球的组合体
第5讲 竞赛和自主招生专题——立体几何中与球关于的问题

第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题(1)多面体内接于球:若球O 是多面体 的外接球,则球O 的球心O 在多面体 的各个表面上的射影为该表面多边形的外心.根据这个性质我们可以确定球心的位置,结合截面法求解相应的量.(2)多面体的内切球:若球O 内切多面体 ,则球O 的球心到多面体 各个表面的距离均为球半径.根据这个性质,结合等体积法求解内切球的半径.(3)球O 被平面 相截,所得的截面为圆截面,设截面圆的圆心为1O ,则1OO 平面 . (4)若多面体是通过长方体或正方体切割所得,则求其外接球的半径可以等价转化为求长方体或正方体的外接球半径.例1(1)如图,一个四面体棱长分别为6,6,6,6,6,9, 则其外接球的半径为______________.(2)如图,已知空间一球,SC 为其直径且||4,,SC A B =为球上两点,满足:||30AB ASC BSC ︒=∠=∠=,则四面体S ABC -的体积为___________.AP(3)在四面体ABCD 中,1AD DB AC CB ====,则四面体ABCD 体积最大时,它的外接球半径R =.(4)(2018·浙江预赛)在四面体PABC 中,PA BC PB AC PC AB ======,则该四面体外接球的半径为_________.B例2 (有关几何体中球的内切问题)(1)四棱锥P ABCD -中,底面ABCD 是正方形,边长为,,a PD a PA PC ===,在这个四棱锥中放入一个球,则球的最大半径为(2)在边长为1的正方体C 内作一个内切大球1O ,再在C 内作一个小球2O ,使它与大球1O 外切,同时与正方体的三个面都相切,则球2O 的表面积为___________.(3)在正三棱锥P ABC 中,有一半球,其底面与正三棱锥的底面重合,正三棱锥的三个侧面都和半球相切. 如果半球的半径等于1,则正三棱锥的体积最小时,正三棱锥的高等于 _______________.(4)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为_______________二.有关球与球的组合体(抓住球心构建的多面体)例3(1)若4个半径为1的球两两外切,则这4个球的外切正四面体的棱长为__________(2)桌面上有3个半径为2017的球两两相切,在其上方空隙里放入一个球,使其顶点(最高点)与3个球的顶点(最高点)在同一平面内,则该球的半径是___________.(3)若半径为R 的球的内部装有4个相同半径为r 的小球,则小球半径r 的最大可能值是________.(4)将3个半径为1的球和一个半径为1-的球叠为两层放在桌面上,上层只放一个较小的球,四个球两两相切,那么上层小球的最高点到桌面的距离是___________.O2第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题(练习) 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题相关练习1.外接球的半径为1的正四面体的棱长为________________2.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .3.在四面体ABCD 中,AB BCD ⊥平面,BCD △是边长为3的等边三角形。
高中数学常见结论

高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。
即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。
2021年新高考数学名校押题精选20 空间几何体(选择与填空)(原卷版)

