全等三角形经典辅助线做法汇总

合集下载

全等三角形中常见辅助线的作法

全等三角形中常见辅助线的作法

全等三角形中常见辅助线的作法一、倍长中线法。

1. 作法。

- 当遇到三角形中线时,可将中线延长一倍,连接相应顶点,构造全等三角形。

- 例如,在△ABC中,AD是BC边上的中线。

延长AD到E,使DE = AD,然后连接BE。

2. 原因。

- 因为BD = CD(AD是中线),∠BDE = ∠CDA(对顶角相等),DE = AD(所作辅助线),根据SAS(边角边)判定定理,可以证明△BDE≌△CDA。

- 这样做的好处是可以将分散的线段和角集中到新构造的全等三角形中,从而便于解决问题,比如可以将AC边转化为BE边,进而在新的三角形△ABE中研究线段之间的关系。

二、截长补短法。

1. 截长法。

- 作法。

- 在较长的线段上截取一段等于已知的较短线段。

- 例如,在△ABC中,要证明AB = AC + CD(假设AC<AB)。

在AB上截取AE = AC,然后连接DE。

- 原因。

- 截取AE = AC后,我们可以通过证明△ADE≌△ADC(如果有合适的条件,如AD 是角平分线,则可以利用SAS判定),得到DE = CD。

这样就将AB = AC+CD的证明转化为证明BE = DE的问题,将问题简化。

2. 补短法。

- 作法。

- 延长较短的线段,使延长后的线段等于较长的线段。

- 例如,在上述△ABC中,延长AC到F,使CF = CD,然后连接DF。

- 原因。

- 延长AC到F使CF = CD后,如果能证明△ABD≌△AFD(根据具体题目中的条件,可能利用AAS、ASA等判定定理),就可以将AB = AC + CD的证明转化为证明AB = AF的问题,通过构造全等三角形,把线段之间的关系进行转化,从而达到解题目的。

三、作平行线法。

1. 作法。

- 过三角形的一个顶点作某条边的平行线。

- 例如,在△ABC中,D是AB上一点,E是AC上一点,要证明AD/AB = AE/AC。

过D作DF∥AC交BC于F。

2. 原因。

- 因为DF∥AC,根据平行线的性质,可得∠ADF = ∠A,∠AFD = ∠C,∠BDF = ∠B。

专题全等三角形常见辅助线做法及典型例题

专题全等三角形常见辅助线做法及典型例题

全等三角形辅助线做法总结 图中有角平分线;可向两边作垂线.. 也可将图对折看;对称以后关系现..角平分线平行线;等腰三角形来添.. 角平分线加垂线;三线合一试试看..线段垂直平分线;常向两端把线连.. 要证线段倍与半;延长缩短可试验..三角形中两中点;连接则成中位线.. 三角形中有中线;延长中线等中线..一、截长补短法和;差;倍;分截长法:在长线段上截取与两条线段中的一条相等的一段;证明剩余的线段与另一段相 等截取----全等----等量代换补短法:延长其中一短线段使之与长线段相等;再证明延长段与另一短线段相等延长 ----全等----等量代换例如:1;已知;如图;在△ABC 中;∠C =2∠B;∠1=∠2..求证:AB=AC+CD..2;已知:如图;AC ∥BD;AE 和BE 分别平分∠CAB 和∠DBA;CD 过点E .求证:1AE ⊥BE ; 2AB=AC+BD .二、图中含有已知线段的两个图形显然不全等或图形不完整时;添加公共边或一其中 一个图形为基础;添加线段构建图形..公共边;公共角;对顶角;延长;平行例如:已知:如图;AC 、BD 相交于O 点;且AB =DC;AC =BD;求证:∠A =∠D..三、延长已知边构造三角形例如:如图6:已知AC =BD;AD ⊥AC 于A ;BC ⊥BD 于B;求证:AD =BC四、遇到角平分线;可自角平分线上的某个点向角的两边作垂线“对折”全等例如:已知;如图;AC 平分∠BAD;CD=CB;AB>AD..求证:∠B+∠ADC=180..五、遇到中线;延长中线;使延长段与原中线等长“旋转”全等 例如:1如图;AD 为 △ABC 的中线;求证:AB +AC >2AD..三角形一边上的中线小于其他两边之和的一半2;已知:AB=4;AC=2;D 是BC 中点;AD 是整数;求AD..3;如图;已知:AD 是△ABC 的中线;且CD=AB;AE 是△ABD 的中线;求证:AC=2AE.六、遇到垂直平分线;常作垂直平分线上一点到线段两端的连线可逆 :遇到两组线段相等;可试着连接垂直平分线上的点 例如:在△ABC 中;∠ACB=90;AC=BC;D 为△ABC 外一点;且AD=BD;DE ⊥AC 交AC 的延长 线于E;求证:DE=AE+BC..七、遇到等腰三角形;可作底边上的高;或延长加倍法“三线合一”“对折”例如: 如图;ΔABC 是等腰直角三角形;∠BAC=90°;BD 平分∠ABC 交AC 于点D;CE 垂 直于BD;交BD 的延长线于点E..求证:BD=2CE..八、遇到中点为端点的线段时;延长加倍次线段例如:如图2:AD 为△ABC 的中线;且∠1=∠2;∠3=∠4;求证:BE +CF >EF九、过图形上某点;作特定的平行线“平移”“翻转折叠” 例如:如图;ΔABC 中;AB=AC;E 是AB 上一点;F 是AC 延长线上一点;连EF 交BC 于D; 若EB=CF..求证:DE=DF.. AD BCD CB A 110 图OC A EB D。

