Fx ()e jtd
记 W x2(t)dt 为x(t)在(-,+)上的总能量

W
x2 (t)dt
● 频率域分析方法的重要工具是 Fouier变换, 它可以确定时域与频域的转换关系.
●为了在频域上描述平稳过程的统计特征,需要 研究相关函数的谱分析。为此要引入谱密度. 谱密度是在频域内研究平稳过程的重要指标. 数学上 它是相关函数的Fouier变换,它的物理 意义是功率谱密度.
● 时域分析法与频域分析法相互联系,且各有优 点,构成了研究平稳过程的两个重要分支.

xT
(t
)
x(t 0
)
t T t T
则 xT (t)绝对可积,存在Fourier变换以及逆变换
Fx (,T )
e
jt xT
(t)dt
T e jt x(t)dt
T
由Parseval等式
xT2
(t)dt
T x2 (t)dt 1
T
2
Fx (,T )
2
d
1 lim T 2T
(u)du
e jwuRT (u)du
X
(令
RXT
(
)
( 1
2T
)RX
(
)
0
2T ,
2T

lim
RXT
(
)
RX
(
)
)
lim T
e R jwu T (u)du
X
e
jwu
RX
(u)du
SX
()

SX
()
lim
T
1 2T
E
T
2
e jt X (t)dt
T
注意:从上面的定理看出,若平稳过程{X(t), t∈T}的 相关函数RX(τ)绝对可积,则相关函数的傅里叶变换和 逆变换存在,即有
+ -
R(X u)e-
ju
du

1E
T
2
e jt X (t)dt
2T T
1 E[ T e js X (s)ds T e jt X (t)dt]
2T T
T
1
2T
T T
T T
e
R j ( t s ) X
(t
s)dsdt
(令
u t s
v
t
) s
2T 2T
(1
u 2T
)e
R jwu X
x(t)[
1
2
Fx ()e jtd]dt
1
2
[Fx ()
x(t)e jtdt]d
1
2
2
Fx () d

x2 (t)dt 1
2
2
Fx () d
( Parseval等式)

x2(t)dt 1
2
2
Fx () d
左边为x(t)在(-,+)上的总能量
右边的被积式 Fx () 2 称为信号x(t)的能谱密度.
相关文档
最新文档