精选20 空间几何体(选择与填空)1.与球有关的组合体问题常见内切和外接两种.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于长方体,长方体的顶点均在球面上,长方体的体对角线长等于球的直径.2.在解决几何体的外接球的问题,关键在于求得球心和球半径,在求解时,常运用补全几何体和依据球的截面的性质:利用球的半径R 、截面圆的半径r 及球心到截面的距离d 三者的关系222R r d =+求解. 3.求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.一、单选题1.已知正四棱锥P ABCD -的底面正方形的中心为O ,若高PO =,45PAO ∠=︒,则该四棱锥的表面积是A .4+ B .4+C .4+D .4+2.若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为A .B .CD 3.若一个圆锥的母线长为4,且其侧面积为其轴截面面积的4倍,则该圆锥的高为A .πB .32C .23D .124.已知各顶点都在同一球面上的正四棱柱的底面边长为a ,高为h ,球的体积为,则这个正四棱柱的侧面积的最大值为A .B .C .D .5.已知球O 是正四面体SABC 的外接球,E 为线段BC 的中点,过点E 的平面α与球O 形成的截面面积的最小值为6π,则正四面体SABC 的体积为A .B .C .D .6.如图,某沙漏由上、下两个圆锥组成,每个圆锥的底面直径和高均为12cm ,现有体积为372cm π的细沙全部漏入下圆锥后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此锥形沙堆的高度为A .3cmB .6cmC .8cmD .9cm7.在三棱锥A BCD -中,侧棱AB ,AC ,AD 两两垂直,ABC 、ACD 、ABD 的面积分别为1、32、3,则三棱锥A BCD -的外接球的表面积为 A .14πB .72πC .494πD8.《算数书》是我国现存最早的系统性数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.用该术可求得圆周率π的近似值.现用该术求得π的近似值,并计算得一个底面直径和母线长相等的圆锥的表面积的近似值为27,则该圆锥体积的近似值为A B .3C .D .99.如图,在透明塑料制成的长方体1111ABCD A B C D -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11A D 始终与水面EFGH 平行;④当1E AA ∈时,AE BF +是定值.其中正确说法的是 A .②③④ B .①②④ C .①③④D .①②③10.已知边长为3的正ABC 的顶点和点D 都在球O 的球面上.若6AD =,且AD ⊥平面ABC ,则球O 的表面积为A .B .48πC .24πD .12π11.在三楼锥P ABC -中,D 为BC 的中点,PA ⊥底面ABC ,AB AC ⊥,4AB =,2AC =,若PD 与底面ABC 所成角为45°,则三棱锥P ABC -的体积为A B .3C .D 12.中国南北朝时期数学家、天文学家祖冲之、祖暅父子总结了魏晋时期著名数学家刘徽的有关工作,提出“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.详细点说就是,界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖暅原理.一个上底面边长为1,下底面边长为2,高为“幂势既同”,则该不规则几何体的体积为A .16B .C .D .2113.一个三角形可分为以内切圆半径为高,以原三角形三条边为底的三个三角形.类比此方法,若一个三棱锥的体积2V =,表面积3S =,则该三棱锥内切球的表面积为 A .81π B .16π C .323πD .169π14.如图,四边形ABCD 是正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2AB =,60AFC ∠=,则多面体ABCDEF 的体积为A .43B .3C .3D .16315.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P ABC 的四个顶点都在球O 的球面上,则球O 的表面积为A .8πB .12πC .20πD .24π16.将边长为1的正方形ABCD 沿对角线AC 折起,使ABD △为正三角形,则三棱锥A BCD -的体积为A .16 B .112C .12D .1217.已知四面体P ABC -中, 4PA =,AC =PB BC ==PA ⊥平面PBC ,则四面体P ABC -的内切球半径与外接球半径的比A B .8C .16D .818.已知正三棱柱111ABC A B C -的六个顶点均在球O 的球面上,1O 为上底面ABC 的外接圆,若1O 的面积为4π,且侧面矩形11AA B B 的面积为,则球O 的体积为A .64πB .48πC .36πD .32π19.为了给数学家帕西奥利的《神奇的比例》画插图,列奥纳多·达·芬奇给他绘制了一些多面体,如图的多面体就是其中之一.它是由一个正方体沿着各棱的中点截去八个三棱锥后剩下的部分,这个多面体的各棱长均为2,则该多面体外接球的体积等于A .16πB .8πC .16π3D .32π320.沙漏也叫沙钟,是一种测量时间的装置,基本模型可以看成是由两个圆锥组成,圆锥的底面直径和高均为a ,细沙全部在上部时,其高度为圆锥高度的23,当细沙全部漏入下部的圆锥后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此沙堆的侧面积与细沙全都在上部时的圆锥侧面积之比为A .3 B .6C D 21.水平桌面α上放有4个半径均为2R 的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R 的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是 A .2R B .3RC .(3R +D .(2R22.位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为(3R R π为地球半径),那么x 等于 A .30 B .45 C .60D .7523.已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于A .818πB .812πC .1218πD .1212π24.在棱长为1111ABCD A B C D -中,E 、F 、G 分别为棱AB 、AD 、11D C 的中点,则以下结论正确的为A .1-=D DEF VB .平面1D EF 与正方体1111ABCD A BCD -的交点轨迹长度为6+C .//DG 平面1D EFD .正方体1111ABCD A B C D -外接球表面积为6π25.蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱2SA =,则该蹴鞠的表面积为A .6πB .12πC .32πD .36π26.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为A .3 B .3 C .3 D .3327.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为A .2350cm 3πB .2700cm 3πC .2350cm πD .2350035cm π28.在四棱锥P ABCD -中,底面ABCD 为正方形,2AB =,PAD △为等边三角形,线段BC 的中点为E .若1PE =,则此四棱锥的外接球的表面积为A .82πB .283πC .9πD .282127π 29.在棱长为22的正方体1111ABCD A B C D -中,E 、F 分别为棱AB 、AD 的中点,则平面1D EF 与正方体1111ABCD A B C D -外接球的交点轨迹长度为 A .23πB .13πC .4133πD .4π30.运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于.A .8πB .16πC .24πD .32π二、多选题31.如图,在棱长为1的正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,则下列判断中正确的是A .三棱锥1A D PC -的体积为112B .//DP 面11AB DC .平面1PBD 与平面1ACD 所成二面角为90︒ D .异面直线1A P 与1AD 所成角的范围是,32ππ⎡⎤⎢⎥⎣⎦32.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱CC 1上的动点(点P 不与点C ,C 1重合),过点P 作平面α分别与棱BC ,CD 交于M ,N 两点,若CP =CM =CN ,则下列说法正确的是A .A 1C ⊥平面αB .存在点P ,使得AC 1∥平面αC .存在点P ,使得点A 1到平面α的距离为53D .用过点P ,M ,D 1的平面去截正方体,得到的截面一定是梯形 33.如图四棱锥P ﹣ABCD 中,底面ABCD 为菱形,∠BAD =23π,P A =AC =2,P A ⊥平面ABCD ,点E 为PD 的中点,则下列结论正确的是A .四棱锥P ﹣ABCD 的外接球体积为323πB .异面直线AC 与PD 所成角的余弦值为C .PB ∥平面ACE D .BD ⊥平面P AC34.在直角梯形ABCD 中,2AD CD ==,//AB CD ,30ABC ∠=︒,点M 为直线AB 上一点,且2AM =,将该直角梯形沿AC 折叠成三棱锥D ABC -,则下列说法正确的是 A .存在位置D ,使得BD AC ⊥B .在折叠的过程中,始终有DM AC ⊥ C .三棱锥D ABC -体积最大值为23D .当三棱锥D ABC -体积最大时,216BD =+35.如图,在长方体1111ABCD A B C D -中,14,2AB BC BB ===,E 、F 分别为棱AB 、11A D 的中点,则下列说法中正确的有A .1DB CE ⊥B .三棱锥D CEF -的体积为83C .若P 是棱11CD 上一点,且11D P =,则E 、C 、P 、F 四点共面 D .平面CEF 截该长方体所得的截面为五边形36.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中错误的是A .AC AF ⊥B .//EF 平面ABCDC .三棱锥A BEF -的体积为定值D .AEF 的面积与BEF 的面积相等37.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示,将棱长为3a的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为a 的截角四面体,则下列说法正确的是A .该截角四面体的表面积为2B .该截角四面体的体积为312a C .该截角四面体的外接球表面积为2112a π D .该截角四面体中,二面角A BC D --的余弦值为1338.如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,90DAB CBD ∠=∠=︒,60ADB BDC ∠=∠=︒,E 为PC 中点,F 在CD 上,30FBC ∠=︒,22PD AD ==,则下列结论正确的是A .//BE 平面PADB .PB 与平面ABCD 所成角为30C .四面体D BEF -的体积为3D .平面PAB ⊥平面PAD39.如图,在棱长为1的正方体1111ABCD A B C D -中,P ,M ,N 分别为棱1CC ,CB ,CD 上的动点(点P 不与点C ,1C 重合),若CP CM CN ==,则下列说法正确的是A.存在点P,使得点1A到平面PMN的距离为4 3B.用过P,M,1D三点的平面去截正方体,得到的截面一定是梯形C.1//BD平面PMND.用平行于平面PMN的平面α去截正方体,得到的截面为六边形时,该六边形周长一定为40.如图所示,几何体是由两个全等的直四棱柱组合而成的,且前后、左右、上下均对称,两个四棱柱的侧棱互相垂直,四棱柱的底面是边长为2的正方形,该几何体外接球的体积为,设两个直四棱柱交叉部分为几何体r,则A.几何体r为四棱锥B.几何体r的各侧面为全等的正三角形C.直四棱柱的高为4D.几何体r内切球的体积为4π3三、填空题41.给出下列命题:①点P是△ABC所在平面外一点,PO⊥平面ABC于点O,若PA PB PC==,则O是△ABC的外心;②两条直线和一个平面成等角,则这两条直线平行;③三个平面两两相交,则三条交线一定交于一点;④三个平面最多将空间分成8部分;⑤正方体1111ABCD A B C D -中,直线AC 与1BC 所成角为60︒. 其中正确的命题有____________.(填序号)42.如图所示,正方体ABCD A B C D -''''的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线E ,F 的平面分别与棱BB '、'DD 交于M ,N ,设BM x =,[0x ∈,1],给出以下四个命题:(1)平面MENF ⊥平面BDD B ''; (2)当且仅当12x =时,四边形MENF 的面积最小; (3)四边形MENF 周长()L f x =,[0x ∈,1],则1()2y f x =+是偶函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中真命题的序号为____________.43.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为4,则该圆锥的体积为____________.44.如图,的正方体ABCD A B C D ''''-中,点E 、F 、G 分别是棱A B ''、B C '、CD 的中点,则由点E 、F 、G 确定的平面截正方体所得的截面多边形的面积等于____________.45.球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的截面面积为π,则球的表面积为____________.46.由正三棱锥S ABC -截得的三棱台111ABC A B C -的各顶点都在球O 的球面上,若6AB =,三棱台111ABC A B C -的高为2,且球心O 在平面ABC 与平面111A B C 之间(不在两平面上),则11A B 的取值范围为____________.47.如图所示,一个圆锥的侧面展开图为以A 为圆心,半径长为2的半圆,点D 、M 在BC 上,且BD 的长度为3π,BM 的长度为π,则在该圆锥中,点M 到平面ABD 的距离为____________.48.如图,多面体OABCD ,2AB CD ==,AD BC ==AC BD ==且OA ,OB ,OC 两两垂直,给出下列5个结论:①三棱锥O ABC -的体积是定值;②球面经过点A 、B 、C 、D ③直线//OB 平面ACD ; ④直线AD 与OB 所成角是60︒; ⑤二面角A OC D --等于30. 其中正确的结论是____________.49.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为____________.50.在三棱锥D ABC -中,ABC 是以A ∠为直角的等腰直角三角形,DBC △是边长为2的等边三角形,二面角A BC D --的余弦值为-,则三棱锥D ABC -的外接球的表面积为____________.51.已知球O 的半径为2,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为____________.52.已知菱形ABCD 的边长为4,对角线4BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120︒,则三棱锥A BCD -的外接球的表面积为____________.53.三棱锥A BCD -的一条棱长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为____________.54.四面体ABCD 中,90ABC BCD ∠=∠=︒,2AB BC CD ===,AD =四面体的外接球表面积为____________.55.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,如图所示.因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球.现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为____________2cm .56.已知正方体1111ABCD A B C D -的体积为27,点E ,F 分别是线段BC ,1CC 的中点,点G 在四边形11BCC B 内运动(含边界),若直线1A G 与平面AEF 无交点,则正方体的外接球表面积为____________,线段CG 的取值范围为____________.57.如图,在ABC 中,8,12AB BC AC =+= ,分别取三边的中点,,D E F ,将,,BDE ADF CEF 分别沿三条中位线折起,使得,,A B C 重合于点P ,则当三棱锥P DEF -的外接球的体积最小时,其外接球的半径为____________,三棱锥P DEF -的体积为____________.58.已知四面体ABCD 的棱长均为,E F 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为____________,圆'O 的面积为____________.59.某电视台鉴宝栏目迎来一件清代老银方斗型挂件(图1),古代常用来作为女方陪嫁.该挂件佩戴起来非常漂亮,寓意“斗出斗入,日进万金”之意.其结构由长方体与正四棱台组合而成.图2是与该挂件结构相同的几何体,且AB =MN NF ==,2BF =,K为BC 上一点,且:2:1BK KC =,Z 为PQ 上一点.(1)若DK MZ ⊥,则QZZP的值为____________; (2)几何体EFGH MNPQ -外接球的体积为____________.60.已知三棱锥S ABC -的四个顶点都在球O 的球面上,且,,SA SB SC 两两垂直,3SA =,4SB =,5SC =,则该三棱锥的体积为____________,球O 的表面积为____________.。
1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征