2024八年级上《全等三角形》常见辅助线作法总结

2024八年级上《全等三角形》常见辅助线作法总结

全等三角形是初中数学中的重要概念,掌握全等三角形的判断和性质是解决三角形问题的关键。

常用的辅助线作法可以帮助我们更好地理解和应用全等三角形的知识。

下面将对2024八年级上《全等三角形》常见的辅助线作法进行总结。

一、三角形内部的辅助线作法:1.外切圆:对于一个三角形,可以在它的外面作出三个外接圆,然后通过外接圆的协调定理来判断和证明两个三角形全等。

2.角平分线:对于一个角,可以作出它的角平分线,然后利用角平分线的性质来判断和证明两个三角形全等。

3.中位线:对于一个三角形,可以连接它的两个顶点和中点,得到两条中位线。

根据中位线的性质,可以判断和证明两个三角形全等。

4.高线:对于一个三角形,可以分别作出它的三条高线,然后根据高线的性质来判断和证明两个三角形全等。

5.角高线和中线:对于一个锐角三角形,可以连接其中一个角的顶点和对边的中点,得到一条角高线和一条中线。

根据角高线和中线的性质,可以判断和证明两个三角形全等。

二、三角形外部的辅助线作法:1.外接圆和割线:对于一个三角形,可以通过外接圆和割线的性质来判断和证明两个三角形全等。

2.正弦定理和余弦定理:对于一个三角形,可以通过正弦定理和余弦定理来判断和证明两个三角形全等。

3.对称性和重叠法:对于一个三角形,可以利用对称性和重叠法来判断和证明两个三角形全等。

4.平移法和旋转法:可以通过平移法和旋转法来判断和证明两个三角形全等。

以上仅是2024八年级上《全等三角形》常见的辅助线作法的总结,实际问题中可能还会有其他的辅助线作法。

在解决三角形问题时,选择合适的辅助线作法可以简化问题,提高解题效率。

同时,还需要对全等三角形的基本知识进行深入理解和掌握,不仅要掌握判断全等三角形的条件,还要熟练运用全等三角形的性质和定理。

全等三角形经典辅助线做法汇总

全等三角形经典辅助线做法汇总

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

也可将图对折看,对称以后关系现。

角平分线加垂线,三线合一试试看。

要证线段倍与半,延长缩短可试验。

三角形中有中线,延长中线等中线。

1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2 )可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形问题中常见的8种辅助线的作法(有答案)资料