【提升总结】 如何描述圆锥的几何结构特征? (1)底面是圆面. (2)侧面展开图是以母线长为半径的扇形面. (3)母线相交于顶点. (4)平行于底面的截面是与底面平行且半径不相等 的圆面. (5)轴截面是等腰三角形面.
探究点3 圆台的结构特征
圆柱、圆锥可以看作是由矩 形或三角形绕其一边所在直 线旋转而成,圆台是否也可 看成是某图形绕轴旋转而成?
经理杨卫勇等嘉宾出席活动,,第二条 本章程适用于郑州轨道工程职业学院普通全日制专科层次招生工作,陕西兵马俑
大雁塔 华清池陕西羊肉泡馍
上海旗袍秀陕西与上
海师生分别进行了课堂展示,课堂形式多样,创新性强,效果佳,史松作词、钟新能作曲的《母亲之歌》跃然唱响,余声绕梁幸福家园关爱母系唱响母亲之歌大型公益活动首次为地球村生活的50后、
2.由简单几何体截去或者挖出一部分组成,如图.
但实际上,外教一直都是我国教育行业稀缺的人才资源,具有外教资格、拥有纯正英语口语、获得工作签证的合法外教数量十分稀缺,远远不能满足行业需求,尤其是在三四线及开外的城市,外教资源
和资质问题更加突出,其次是连接教育的模式、环境和阶段,E PLUS北外壹佳英语为学员打造了线上与线下、教师主导与自主学习、实时与非实时、短期与长期、一对一与一对多等相结合的模式,创
(5)轴截面是矩形面. 圆柱: 以矩形的一边所在直线为旋转轴,其余三边旋转 形成的面所围成的旋转体叫做圆柱.
轴:旋转轴叫做圆柱的轴;
底面
底面:垂直于轴的边
侧面
旋转而成的圆面叫做
圆柱的底面;
侧面:平行于轴的边
母线
旋转而成的曲面叫做
轴
底面
圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都
叫做圆柱侧面的母线的分类:
正方体与球的组合体