全等三角形问题中常见的8种辅助线的作法(有答案)资料

全等三角形问题中常见的辅助线的作法(有答案)常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.- 1 -一、倍长中线(线段)造全等_________. AC=3,则中线AD的取值范围是例1、已知,如图△ABC中,AB=5,ACDB. D是中点,试比较BE+CF与EF的大小、中,EF分别在AB、AC上,DE⊥DF,例2、如图,△ABC AE F BAE.平分∠的中点,求证:例3、如图,△ABC中,BD=DC=AC,E是DCAD BCD ACEDB应用:ACE??ABC ABD?、,腰边两AB向AC为腰分别外作等腰RtRt和二(1、09崇文模)以等的,?BAD??CAE90??、,、的中点.探究:AM的位置关系及数量关系.连接DE与MN 分别是BCDEDE ABC?,当(1)如图①AM为直角三角形时,与DE的位置关系是;DE与的数量关系是AM线段???ABD?)问中得到的两个后,如图②所示,(Rt2()将图①中的等腰A绕点沿逆时针方向旋转(0<<90)1 结论是否发生改变?并说明理由.- 2 -二、截长补短BAC??ABC AC⊥AD=BDAD平分,求证:CD1、如图,,且中,AB=2AC,ACB;AB,求证点E过∥BC,EA,EB分别平分∠DAB,∠CBA,CD2、如图,AD D AD+BC。