06
组合体的扩展思考
其他几何形状的组合
01
02
03
圆柱与圆锥的组合
形式美
运用对称、平衡、比例等美学原则, 可以赋予组合体和谐、优美的外观。
感谢观看
THANKS
几何形状的特性
对称性
正方体具有高度的对称性,其对称轴有六个,分别是经过相 对两面的中心的三条直线。
稳定性
由于正方体的结构特点,它是一种非常稳定的几何体,不易 发生形变。
空间位置关系
组合关系
正方体可以与其他几何体组合形成复杂的组合体。
运动关系
正方体可以在空间中做平移、旋转等运动。
02
球的基本特性
3D打印正方体与球的组合体的步骤包括设计模型、切片、打印和后处理等。设计软件可以使用专业的 CAD软件,如SolidWorks、AutoCAD等,也可以使用在线的3D模型设计平台。
手工制作
手工制作正方体与球的组合体需要一 定的手工技巧和材料。可以使用木材、 塑料、纸张等材料,通过切割、折叠、 粘合等步骤制作出组合体。
定义与性质
定义
球是三维空间中,所有与固定点等距的点的集合。
性质
球是中心对称和旋转对称的几何体,其表面是连续且光滑的。
几何形状的特性
1 2
体积
球的体积公式为 V = (4/3)πr³,其中 r 是球的半 径。
表面积
球的表面积公式为 A = 4πr², 其中 r 是球的间距离最短的点,即球心。
球的组合体问题教师版