全等三角形作辅助线的常用方法

全等三角形作辅助线的常用方法

全等三角形作辅助线的常用方法全等三角形是指具有相同形状和大小的三角形。

在解决几何问题时,我们常常会用到全等三角形作为辅助线来辅助推导和证明。

下面介绍几种常用的方法:1. SSS法:如果两个三角形的三边分别相等,则它们是全等三角形。

在使用SSS法时,我们要注意较长边对应较长边,较短边对应较短边。

2. SAS法:如果两个三角形的两边和夹角分别相等,则它们是全等三角形。

在使用SAS法时,我们要注意两个已知边的夹角位置,确保它们对应正确。

3. ASA法:如果两个三角形的两个夹角和一边分别相等,则它们是全等三角形。

在使用ASA法时,我们要注意两个已知夹角的边位置,确保它们对应正确。

4. RHS法:如果两个直角三角形的斜边和一个锐角分别相等,则它们是全等三角形。

在使用RHS法时,我们要注意斜边和锐角的位置,确保它们对应正确。

以上四种方法是解决全等三角形问题时常用的方法,根据具体情况选择合适的方法来辅助推导和证明。

除了这些方法,我们还可以利用全等三角形的性质来简化问题。

例如,当我们需要证明两条线段相等时,可以构造一个全等三角形,利用全等三角形的性质得出结论。

同样地,当我们需要证明两个角相等时,也可以构造一个全等三角形来简化问题。

在解决几何问题时,我们经常会遇到一些特殊的情况,例如等腰三角形、全等三角形的性质等。

在这些情况下,我们可以利用全等三角形的性质来推导出一些结论,进而解决问题。

总结一下,全等三角形作为几何问题中常用的辅助线,可以帮助我们推导和证明一些结论。

在解决几何问题时,我们可以根据题目给出的条件选择合适的方法来构造全等三角形,进而简化问题。

熟练掌握全等三角形的性质和常用方法,可以提高解题效率,解决更加复杂的几何问题。

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法

全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。

具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。

b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。

c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。

具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。

b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。

c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。

3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。

具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。

b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。

c.推导出∠ABC和∠EDB相等,从而两个三角形全等。

4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。

a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。

b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。

c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。

d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。

通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。

在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。

本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。

一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。

这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。

2.中线法:将三角形任意两边的中点相连,得到三角形的中线。

相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。

相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。

相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。

相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。

这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。

二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。

解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。

由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。

因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。

又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。

全等三角形的辅助线的常见添法

全等三角形的辅助线的常见添法

全等三角形的辅助线的常见添法一、前言全等三角形是初中数学中一个重要的概念,其性质和应用十分广泛。

在解决全等三角形相关问题时,辅助线的运用是非常常见的方法之一。

本文将介绍几种常见的全等三角形辅助线添法。

二、中线中线是连接三角形一个顶点和对边中点的线段。

在全等三角形的证明中,经常使用到中线。

1. 作平移假设有两个全等三角形ABC和DEF,需要证明它们完全重合。

可以在BC上取一点M,在EF上取一点N,连接MN,并作平移使得BC重合于EF,即可证明ABC和DEF完全重合。

2. 作垂线假设有两个全等三角形ABC和DEF,需要证明它们完全重合。

可以在BC上取一点M,在EF上作MN垂直于EF,并延长至交于P,则BP=FP,CP=EP,因此可以通过SAS(边-角-边)准则证明ABC和DEF完全重合。

三、高线高线是从一个顶点向对边所在直线作垂线所得到的线段。

在证明两个直角三角形相似时常用到高线。

1. 作垂心假设有两个直角三角形ABC和DEF,需要证明它们相似。

可以在ABC 中作垂心H,连接AH、BH、CH,并在DEF中作DH垂直于EF,延长至交于K,则AK=DK,因此可以通过AA(角-角)准则证明ABC 和DEF相似。

2. 作中线假设有两个三角形ABC和DEF,其中BC=EF,需要证明它们相似。

可以在BC上取一点M,在EF上取一点N,连接MN,并作垂线PH 垂直于MN且交于O,则PO为MN的中线。

由于BM=FN,BO=EO(因为PH平分MN),因此可以通过SAS准则证明ABC和DEF相似。

四、角平分线角平分线是从一个顶点出发将角分成两个相等的角所得到的线段。

在证明两个三角形相似时常用到角平分线。

1. 作等腰三角形假设有两个三角形ABC和DEF,其中∠BAC=∠EDF且AC=DF,需要证明它们相似。

可以在BC上取一点M,在EF上取一点N,并连接AN、BM以及CN与AM的交点为P,则AP=PN(因为AP是∠BAC 的平分线),BP=PM(因为BP是∠ABM的平分线),因此可以通过SAS准则证明ABC和DEF相似。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(完整版)全等三角形常见辅助线作法

(完整版)全等三角形常见辅助线作法

4.翻折法
▪ 沿角平分线翻折构造全等三角形 ▪ 沿高线翻折构造全等三角形 ▪ 绕点旋转构造全等三角形
问题:
如何利用三角形的角平分线来构
造全等三角形?
如图,在△ABC中,AD平分∠BAC。
3.倍长中线法
▪ 如果题中条件有中线,可将中线延长一倍, 以构造全等三角形,从而将分散条件集中 在一个三角形内角形?
可以利用倍长中线法,即把中线 A
延长一倍,来构造全等三角形。
如图,若AD为△ABC的中线,
1
延长AD到E,使DE=AD, 连结BE(也可连结CE)。
A E
D
B
C
▪ 练习2、已知,如图:在△ABC中,∠C=2∠B, ∠1=∠2,求证:AB=AC+CD.
A
C D B
2.平行线法(或平移法)
▪ 如果题目中含有中点,可以通过中点作平 行线或中位线
▪ 对于Rt△,有时可作出斜边的中线.
▪ 例2、如图,△ABC中,AB=AC。E是AB上异于A、 B的任意一点,延长AC到D,使CD=BE,连接DE 交BC于F。求证:EF=FD。
如不能,请说明理由。
▪ (2)本题中E点是否是CD的中点,如是,请证明。 ▪ (3)本题的大前提AC∥BD不变,而在以下四个条件:EA是∠BAC的平分线,
EB是∠ABD的平分线,E是CD的中点,AB=AC+BD中,任取两个作为已知条件, 另外两个作为结论,命题是否成立?请你说明理由。
例1 已知:如图,在四边形ABCD中,BD是 ∠ABC的角平分线,AD=CD,求证:
分析过程: 要证:AB=AC+BD 需证:AC=AF、BD=BF 要证: AC=AF、BD=BF 需证:△BFE≌△BDE 要证:△BFE≌△BDE 需证: ∠D=∠BFE 要证: ∠D=∠BFE 需证: ∠C=∠AFE 要证:∠C=∠AFE 需证: △CAE≌△FAE

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案 )总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法〞或“补短:法〞遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为 30 、60 度的作垂线法:遇到三角形中的一个角为30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题,思维模式是全等变换中的“对折〞法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,〔1〕可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理.〔2〕可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形做辅助线六种方法大全