题型1:球的截面问题说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.1.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π 【答案】B2.在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积. 解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R . ∵ππ4922=⋅B O ,∴)(72cm B O = 同理ππ40021=⋅A O ,∴)(201cm A O = 设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R , ∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.3.球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=,∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .4.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A题型2:球与几何体的切、接问题①. 正方体棱长为a ,则其内切球半径r 内切= ;棱切球半径r 外接= ;外接球半径r 外接=②.长方体长宽高分别为c b a ,,,则其外接球半径r 外接=_________③.正四面体棱长为a ,则其内切球半径r 内切=_________;外接球半径r 外接=_________④. 求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .CBADSOE设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=, R R OB SO 33360tan =⋅=︒⋅=,∴334R V π=球,3222R R R V ππ=⋅=柱, 3233)3(31R R R V ππ=⋅⋅=锥, ∴964∶∶∶∶锥柱球=V V V . 1.设长方体的长、宽、高分别为a a a ,,2,其顶点都在一个球面上,则该球的表面积为 (A )23aπ(B )26aπ(C )212aπ(D ) 224aπ【答案】B【解析】本题考查长方体的外接球问题.222,46.R R S R a ππ∴∴==练1.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别 为1,2,3,则此球的表面积为 .练2.,则其外接球的表面积是 .:练3.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A .2 B .C .132D .【答案】C2.已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.3.过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面B C D 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 4. 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.5.【2012高考新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6 ()B ()C 3 ()D 2【答案】A【解析】ABC ∆的外接圆的半径3r =,点O 到面ABC 的距离3d ==,SC 为球O 的直径⇒点S 到面ABC 的距离为23d =此棱锥的体积为112336ABC V S d ∆=⨯==另:123ABC V S R ∆<⨯=排除,,B C D ,选A. 6.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD 的体积为,底面边长为,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π7.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD-的体积为 。
球与多面体的组合体问题

问题一:多面体与球的组合体问题 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==; 二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==; 三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则13A O R '==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为() A .22 B .1 C .212+ D .2【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A .2πB .4πC .8πD .16π1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A. B.4π C. D.【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+. 例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,3SE a CE ==则有2222233a R r a R r CE +=-=,=,解得:66,.R r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.C.3πD.2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125B.π9125C.π6125D.π3125例8三棱锥A BCD -中,AB CD ====AC AD BD BC ==A BCD -的外接球的半径是.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R的球内放入大小相等的4个小球,则小球半径r的最大值为()A.(-1)RB.(-2)RC.RD.R四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.l03cm B.10cmC.102cm D.30cm五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A .5πB .12πC .20πD .8π 【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.πB.πC.πD.π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.【针对训练】1.【2016届云南省玉溪市一中高三第四次月考】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒则此球的表面积等于()A .952πB .π20C .π8D .352π 2.【2016届河北省衡水二中高三上学期期中】已知四面体P -ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC,23AC =,若四面体P -ABC 的体积为32,则该球的体积为() A .3πB .433C .83πD .8333.【2016届河北省衡水二中高三上学期期中考试】某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A .4πB .283πC .443πD .20π4.【2016届福建省三明一中高三上第二次月考】如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为()A .2B .22C .2D .1 5.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为()(A )π(B )2π(C )3π(D )4π6.【河北省“五个一名校联盟”2015届高三教学质量监测(一)】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )A. B. C. D.7.【2016届贵州省贵阳市六中高三元月月考】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为.8.【2016届陕西省渭南市白水中学高三上第三次月考】一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是.9.【2016届重庆市巴蜀中学高三上学期一诊模拟】已知S A B C ,,,都是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,2SA =,3AB =,4BC =,则球O 的表面积等于______.10.【2016届黑龙江省哈尔滨师大附中高三12月考】利用一个球体毛坯切削后得到一个四棱锥P ABCD -,其中底面四边形是边长为1的正方形,1PA =,且PA ⊥平面ABCD ,则球体毛坯体积的最小值应为.11.【2016届河北省邯郸市一中高三一轮收官考试】如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为.12.正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为.13.已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.14.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是?,则这个三棱柱的体积为.15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为.。
高中三年级下学期数学《球的组合体》教学设计

《球的组合体》教学设计
一、教学目标
1. 掌握与棱柱有关的外接球问题
2. 掌握与特殊棱锥有关的外接球问题
3. 掌握球内接简单几何体问题 二、教学重点、难点
重点:球的组合体问题确定球心的方法与半径长度的求法 难点:球的组合体问题综合应用 三、教学过程 环节一:棱柱与球 棱长为a 的正方体,
第一个球内切于正方体各个面,则这个球的半径为12
a ;
第二个球与正方体各条棱相切,则这个球的半径为2a ;
.
【16年全国Ⅲ卷第10题】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则
V 的最大值是(B )
1
(A)π4 (B)92π (C)6π (D)323π
环节二:棱锥与球
棱长为a 的正四面体, 6;6; 与各条棱都相切的球的半径为
2
4
a .
已知四面体P ABC -中,PA PBC ⊥,4,27,23PA AC PB BC ====,则四面体P ABC -的外接球表面积为 32π
.
环节三:球内接几何体
【20年全国I 卷第10题】已知,,A B C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆,若1O 的面积为π4,1AB BC AC OO ===,则球O 的表面积为( A )
(A)64π (B)48π
A
C
B
P
(C)36π(D)32π。
2020新课标高考数学讲义:立体几何含解析

球
S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).
圆柱、圆锥、圆台、球、简单组合体的结构特征 课件

【解析】 (1)几何体①是由圆锥和圆台组合而成的.可旋转如 下图(a)180°得到几何体①.
(2)几何体②是由一个圆台,从上而下挖去一个圆锥而得到,且 圆锥的顶点恰为圆台底面圆的圆心.
可旋转如下图(b)360°得到几何体②.
(3)几何体③是由一个四棱锥与一个四棱柱组合而成,且四棱锥 的底面与四棱柱底面相同.
该截面所成的角是 60°,则该截面的面积是( )
A.π
B.2π
C.3π D.2 3π
解析:因为 OA 与该截面所成的角是 60°,所以截面圆半径 r
=12OA=1,故截面的面积 S=π. 答案:A
3.正方形 ABCD 绕对角线 AC 所在直线旋转一周所得组合体 的结构特征是________.
解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体
类型三 旋转体的侧面展开图 [例 3]
如图,底面半径为 1,高为 2 的圆柱,在 A 点有一只蚂蚁,现 在这只蚂蚁要围绕圆柱由 A 点爬到 B 点,问蚂蚁爬行的最短距离是 多少?
【解析】
把圆柱的侧面沿 AB 剪开,然后展开成为平面图形——矩形, 如图所示,连接 AB′,则 AB′即为蚂蚁爬行的最短距离.
到什么位置,不垂直于 轴的边都叫作圆柱侧
面的母线
图中圆柱表示为圆柱 O′O
圆锥
轴:旋转轴叫作圆锥的
轴;底面:垂直于轴的
以直角三角形的一条 直角边所在直线为旋 转轴,其余两边旋转形 成的面所围成的旋转
体叫作圆锥
边旋转而成的圆面叫 作圆锥的底面;侧面: 直角三角形的斜边旋 转而成的曲面叫作圆 锥的侧面;母线:无论 旋转到什么位置,不垂
【解析】 (1)不正确,因为当直角三角形绕斜边所在直线旋转 得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;
组合体的计算公式

组合体的计算公式组合体是由两个或更多的立体图形组合而成的新图形。
计算组合体的体积、表面积等公式可以根据组合体的形状来确定。
下面将详细介绍几种常见的组合体及其计算公式。
1.简单组合体计算公式:-平行长方体的体积公式:V=l×w×h(其中,l为长度,w为宽度,h为高度)-正方体的体积公式:V=a³(其中,a为边长)-三棱柱的体积公式:V=Bh(其中,B为底面积,h为高度)-三棱锥的体积公式:V=(B×h)/3(其中,B为底面积,h为高度)2.组合体公式:-直接相加:当组合体是由若干个简单的图形直接相加构成时,可以通过计算各个图形的体积或表面积,然后相加得到组合体的体积或表面积。
3.圆柱体和球的组合体:-圆柱体与球的组合体的体积公式:V=V1±V2(其中,V1为圆柱体的体积,V2为球的体积)-圆柱体与球的组合体的表面积公式:S=S1±S2(其中,S1为圆柱体的表面积,S2为球的表面积)4.圆锥体和圆柱体的组合体:-圆锥体和圆柱体的组合体的体积公式:V=V1±V2(其中,V1为圆锥体的体积,V2为圆柱体的体积)-圆锥体和圆柱体的组合体的表面积公式:S=S1±S2(其中,S1为圆锥体的表面积,S2为圆柱体的表面积)5.棱柱和棱锥的组合体:-棱柱和棱锥的组合体的体积公式:V=V1±V2(其中,V1为棱柱的体积,V2为棱锥的体积)-棱柱和棱锥的组合体的表面积公式:S=S1±S2(其中,S1为棱柱的表面积,S2为棱锥的表面积)这些公式适用于不同的组合体,具体使用哪个公式需要根据组合体的形状和构成来确定。
同时,对于复杂的组合体,可以通过将其分解为简单的组合体,然后使用相应的公式进行计算。
9[1].5_柱、锥、球及其简单组合体(1)
![9[1].5_柱、锥、球及其简单组合体(1)](https://img.taocdn.com/s3/m/afd16a19b7360b4c2e3f642e.png)
动脑思考 探索新知
正棱柱的体积计算公式为
V正棱柱 S底h 其中, S底 表示正棱锥的底面的面积, h 是正棱锥的高.
9.5 柱、锥、球及简单组合体
巩固知识 典型例题
例 1 已知一个正三棱柱的底面边长为4 cm,高为5 cm,求这个正三 棱柱的侧面积和体积.
解 正三棱锥的侧面积为 S侧=ch=3×4×5 = 60( cm2).
创设情境 兴趣导入
准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱锥容器中装满沙 子,然后倒入正三棱柱形状的容器中,发现:连续倒三次正好将正三棱柱容 器装满.
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
实验表明,对于同底等高的棱锥与棱柱,棱锥的体积是棱柱体积 的三分之一.即
V正棱锥
1 3
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
上图所示的四个多面体都是棱柱.
表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短
横线隔开,如图 (2)所示的棱柱,可以记作棱柱 ABCD A1B1C1D1 或简记作
棱柱 AC1
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
经常以棱柱底面多边形的边数来命名棱柱,如图9−57所示的棱柱依次为三 棱柱、四棱柱、五棱柱.
第九章 立体几何
9.5 柱、锥、球及简单组合体
创设情境 兴趣导入
观察上图所示的多面体,可以发现它们具如下特征: (1)有两个面互相平行,其余各面都是四边形; (2)每相邻两个四边形的公共边互相平行.
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体 叫做棱柱,互相平行的两个面,叫做棱柱的底面,其余各面叫做棱柱的 侧面.相邻两个侧面的公共边叫做棱柱的侧棱.两个底面间的距离, 叫做棱柱的高.
球的组合体问题1(球的组合体问题最全分类和解法研究)