全等三角形做辅助线六种方法大全

专题02 全等三角形做辅助线六种方法大全几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。

目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中去。

例1.如图,AD 为ABC V 中BC 边上的中线()AB AC >.(1)求证:2AB AC AD AB AC -<<+;(2)若8cm AB =,5cm AC =,求AD 的取值范围.【变式训练1】(1)如图1,已知ABC V 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC V 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC V 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【变式训练2】(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是 ;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.【变式训练3】如图,在ABCV中,AD是BC边上的中线,过C作AB的平行线交AD的延长线于E点.若6AB=,2AC=,试求AE的取值范围.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例1.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD.【变式训练1】(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【变式训练2】已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.【变式训练3】在V ABC和V ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=5,CD=3,求DE的长.(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD垂直BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN.类型三、做平行线证明全等例1.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC。

全等三角形六种辅助线方法

全等三角形六种辅助线方法

全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。

在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。

下面将介绍全等三角形的六种辅助线方法。

一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。

利用直角三角形的性质,我们可以更方便地求解各种问题。

二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。

利用等角三角形的性质,我们可以更容易地求解各种问题。

三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。

利用这两个三角形的性质,我们可以更快速地解决问题。

四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。

利用相似三角形的性质,我们可以更高效地解决问题。

五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。

利用直角三角形的性质,我们可以更轻松地解决问题。

六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。

利用全等三角形的性质,我们可以更直接地解决问题。

通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。

这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。

同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。

在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。

全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。

这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。

希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形经典辅助线做法汇总全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7. 角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

5)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移"或“翻转折叠"6)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.7)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ ABC中,AAB=5AC=3则中线AD的取值范围是.B D C例2、如图,△ ABC中, E、F分别在AB AC上, DEI DF, D是中点,试比较BE+CF与EF的B D例3、如图,△ ABC中, BD=DC=ACE是DC的中BAE.(一)中线倍长法:例1、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ ABC 1 中,AD 是BC 边上的中线,求证:AD < — (AB+AC) 2 1 -(AB+AC),就是证明AB+AO2AD ,也就是证明两条线 2 段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边” ,但题中 的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应 该进行转化。

待证结论 AB+AC>2AD 中,出现了 2AD ,即中线AD 应该加倍。

证明:延长 AD 至 E ,使 DE=AD ,连 CE ,贝U AE=2AD 。

在厶ADB 和厶EDC 中, AD= DE Z ADB 二 ZEDC 分析:要证明AD < BD= DC•••△ ADB ◎△EDC(SAS) ••• AB=CE又在厶ACE 中, AC+CE >AEC 1 < -(AB+AC) 2 小结:(1)涉及三角形中线问题时, 它可以将分居中线两旁的两条边 一个三角形中,以利于问题的获解 ••• AC+AB >2AD ,即 AD 常采用延长中线一倍的办法,即中线倍长法。