球的组合体研究(球中的截面问题 及 球与其它几何体的切接问题)王宪良[学习目标]1.学习球与其它几何体切接的直观图的画法。
2.掌握球的截面的性质;3.理解掌握球的切接题目的类型和解法;4.培养空间想象能力,能根据题意正确画出组合体的直观图。
一、基础知识与概念: 1.有关定义(1)球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.空间中到定点的距离等于定长的点的集合(轨迹)叫球面,(2)外接球:若一个多面体的各个顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 如图(3)内切球:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.如图(4)大圆:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等(它是截面圆中最大的圆); (5)小圆:不过球心的截面所截得的圆叫小圆. 2.外接球的有关知识与方法 (1)性质:性质1:球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 性质2:经过小圆的直径与且小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:球心和截面圆心的连线垂直于截面(类比:圆的垂径定理);性质4:在同一球中,过两不平行截面圆的圆心且垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心);性质5:球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+. (2)结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体截得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;ca b初图2初图1NOO 1PEFOO 1D 1C 1B 1DCA 1O 2ABM结论4:圆柱体的外接球球心在上下两底面圆的圆心连线段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱与该棱柱的外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥与该棱锥的外接圆锥有相同的外接球.(3)终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度); 3.内切球的有关知识与方法(1)若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).(2)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等(类比:与多边形的内切圆、外接圆) (3)正多面体的内切球和外接球的球心重合.(4)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 4.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 二、理清位置,学会画图 先画一个大圆与一个或两个小圆。
新人教版高中数学必修2课件:8.1 第2课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征

(2)平行于底面的截面是圆面.
(3)通过轴的各个截面是轴截面,各轴截面是全等的等腰
梯形,如梯形ABB1A1.
(4)任意两条母线确定的平面,截圆台所得的截面是等腰梯形,如梯形ACC1A.
(5)母线都相等,各母线延长后都相交于一点.
微练习
(1)下列说法正确的是(
)
A.以直角三角形的一直角边所在的直线为轴旋转一周所得的旋转体是圆
)
答案 (1)A
(2)①×
②×
解析 (1)以直角梯形垂直于底边的腰所在的直线为轴,旋转一周所得的旋
转体才是圆台,所以选项B不正确;圆锥仅有一个底面,所以选项C不正确;圆
锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以选
项D不正确.很明显选项A正确.
知识点四、球的结构特征
球及相关概念
提示空间中到定点的距离等于定长的点的集合叫做球面,球面所围成的几
何体叫做球体,简称球.这个定点叫球心,定长叫做球的半径.
知识点五、简单组合体
1.简单组合体的概念:由简单几何体组合而成的几何体称作简单组合体.常
见的简单组合体大多是由具有柱体、锥体、台体、球等结构特征的物体
组成的.
2.简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种
形成的面所围成的旋转体是圆锥;
②半圆绕其直径所在直线旋转一周形成的曲面所围成的旋转体是球;
③用一个平面去截球,得到的截面是一个圆面.
答案 ①②③
反思感悟 1.判断简单旋转体结构特征的方法
(1)明确由哪个平面图形旋转而成.
(2)明确旋转轴是哪条直线.
2.简单旋转体的轴截面及其应用
(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构
关于球的组合体问题

常见几何体的外接球
(一)柱体的外接球 1.正方体 2.长方体 3.直棱柱(或圆柱)
1、正方体的内切球、外接球
2r a
2R
3a
2、长方体(或正四、六棱柱) 的外接球
体对角线=球直径
长方体中, a2 b2 c2 2R
3.直棱柱(或圆柱)的外接球
上下底面外接圆圆心连线的中点,即为球心
( A)
2 6
(B)
3 6
(C )
2 3
( D)
2 2
2. 【2012 辽宁理 16】已知正三棱锥 P ABC,点 P,A,B,C 都在半 径为 3 的求面上,若 PA,PB,PC 两两互相垂直,则球心到截 面 ABC 的距离为________。 3.(11 新课标理 15)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的 球 面 上 , 且 AB=6 , BC=
点都在一个球面上,则该球的表面积为 (A) a
2
7 2 (B) 3 a
(C)
11 2 a 3
2 (D) 5 a
3. 直 三 棱 柱
A B C A1 B 1 C 1 的 各 个 顶 点 在 同 一 球 面 上 , 若
AB AC AA1 2, BAC 120 ,则球的表面积为_______.
反思总结:
1.解决球的组合体问题的基本思路:找球心,求半径
正方体、长方体、直棱柱 2.锥体的外接球问题,可把锥体补成: 3.关于球的组合体的常见规律和结论,你能总结几个?
巩固强化:
1. 【2012 新课标 11】 已知三棱锥 S ABC 的所有顶点都在球 O 的求面上, ABC 是边长为1 的正三角形, SC 为球 O 的直径,且 SC 2 ;则此棱锥的 体积为( )
柱锥球及其简单组合体解析

圆锥的侧面积、体积的计算公式如下:
S圆锥侧 rl
V圆锥
1 r2h
3
其中r为底面半径,l为母线长,h圆锥的高.
巩固知识 典型例题
例4 已知圆锥的母线的长为 2 cm,圆锥的高为 1 cm,求该圆锥的体积.
解 由图知
r l2h2 3cm
故圆锥的体积为
V 圆 锥 1 3(3)21cm 3
论旋转到什么位置,斜边都叫做
侧面的母线.母线与轴的交点叫
做顶点.顶点到底面的距离叫做
圆锥的高.
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
观察圆锥,可以得到圆锥的下列性质
(1) 平行于底面的截面是圆;
(2) 顶点与底面圆周上任意一点 的距离都相等,且等于母线的 长度;
(3) 轴截面为等腰三角形,其底边上 的高等于圆锥的高.
经过球面上两点的大圆在这两点间的一段劣弧(指不超过半个大圆的弧) 的长度叫做两点的球 面距离.它是球面上 这两点之间最短连线 的长度,右图的劣弧 »A B 的长度就是A、B 两点的球面距离.飞 机、轮船都是尽可能以大圆弧为两点间的航线航行的.
9.5 柱、锥、球及简单组合体
自我反思 目标检测
已知圆锥的底面半径为 2 cm,高为 2 cm,求这个圆锥的体积(保留4个有效数字).
2.如图所示,一个铸铁零件,是由半个圆柱与一个正四棱柱组合成的 几何体,圆柱的底面直径与高均为2 cm,正四棱柱底面边长为2 cm、侧棱为 3 cm.求该零件的重量(铁的比重约7.4 g/cm3).(精确到0.1 g)
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
把地球近似地看作一个球时,经线就是球面上从北极到南极的半个大圆; 赤道是一个大圆,其余的纬线都是小圆.如左图所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球的组合体
1若一个球的体积为,则它的表面积为
一. 球截面问题
1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.
2.已知四面体ABCD 中
,AB=AD=6,AC=4,CD=2,AB ⊥平面ACD,则四面体ABCD 外接球的表面积为( )
A .36
B .88
C .92
D .128
3.已知矩形A B C D 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为__________.
4球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.
5.已知三棱锥O —ABC ,A .B .C 三点均在球心为0的球表面上,AB=BC=1,∠ABC=120°,三棱锥O —ABC 则球O 的表面积是
( )
A .64π
B .16π
C .32
3π D .544π
6.已知四面体中,,平面,则四面体外接球的体积为____
13ππππP ABC -4,2PA PB PC AC ====PB ⊥PAC P ABC -
二. 球心可见问题:
1在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折
成一个直二面角B AC D --,则四面体ABCD 的外接球的体
积为 A.
12512π B.1259π C.1256π D.1253π
2已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且;则此棱
锥的体积为
三.补形问题(正方体、长方体)
1求棱长为a 的正四面体外接球和内切球的体积?
2.正四棱锥S ABCD -
S A B C D 、、、、都在同一球面上,则此球的体积为
3自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.
S ABC -O ABC
∆1SC O 2SC =()
A 6()
B ()
C 3()
D 2A O D B
图4
四.其他有关问题
1把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.
2正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.
正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 4
1=
(h 为正四面体的高),且外接球的半径r R 3=.
1把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.
解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .
PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,
ABC ∆的边长为62,∴2626
3=⨯=HE .∴3=PE 可以得到2321=⋅=
==∆∆∆PE BC S S S PBC PAC PAB .36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:263
3232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==
ππR V 球.
一个正方体的各顶点均在同一球的球面上,若该球的体积为π34,则该正方体的表面积为.
解析:由343
R π=
得R ,所以2a =,表面积为2624a =. 1.求棱长为a 的正四面体外接球和内切球的体积?
解一:如图设ABCD 是棱长为a 的正四面体
作AO 1⊥平面BCD 于O 1,则O 1为ΔBCD 的中心
则BO 1=a 3
3a 2332=⨯ ∴AO 1=a 36a 33a 22=-⎪⎪⎭
⎫ ⎝⎛ 在平面ABO 1内作AB 的垂直平分线交AO 1于O ,则AO =BO =CO =
DO
且O 到平面BCD 、ABC 、ACD 、ABD 的距离相等 ∴O 是ΔACD 的内切球,外接球球心 ∵1AO AE AB AO =,∴AO =a 46a 3
6a 2=⨯a ∴OO 1=a 12
6a 46a 36=- ∴ABCD 的外接球的体积为33a 86a 4634π=π⎪⎪⎭
⎫ ⎝⎛, ABCD 的内切球的体积为33a 216
6a 12634π=π⎪⎪⎭⎫ ⎝⎛。
解二、4×1/3×a 432×r=1/3×a 432×a 3
6 r=a 126 R=a 36- r=a 46a 3
6a 2=⨯a。