AB 、AC 和两个角/ BAD 和/CAD 集中于同 课题练习:ABC 中, AD 是BAC的平分线,且 BD=CD ,求证 AB=ACCD作BE 丄AD 的延长线于 E 使 DN=M ,连 接 BE中中线 F ,连接CD例>:△ ABC 中,AB=5 , AC=3,求中线AD 的取值范围例4:已知在△ ABC中,AB=AC , D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF , 求证:BD=CE课堂练习:已知在△ ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长 F BE 交AC 于F,求证:AF=EF B —-C例5:已知:如图,在ABC中,AB AJ DE 在BC上且DE=EC 过D作DF//BA交AE于点F, DF=AC.求证:AE平分BACCD=AB,/ BDA= / BAD , AE 是厶ABD的中线,求证:/ C= / BAE作业:1、在四边形ABCD中,AB II DC, E为BC边的中点,Z BAE= Z EAF , AF与DC的延长线相交于点F。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论AF2、已知:如图,ABC中,MAD B亠 ECC=90 , CM AB 于M , AT 平分BAC 交CM 于D,交BC于T,过D作DE//AB交BC于E, 求证:CT=BE.3:已知在△ ABC中,AD是BC边上的中线,E 是AD上一点,且BE=AC ,延长BE 交求证:AF=EF于F,\才亠\4:已知CD=AB,/ BDA= / BAD , AE的中线,求证:/ C= / BAE5、在四边形ABCD中,AB II DC E为BC边的,/ BAE= / EAF , AF 与DC于点F。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论应用:1、(09崇文二模)以ABC的两边AB、AC为腰分别向外作等腰Rt ABD和等腰Rt ACE , BAD CAE 90,连接DE,M、N分别是BC、DE 的中点.探究:AM 与DE的位置关系及数量关系.(1)如图① 当ABC为直角三角形时,AM与DE的位置关系是______________ ,线段AM与DE的数量关系是____________ ;(2)将图①中的等腰Rt ABD绕点A沿逆时针方向旋转(0< <90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.二、截长补短1、如图,ABC中,AB=2ACAD平分BAC ,且AD=BD求证:CDL AC2、如图,AD// BC EA,EB分别平D分 / DAB,/ CBA CD过点E,求证;AB =AD+BCADC3、如图,已知在VABC 内,BAC 60 , C 400, P, Q分别在BC CA上,并且AP BQ分别是BAC , ABC的角平分线。

求证:B ...BQ+AQ=AB+BP4、如图,在四边形ABCD中, BC> BA,AD= CD BD平分ABC ,D-16 -已知,如图1-1,在四边形ABCD 中,BC > AB , AD = DC , BD 平分Z ABC.求证:/ BAt +Z BCD 180° . 分析:因为平角等于180°,因而应 考虑把两个不在一起的通过全等转化成 为平角,图中缺少全等的三角形,因而解 题的关键在于构造直角三角形,可通过 “截长补短法”来实现.证明:过点D 作DE 垂直BA 的延长线 于点E 作DF L BC 于点F ,如图1-25、如图在△ ABC 中,AB>AC Z 1 = Z 2, P 为 AD 上任意一点,求证;AB-AC > PB-PCDCC图•・• BD平分/ ABC 二DE=DF在Rt △ ADE与Rt △ CDF中,DE DFAD CD・•・ Rt △ AD匡Rt △ CDfHL), ・•・/DAE=Z DCF又/ BAD■/ DAE180°,・・・/ BAD/ DC=180°即/ BAD■/ BCD180°例1.如图2-1 , AD// BC点E在线段AB上,/ ADE=/ CDE / DCE/ ECB求证:CDADBC例2.已知,如图3-1 , /仁/ 2, P为BN上一点,且PDL BC于点D, AB F BG=2BD求证:/ BAF+Z BCP180° .图例3.已知:如图4-1,在△ ABC中,/ C= 2/B, /1 =2 2.求证:ABAQCD图作业:1、已知:如图,ABCD是正方形,/ FA[=Z FAE 求证:BE F DF=AE2、五边形ABCDE中,ABAE, BGDE=C[ / ABG/ AEB180。

,求证:AD平分/ CDEE应用:例2如图,在△ ABC的边上取两点 D E,且BD=CE 求证:AB+AC>AD+AE.四、借助角平分线造全等 1、如图,已知在△ ABC 中, 角平分线AD,CE 相交于点2、如图,△ ABC 中,AD 平分/ BAC DGLBC 且 平分BC DEI AB 于E , DF 丄AC 于F.(1)说明 BE=CF 的理由;(2)如果 AB=a , AC=b , 求AE BE 的长./ B=60°,A△ ABC 的 D应用:1、如图①,OP是/ MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在厶ABC中,Z ACB是直角,Z B=60°, AD、CE 分别是Z BAC、Z BCA的平分线,AD、CE相交于点Fo请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ ABC中,如果Z ACB不图①而(1)中的其它条件不变,请B论是N A- 24 -图②(第23题图)C图③立?若成立,请证明;若不成立,请说明理由。

五、旋转例1正方形ABCD中, E为BC上的一点,F 为CD上的一点, 的度数.例2 D为等腰Rt ABC斜边AB的中点,DML DNQMQt分别交BC,CA于点E,F。

相关文档
最新文档